
CAP Laboratory, SNU 1

Schedule

1. Introduction
2. System Modeling Language: System C *
3. HW/SW Cosimulation *
4. C-based Design *
5. Data-flow Model and SW Synthesis
6. HW and Interface Synthesis
(Midterm)
7. Models of Computation
8. Model based Design of Embedded SW
9. Design Space Exploration
(Final Exam)
(Term Project)

CAP Laboratory, SNU 2

References

Model of Computation
[21] E. A. Lee and A. Sangiovanni-Vincentelli, "A Framework for Comparing
Models of Computation," IEEE TCAD, 17(12), December, 1998.

STATEMATE
[22] D. Harel, “Statecharts: A Visiual Formalism for Complex Systems,”
Science of Computer Programming, Vol. 8, pp. 231-274, 1987
[23] David Harel, et. al., "STATEMATE: A Working Environment for the
Development of Complex Reactive Systems," IEEE TSE, 16(4), April 1990.

POLIS & ACFSM
[24] Marco Sgroi, Luciano Lavagno, A. Sangiovanni-Vincentelli, “Formal
Models for Embedded System Design,” IEEE Design & Test of Computers,
17(2), 14-27, June 2000.

COSY
[25] H.J.H.N.Kenter et. al, "Designing Digital Video Systems: Modeling and
Scheduling," CODES Workshop, May 1999.

CAP Laboratory, SNU 3

References

Simulink
[26] Paul Caspi, et. al, “Translating Discrete-Time Simulink to Lustre,”
LNCS, Vol. 2855/2003, pp. 84-99, 2003.

Ptolemy
[27] J. T. Buck, et. al., "Ptolemy: A Framework for Simulating and
Prototyping Heterogeneous Systems," Int. Journal of Computer Simulation,
special issue on Simulation Software Development, vol. 4, pp. 155-182,
April, 1994.

Ptolemy II: *-chart
[28] A. Girault, B. Lee, and E. A. Lee, ``Hierarchical Finite State Machines
with Multiple Concurrency Models,'' IEEE Transactions On Computer-aided
Design Of Integrated Circuits And Systems, Vol. 18, No. 6, June 1999.

Process Networks
[29] E. A. Lee and T. M. Parks, "Dataflow Process Networks," Proceedings
of the IEEE, vol. 83, no. 5, pp. 773-801, May, 1995

CAP Laboratory, SNU 4

References

PeaCE
[30] Dohyung Kim, Minyoung Kim and Soonhoi Ha, "A Case Study
of System Level Specification and Software Synthesis of Multi-mode
Multimedia Terminal", Workshop on Embedded Systems for Real-
Time Multimedia (ESTIMedia), Newport Beach, CA, USA Oct 2003

CAP Laboratory, SNU 5

Outline

Introduction
State-oriented model
Activity-oriented model
Process network model
Heterogeneous approach
System-level specification experiment

CAP Laboratory, SNU 6

System Design Flow

System Design Flow (System Engineering view)
Top-down approach

User
Requirement

SPS(System
Performance

Specification)

SPS(System
Performance

Specification)

system-level design

Product 1 Product 1

PDS(Product
Development

Specification)

PDS(Product
Development

Specification)

product-level design

subsystem 1 subsystem 1

subsystem-level design

assembly-level design

part-level design

CAP Laboratory, SNU 7

System Specification

Definition
Specification is a document that describes the essential
requirements for items, materials, processes, or services of a
prescribed solution space, data required to implement the
requirements, and methods of verification to satisfy specific criteria
for formal acceptance

Specification Tree
Define System Performance Specification based on user
requirement.
Specification tree

− Product 1 development specification
− Product 2 development specification

− Subsystem B1 Development specification

− SW requirement specification

− HW requirement specification

CAP Laboratory, SNU 8

Understanding Specification
Requirements

Specification requirements
Operational requirements: basic system function
Capability requirements: system performance
Nonfunctional requirements: operating condition, outlook
Interface requirement
Verification requirement

Modes of operation
Normal mode
Abnormal mode
Emergency mode
Catastrophic mode

CAP Laboratory, SNU 9

Specification Development
Approaches

Feature-based approach
Popular method for non-expert: ad hoc list of requirements

− Energy consumption, real-time performance, cost, functions, etc.
Poorly organized, prone to missing, misplaced, conflicting, and
duplicate requirements

Reuse-based approach
Reuse and extend the specification of prebuilt component

Performance-based approach
Popular method to specify the requirement systematically

Model-based approach
Build specification tree based on top-down approach

CAP Laboratory, SNU 10

Performance Based Approach

Regard a system as a black box and specify the system function
with performance boundary conditions.
Systematic specification

System modes, missions, use cases
Design and construction constraints
Range of Inputs and outputs

System/Entity

functionality
- Use case # 1
- Use Case # 2

design & construction
constraints

acceptable range
of inputs

unacceptable range
of inputs

products

by-products

services

CAP Laboratory, SNU 11

Model Based Approach

Model
Abstract view of real entity
Express the essential features as minimally as possible
Better if executable, synthesizable, verifiable
Separation of communication and computation
Hierarchy for complexity management

System

inputs outputs

Model

u(t) y=f(u)

CAP Laboratory, SNU 12

Behavior Specification Models

State-oriented models
Finite-State Machines (FSM), statechart, Esterel

Object-oriented model
UML

Activity-oriented models
Dataflow model, Discrete-Event model
SystemC model

Concurrent process models
CSP, Kahn process networks, Dataflow process network

Heterogeneous models
Ptolemy, Metropolis, PeaCE

Others
SIMULINK, Synchronous-Reactive model

CAP Laboratory, SNU 13

Heterogeneous Models

Motivation
Application itself has heterogeneous nature: control and
computation
Different modeling methods have been developed for different class
of application

A

B C

MoC 2
MoC 1 MoC 3

MoC 4

* MoC : Model of Computation

CAP Laboratory, SNU 14

Model Classification

Criteria: Abstraction Level of Time

Untimed Model of Computation
Data does not carry timing information
Only ordering of signal is expressed
(example) SDF, Process networks (Kahn, Dataflow)

Synchronous Model of Computation
Synchronous/reactive model
Statechart

Timed Model of Computation
Discrete-event model
Continuous time model

CAP Laboratory, SNU 15

Synchronous Model
Meaning of “Synchronous”

Time axis is divided into timing slots
Events in each slot are considered as completed instantaneously.
A system only needs to be “fast enough” to simulate synchronous behavior

Classification
Perfectly synchronous MoC

− Zero processing time: outputs are produced immediately after inputs are consumed.
− Events are delivered to the destination instantaneously
− (ex) SR model

Clocked synchronous MoC
− All processes have delay to produce outputs
− Delay is equal to the evaluation cycle
− (ex) FSM model

Example
Control-oriented languages: StateCharts, Esterel
Data-flow-oriented languages: Signal, Lustre

time

CAP Laboratory, SNU 16

Synchronous Reactive Model
Fixed-point semantics

Cycle-driven simulation

Characteristics
Good match for control-intensive systems, clocked synchronous circuits
Tightly synchronized
Determinate in most cases
Maps well to hardware and software

Limitation
inefficient for irregular multirate systems
Computation-intensive systems are overspecified
Causality loops are hard to detect
SW implementation is not easy

A B
fixed point <=> stable state
determinism <=> unique solution

CAP Laboratory, SNU 17

Timed Model of Computation

Timed Model of Computation
Timing information is conveyed on the signals
(in synchronous model, transmitting absent events at regular time
intervals.)
Events are processed in the chronological order

Difference from Synchronous MoC
Finer timing granularity

− Minimum timing resolution can be defined arbitrarily (ns or ps)
Processes should preserve causality constraints

Example
Discrete event model
Continuous time model: (ex) SIMULINK

CAP Laboratory, SNU 18

Model and Design Environment

“Design is to represent”
Design procedure depends on the initial specification model

Importance of model
A design environment has its input model
Input model determines the limitation of the design environment as
well as its capability

Status
Diverse models of computation are used in reality.
No design environment exists supporting all design procedure from
specification to implementation.

CAP Laboratory, SNU 19

Outline

Introduction
State-oriented model

Finite State Machine
Statechart and fFSM
Esterel
STATEMATE: statechart-based design environment

Activity-oriented model
Process network model
Heterogeneous approach
System-level specification experiment

CAP Laboratory, SNU 20

State-oriented Model

Main application: reactive systems

Intricate control activities
errors in the control sequence can have fatal consequences
intuitive and clean specification for designers
precise and rigorous specification for analysis

Concurrency
autonomous agents interact each other
pure FSM model suffers from state explosion problem

FSM

Statechart, CFSM, fFSM

CAP Laboratory, SNU 21

FSM

Well-known semantics
Rich analytical properties

Reachability analysis, liveness

System
Under
Design

timer

time-out

power_on

a
init

on

done error

power_on/timer

time-outa

CAP Laboratory, SNU 22

Finite State Machines

Five-tuple
Q : finite set of symbols denoting states
∑ : set of symbols denoting the possible inputs
Δ : set of symbols denoting the possible outputs
σ : transition function mapping

is the initial state

),,,,(0qQ σΔΣ

Δ×→Σ× QQ
Qq ∈0

L×Σ×Σ=Σ 21

A B

b/v

a/u

guard/action

?),(),,(),(
},,{

},{},,{

==
=Δ

=Σ=

aAvBbA
vu

baBAQ

σσ
ε

CAP Laboratory, SNU 23

Statechart

Proble of (Pure) FSM Model
Flat and unstructured: not easy to understand
Inherently sequential: can not express concurrency

− very large number of states and transitions

Harel’s statechart
D. Harel, “Statecharts: A Visiual Formalism for Complex Systems,”
Science of Computer Programming, Vol. 8, pp. 231-274, 1987
hierarchy

(OR decomposition)
− Transitions are NOT level

restricted
Concurrency

(AND decomposition)
A

B
C

D

E

x

y

z

w

F

G

H

u

CAP Laboratory, SNU 24

FSM Hierarchy

Structural description: does not reduce the number of states
Does reduce the number of transitions
What happens when input c and b both exist in state C?

(one solution) external FSM take actions first.

A

a

b/v

C Dc/u

B
A BC

BD

a

b/v

b/v b’c/u

CAP Laboratory, SNU 25

AND Decomposition

Concurrent execution of multiple FSMs
Solve state explosion problem
How to support inter-FSM communication?

Internal events

A B

C D

a

b

c

AC BC

AD BD

ac’
bc’

a

b

a’c b’cbcac

CAP Laboratory, SNU 26

Internal Event

Support communications between concurrent states and across
hierarchy

start halt

toggle

toggle

suspend counterrun counter

reset

set counter value 0

reset / tostart

tostart

script to be discussed later

CAP Laboratory, SNU 27

Comments on statechart
Incomplete and imprecise semantics

(ex) Transition priority is not well-defined

Rich syntax: transition is not level-restricted
Not compositional
Not easy to analyze

Perfect synchrony hypothesis

More than 20 variants exist.

BA Ca/u b/v

BA Ca b

BA Da b / g Cg

CAP Laboratory, SNU 28

Problems with Statecharts

Incomplete and imprecise semantics
Rich syntax
Synchronous approach

Not compositional
inter-level transitions
state references

More than 20 Statechart variants

CAP Laboratory, SNU 29

Variants of Statecharts

Plan 1 : Prohibit instantaneous transition
A state must not be simultaneously entered and exited
transitions indifferent parallel components may be simultaneously
executed.
Help solving many non-deterministic problem
But, there is difficult to achieve compositionality

Plan 2 : Allow instantaneous transition with some limitation
Not to make non-determinism and infinite sequence of transition
Not permit to enter the same state twice
distinguishing internal from external events

JI K
α β

What happens when α, β exist
simultaneously?

CAP Laboratory, SNU 30

flexible FSM (f FSM)
New FSM extension used in PeaCE

A Statechart derivative
Used in a heterogeneous modeling environment

fFSM properties
concurrency
hierarchy
internal event
variable state: support memory in FSM, a kind of concurrent FSM

init wait

input : time, start
output : timeout
state variable : remain

start / remain=start
time & remain>0
/ remain=remain-1

time & remain=0
/ timeout

CAP Laboratory, SNU 31

Example: Traffic Light

CAP Laboratory, SNU 32

Example : Traffic Light

hierarchy

concurrency

CAP Laboratory, SNU 33

Esterel

A language with a textual
syntax that describes
synchronous automata
Some semantics

S1;S2 — sequential
execution
S1 || S2 — parallel execution
do …. watching R — body is
executed until either it
terminates or an event
occurs on the signal R

< example >
module EsTest
input a, b, r;
output o;
loop

do
[await a || await b];
emit o;
halt;

watching r
end loop
end module

CAP Laboratory, SNU 34

FSM and Statechart Examples

A
a

B
b

done

in(A) && in(B)/o

r Statechart

ab’ a’b

b/o
a/o

ab/o

r
r

r

FSM

CAP Laboratory, SNU 35

FSM-based Design Environment

Telelogic (old, iLogix) STATEMATE
Behavior specification: statechart + activity chart
Architecture specification: module chart

FUNCTIONALITY
functional decomposition

& information flow

FUNCTIONALITY
functional decomposition

& information flow

BEHAVIOR
control and

temporal relation

BEHAVIOR
control and

temporal relation

STRUCTURE
physical decomposition

STRUCTURE
physical decomposition

activity chart statechart

module chart

Conceptual model

CAP Laboratory, SNU 36

Activity chart

3 types of objects
transformation
data-store
control activity (content: Statechart)

2 types of arcs
dataflow: solid line
control flow: dashed line

connection between activity chart and statechart
transition labeling (ex)
forms language

T

C

D

Statechart
inside

S1 S2
/suspend(T)

statechart

CAP Laboratory, SNU 37

Transition Labeling of Statechart

Not level restricted.
General syntax: A[C] / B

A: event: primitive or special
C: condition
B: action: primitive or special

Special events; conditions; actions
state F: entered (F), exited(F); in(F)
activity S: started(S), stopped(S); active(S), hanging(S);

start(S), stop(S), suspend(S), resume(S)
data items D,F: read (D), written(D); D=F, D<F, etc; D:= exp
condition C: true(C), false(C); ; make_true(C), make_false(C)
event E, n time untis: timeout(E,n)
action A, n time units: ; ; schedule(A, n)

entered(S) [in(T) and not active(C)]/
suspend(C); x:=y+7

CAP Laboratory, SNU 38

Executable Specification

Execution and Dynamic Analysis
The most basic way of “running” the SUD is in a “step-by-step”
interactive fashion

− user generates external events and gives the “go” command
For non-interactive execution (or programmed execution), specially
tailored simulation control language (SCL) has been designed.
Essentially exhaustive, brute-force, dynamic tests

− reachability, non-determinism, deadlock, and usage of transitions
Code Generation and Rapid prototyping

prototype code: from activity chart to Ada and C program
− not as efficient as final real-time code.
− originally for complied execution

CAP Laboratory, SNU 39

POLIS: Codesign FSM

U.C.Berkeley CAD group –A. Sangiovanni-Vincentelli et. al.
CFSM

Formal model as an intermediate representation during the system
design process. (relatively small real-time control systems)

− Front-end specification: Esterel, StateCharts, a subset of VHDL
Low level enough to be efficiently co-synthesized.
a network of interacting FSMs
each computing element takes a non-zero unbounded time

FSM
FSM

FSM

CAP Laboratory, SNU 40

CFSM Example

Five seconds after the key is turned on, if the belt has not been
fastened, an alarm will beep for ten seconds or until the key is turned
off.

WAIT

OFF

ALARM

*KEY=OFF or
*BELT = ON => *END = 5 =>

*ALARM = ON

*KEY=ON =>
*START

*END = 10 or
*BELT = ON or
*KEY = OFF =>
*ALARM = OFF

Timer
FSM

*START

*TICK

*END

CAP Laboratory, SNU 41

Formality of CFSM

“Asynchronous” behavior of the network of CFSMs can be translated
into a network of “Synchronous” FSMs.

Correctness of design
specification verification: implementation-independent
design verification: implementation-dependent

prototyping
simulation
formal verification

Implementation verification is accomplished by construction

CAP Laboratory, SNU 42

Outline

Introduction
State-oriented model
Activity-oriented model

Discrete event Model
SIMULINK
SystemC Model
Dataflow Model (chapter 5 + more)

Process network model
Heterogeneous approach
System-level specification experiment

CAP Laboratory, SNU 43

Discrete-Event Model

Main applications
Reveal the system dynamic characteristics
(queueing) network simulation, hardware simulation

Module execution order is determined by incoming events
Characteristics

Natural for asynchronous digital hardware
Global synchronization
Timing simulation

Limitation
Expensive to implement in software
May over-specify and/or over-model systems

time

events

CAP Laboratory, SNU 44

Execution Policy of Discrete
Event Model

Event-driven Simulation
Global event queue manages the outstanding events in the chronological
order

− Event queue management overhead is huge: sorting complexity O(N log N).
Efficient if events are generated in a irregular fashion.

− (ex) network simulation
Should avoid causality error
How to resolve simultaneous events?

− All events in a minimal time slot are regarded as simultaneous
− VHDL uses the notion of delta time
− Other options? (topological sort, fixed point computation)

Time-driven Simulation
Invoke every module every cycle

− Skip execution if there is no incoming event
Efficient if events are generated regularly

− (ex) hardware simulation, architecture simulation

CAP Laboratory, SNU 45

Event Driven Simulation

Advance simulation time

Determine current events

Update values

Evaluate activated elements

Schedule resulting events

Done

No more events
or max_time exceeded

A-C, 5us, 1.0
B-C, 5us, 0.0
B-C, 2us, 3.0
A-C, 1us, 2.0

Event
Queue

event path event time value

A
B

C

CAP Laboratory, SNU 46

Simulink

Started purely as a simulation environment
SIMULINK Model

An extension to MATLAB® that allows developers to rapidly build
computer models of dynamic systems
de facto standard in many industrial application domains,
particularly automotive control.
Has a multitude of semantics depending on user-configurable
options, informally and sometime only partially documented

Simulink-based Tools
The Mathworks: Real-Time Workshop
dSPACE: TargetLink

− Generate code only for blocks of the dSpace-provided Simulink library

CAP Laboratory, SNU 47

Simulink Model (1)

Simulink has a continuous-time semantics
A Simulink block in a “Discrete library” produce piece-wise constant
continuous-time signals.

Notion of “sample time”
“-1” means that it is inherited from the predecessor

1

2

1/z

1/z

0
4

9

sample time
= {period, offset}

sample time
= gcd (4,9) = 1

CAP Laboratory, SNU 48

Simulink Model (2)

Triggered subsystem
The sample time of blocks inside a triggered subsystem cannot be
set by the user.
The sample times of the trigger, inputs and outputs of B must all be
equal.

in1
in2

out1

triggering event: the signal has to remain at zero
for more than one time step before triggering

triggering event

CAP Laboratory, SNU 49

Simulink Model (3)

Enabled subsystem
The subsystem is enabled every time the enabling signal is non-
zero
No restriction on sample times to make it very complicated

Code can be safely generated with the same restriction as the
triggered subsystem: all sample times of its internal blocks are “-1”

in1
in2

out1

CAP Laboratory, SNU 50

H.264 Decoder Modeling in Simulink

Use clocks, counter variables,
and some buffers to model
multirate property

To know when to update the
buffer and when to execute the
block, counter variable is
needed
All ports of block(clocks, counter
variables and buffers) should be
controlled separately

Block

clock

void block() {
static int counter = 0;
counter++;
inputBuffer[counter] = read_data;
if (counter==3) {

counter=0;
run(); //main code
write_to_outputPort;

}
}

3 1

Time:Time:

Buffer:Buffer:

123

CAP Laboratory, SNU 51

Top model of H.264 decoder in
Simulink

Read SliceRead Slice

Decode MBDecode MB
Y Y

U U

V V

DeblockDeblock
& Write& Write

Slice ClockSlice Clock
4x4 block Clock4x4 block Clock

CAP Laboratory, SNU 52

Block Definition in Simulink
S-function

a computer language description of a Simulink block
supports C, C++, Ada, and Fortran for modeling blocks

How to use S-function?
1. Use S-function builder too restricted
2. Writing S-function block manually

Difficulties of debugging
“printf” can only be used in “wrapper file”
If some block has a critical bug, it kills Simulink itself

Simulink
Simulation

Engine

wrapper actual function

Special calling syntax Function call

‘mex’-generated MEX-file

CAP Laboratory, SNU 53

SystemC Model

SystemC is modeling platform
a set of C++ class library, plus a simulation kernel level
Not a new language, but a C++ class library to provide hardware
style communication, notion of time, concurrency, reactivity, and
hardware data

SystemC can be an executable specification of the system.

Remind SystemC specification
A system consists of a set of concurrent processes
Processes communicate with each other through channels.
Processes can be combined into modules to create hierarchy.

CAP Laboratory, SNU 54

Dataflow Coordination Languages

Karp and Miller’s computation graph
Synchronous dataflow
Cyclostatic dataflow
Processing graph method (PGM)
Granular lucid

CAP Laboratory, SNU 55

Computation Graphs of Karp and Miller

Symbols
A: # of tokens initially in the queue
U: # of tokens to be added after the input node is executed
W: # of tokens to be fetched for the output node to be fired.
T: the minimum queue length for the output node to execute

Characteristics
determinate: execution result is independent of execution
order
static analysis of termination conditions
static analysis of storage requirements

(A,U,W,T)

Petri net

U A T

T-W

CAP Laboratory, SNU 56

Marked Graph

Marked Graph is a subset of Petri nets.
Each place is an input for exactly one transition and an output for
exactly one transition -> regard a place as an arc in homogeneous
dataflow models.
Cycle: a closed sequence of transitions that form a loop
Cycle analysis

− live: the number of tokens on each cycle is at least one
− safe: every place is in a cycle and every cycle has exactly one token.

CAP Laboratory, SNU 57

Petri Nets

PN = (P,T,A,M)
P: Place
T: Transition

− voluntary,
instantaneous,
complete

A: Arc
M: Initial marking

− M = {m1,m2,m3,m4} = { 1 0 1 0 }

Neither Turing Complete, nor finite state
Uninterpreted model for useful analysis
Events within signals need not be ordered,

p1

p3
t1

p4

p2

t3

t2

CAP Laboratory, SNU 58

Analysis Example

Safeness
No more than one token can ever be in any place of the net at the
same time: place = condition
There is a bound on the number of tokens in any place of the net

Boundedness
The number of tokens is bounded by k → queue size

Conservative
strictly conservative: The number of tokens is conserved.

Liveness
Every transition is live: executable and reachable from initial
marking

CAP Laboratory, SNU 59

Reachability Tree

Finite reachability tree
w if M’ > M ⇒ the number of tokens grow arbitrarily.
Explode easily.

Reachability problem
solvable, but
exponential time-hard, space-hard

Unsolvable problems
given two marked Petri nets has
the same reachability set.

(1 0 1 0)

(1 0 0 1)

(1 w 1 0)

t3

t2

(1 w 0 0) (1 w 0 1)

t1 t3

t1
(1 w 1 0)

CAP Laboratory, SNU 60

Extension to Petri nets

Generalized Petri nets
equivalent to ordinary Petri nets

Zero-testing
same modeling power as Turing machine

Stochastic Petri net (SPN)
SPN = { P, T, A, M, Q } where Q = {q1,q2,…} average transition rate
for exponentially distributed firing times
average performance analysis

Petri net + time
timed Petri net: fixed delay
Time Petri net: delay interval

CAP Laboratory, SNU 61

Outline

Introduction
State-oriented model
Activity-oriented model
Process network model

Kahn Process Network
YAPI model and COSY
Dataflow Process

Heterogeneous approach
System-level specification experiment

CAP Laboratory, SNU 62

Kahn Process Networks

A process is a mapping from input sequences to output
sequences.
Blocking read, non-blocking write
Concurrent processes communicate only through one-way FIFO
channels with unbounded capacity.

A
B

C D

Determinate: independent of
execution order of A and B

{ read AC
read BC }

CAP Laboratory, SNU 63

KPN Characteristics

Rather easy to translate legacy C code to KPN

Deterministic execution

Execution Policy
Demand driven execution

− Minimize resource requirement
− Run-time overhead

Data driven execution
− It is not easy to determine the queue size: overflow or deadlock

Asynchronous input is prohibited

CAP Laboratory, SNU 64

User Control

Stream
Parser

MPEG
Decoder

Image
Displaydata path

data path data path
data path

control path control path control path

Design Framework : COSY

IP-based real-time design methodology
YAPI: extension of the Kahn process network model

Kahn process network + “select” operation
coarse grain mix-and-match of several IP blocks

CAP Laboratory, SNU 65

COSY

Unified approach
control module and computation module are inside a process: not
distinguishable from the outside

YAPI model provides a coordination method of different
components

YAPI: Y-chart Application Programmers Interface

COSY does not specify any formal model inside a component
process - only coarse grain composition

CAP Laboratory, SNU 66

YAPI

Processes
read, write are blocked when data is not available or cannot be
delivered
“select” takes two input ports as input and returns a port ID, If
neither input port has data available, it blocks. If both have, select
one non-deterministically.

Directed FIFO
Process network n = select (in1, in2)

if (n == 0) {
read (in1, x);
f1(x);

} else if (n == 1) {
read (in2, y);
f2(y);

}Code fragment

CAP Laboratory, SNU 67

Dataflow Process

Each process is decomposed into a sequence of firings.
Firing rules: a set of input patterns to fire the actor

Select

T F

C

{ }
{ }FR

TR
,*,

,*,

2

1

⊥=
⊥=

Merge

D1 D2

{ }
{ },*
*,

2

1

⊥=
⊥=

R
R

CAP Laboratory, SNU 68

Sequential Firing Rules

Dataflow coordination language + host language
Sequential Firing rules R = {R1,R2,…,RN}

Find an input j such that all firing rules require at least one token
from that input. If no such input exists, fail.
For the choice of input j, divide the firing rules into subsets remove
input j from all firing rules.
If all subsets have empty firing rules, then succeed. Otherwise,
repeat these steps for any non-empty subset.

Select has sequential firing rules
– examine the control input first and choose R1 or R2 as

the next firing rule
Merge does not have sequential firing rules

– nondeterminate!

CAP Laboratory, SNU 69

Dataflow Process

Sufficient condition for a dataflow process to be continuous
actor firing is functional: output tokens are purely a function of
input tokens: stronger condition than Kahn condition that a process
be functional (actors can have and manipulate states)
the set of firing rules be sequential

State: syntatic sugar of a self-loop

state: foo

≡

foo

F`F

CAP Laboratory, SNU 70

Kahn Process vs. Dataflow
Process

Kahn process
context switch on blocking read: context switch overhead of
processor suspension on blocking read and processor resumption.
Large granularity.

Dataflow process
processes can be freely interleaved by a scheduler in the unit of
firings.
Finer granularity is practical.

CAP Laboratory, SNU 71

Execution Models

Concurrent processes
demand-driven style multi-tasking (Kahn and MacQueen)
data-driven multi-threading (Park)

Dynamic scheduling
by hardware: dataflow architecture
by software: the scheduler tracks the availability of tokens on the
inputs to the actors and fires actors that are enabled.

(Quasi) static scheduling: SDF, BDF, and DDF
static scheduling as much as possible

Tagged-token model - no need for FIFO discipline

CAP Laboratory, SNU 72

PN Summary

Merits
Loose synchronization (distributable)
Determinate under simple conditions
Maps easily to threads, but much easier to use
Turing complete (expressive)

Limitation
Control-intensive systems are hard to specify
Resource requirement can not be predicted

CAP Laboratory, SNU 73

Outline

Introduction
State-oriented model
Activity-oriented model
Process network model
Heterogeneous approach

Ptolemy II: U.C.Berkeley
Cocentric System Studio: Synopsys
PeaCE: S.N.U.

System-level specification experiment

CAP Laboratory, SNU 74

Ptolemy Classic

Pioneering work of heterogeneous modeling
Started in 1990 at U.C.Berkeley
C++ kernel

Hierarchical Domain interface
Wormhole mechanism

Star Star StarStar

SDF
DE

DEfrom-
Universal

SDFto-
Universal

SDFfrom-
Universal

DEto-
Universal

Wormhole: galaxy with different domain inside

“EventHorizon”
- derived from PortHole

CAP Laboratory, SNU 75

Ptolemy II

Start from the scratch with rigorous treatment of formal model
Java-based framework

Director

Actor Actor→ →
Channel

Receiver

Director : determine the execution semantics of the model

ex) is actor active? passive? reactive?

Receiver : determine the communication protocol

ex) timed, synchronized, or buffered communication

port

CAP Laboratory, SNU 76

*Charts: Exploiting Domain Polymorphism

A

C

D

B

x
y

z

G
F

E

x
y

z

G
F

E

FSM domain

YYY domain

Modal model

XXX domain

Domain-polymorphic
component interface

CAP Laboratory, SNU 77

* chart: Ptolemy II approach

Hierarchical FSM with multiple concurrency models
Motivation

Decoupled FSM semantics from concurrency semantics unlike
Statechart
Combining FSMs with concurrent models of computation is
attractive: existing ones tightly interwine the concurrency model with
the automata semantics

− SDL: FSM + process networks
− CFSM: FSM + discrete-event concurrency
− FSM + SDF

Decouple the concurrency model from the hiearchical FSM model
Do not enforce a specific concurrent model

CAP Laboratory, SNU 78

Requirements of Concurrent Model

Compositionality
composite modules can be treated as primitive modules

Heterogeneity
composite modules can be embedded within a foreign model of
computation

Termination
Any concurrent model of computation that can refine a state of an
FSM have a well-defined finite iteration.

− Non-terminating system can often be divided into a set of iterations (ex,
SDF model)

CAP Laboratory, SNU 79

Dataflow with FSM

A B

a
b

x c
y

a b

a/x

b
a c/y

SDF

FSMs

Only subtlety: “absent” event appears explicitly as a token in the SDF
graph

encode presence and absence using boolean-valued tokens

CAP Laboratory, SNU 80

Multirate Dataflow with FSM

A B

a(2)
b(2)

x(2) c
y

α β

a^a$1/x

b∨b$1

SDF

FSMs

C

a(2)

b(2) x(2)

a(1)

b(1)
x(1)

SDF type signature

If an FSM includes an SDF graph,
he SDF type signature becomes
that of the FSM subsystem.
When the SDF schedule is CAAB, the first firing of A does not make
state transition (type A firing), while the seconf firing does state
transition (type B firing) - single transition in an iteration

CAP Laboratory, SNU 81

Heterochronous Dataflow with FSM

In HDF, an actor has a finite number of type signature.
Unlike CSDF, the order of which type signatures are used is not
predictable.
Still key analytical properties can be statically determined.

Deadlock and bounded memory

A B
x(1,2) y

α β

a^a$1/x

a

SDF

FSM

C

a(1)
x(2)

a(3,1)

a(3)
x(1)

CAP Laboratory, SNU 82

Discrete Events with FSM

α β

a/x

b
α c/y

a

b
x c y

DE

Most straightforward combination from a control perspective.
The FSM system appears to the DE system as a zero-delay actor: alert
on zero-delay loop!
Absence of token implies null event. - no transition should be made by
null event.

α β
a’

b
should read as a’b

A B

CAP Laboratory, SNU 83

Synchronous/Reactive System with
FSM

Two phases of execution of
an FSM within SR

Produce phase (type C):
produce outputs without
transition any number of
times in a single tick until a
fixed point is reached
Transition phase (type
D): state transition
ignoring actions

Refined FSM inside SR
more difficult

α β
ab’/x

α c/y

a

b
x

y

ab/x

A

B

CAP Laboratory, SNU 84

CoCentric System Studio

Synopsys’s SystemC Design and Verification tool suite
SystemC simulator and specification environment at multiple levels
of abstraction
Joint verification and analysis of algorithms, architectures, hardware,
and software

System Specification
Hierarchical, graphical and language abstractions – unlimited
hierarchical composition of dataflow graphs (DFGs) and finite state
machines (FSMs)

− Dynamic data flow + hierarchical and concurrent FSM
(cf) *-chart

Block specification: C, C++, or SystemC

CAP Laboratory, SNU 85

PeaCE from SNU CAP Lab.

Hybrid approach of STATEMATE and Ptolemy
Restricted composition of heterogeneous models of computations

fFSM: control logic specification
SPDF : computation (signal processing) specification
A novel Task-model is used for top-level task-level specification

Motivation
Use models consistently from specification to synthesis

− synthesis path from fFSM and SPDF is well established.
Use natural combinations of heterogeneous models.

CAP Laboratory, SNU 86

Motivational Example

Multi-mode Multi-media Terminal Example
Three modes of operation:

− Video phone: H.263 encoder/decoder and G.723 encoder/decoder
− Divx player: H.263 decoder and MP3 player
− MP3 player

User
control

Network
IF

Internet

Demux

H.263
decoder

G.723
decoder

Mux

H.263
encoder

G.723
encoder

camera

mic

Read file
Packet decoder

H.263
decoder

MP3
decoder

MP3 decoder

Mode &
Task

control

CAP Laboratory, SNU 87

Challenges of Target Application

Task-level specification:
(P3) How to support multiple modes of operations?

− Various interactions between tasks: data and control flow
(P4) Diverse execution semantics of tasks

− Data-driven, event-driven, or time-driven
(P5) Diverse port semantics

− FIFO queue type, buffer type

Signal processing task specification
(P1) Function-level HW/SW partitioning is desired
Data dependent execution of task behavior

Control task specification
(P2) Hierarchical and concurrent specification is required

CAP Laboratory, SNU 88

PeaCE Specification

Signal Processing Tasks: answer to (P1)
SDF Extension for Memory Optimization: FRDF (Fractional Rate
Data Flow)
SDF Extension to enhance expression capability: SPDF
(Synchronous Piggybacked Data Flow)

Control Tasks
(P2) fFSM: Hierarchical and Concurrent FSM Model: a variant of
statechart
(P3) fFSM Model supervises the behavior of the signal processing
tasks

BP: Task Model for Codesign backplane: answers to (P4)(P5)

CAP Laboratory, SNU 89

1. data transfer

3. result(flag) transfer

Communication between fFSM and SDF

Synchronous interaction

Display
Event
source

“flag”

Backplane

“a”
fFSM

X Y
a/out

flag B

“out”
A

SDF

C
2. execution

CAP Laboratory, SNU 90

Asynchronous Interaction

Change the scheduling state of a dataflow module

Change a block parameter

variable gain

fFSM
1. signal transfer

source

2. change block parameter

decode

Dataflow

fFSM

Dataflow

1. signal transfer
active

suspend stop

run status

2. change run status

CAP Laboratory, SNU 91

Problem 1: Multi-mode Support

Write action scripts in a state of FSM model
Change a mode of operation to another
Deliver initial parameters or control parameters
Handling exceptions

Similar to Statechart

start stop

toggle

toggle

{start task} {stop task}

Reader Player

task

toggletoggle

toggle {stop task}

stop

toggle

start

{start task}

CAP Laboratory, SNU 92

DIVX Player System
Specification

start

divx

divxstop

scripts in divx
{deliver ui filename divxread filename}
{run divx}

stop==1/
tostart=1

tostart==1

script in divxstop
{stop divx}

text==4
exitDivx
==1

exit

1

script in exit state
{get divx exit exitDivx}

divx
run

divx
suspend

script in divxrun
{run divx}

script in divsuspend
{suspend divx}

suspend==1

start==1

start
suspend

stop
text

AVI
Reader

H.263
Decoder

MP3
Decoderdivx

divxread

exit

CAP Laboratory, SNU 93

Supported Action Scripts in FSM
model

Scripts Actions

run n_name Resume the n_name block

suspend n_name Suspend the n_name block

stop n_name Stop the n_name block

set n_name parameter
value

Update the parameter with value in the
n_name block

get n_name parameter
n_event

Acquire the parameter in the n_name
block to n_event of FSM

deliver n_src src_param
n_dst dst_param

Deliver the value of the src_param state
in the n_src block to the dst_param state
in the the n_dst block

CAP Laboratory, SNU 94

Task-Level Specification Model (P4,
P5)

Task-level specification model bridges gaps between formality of
basic models and flexibility of expression

Definition of task-level specification model
Tasks which are specified by SDF or FSM models
Specification for execution types and port semantics at task wrapper

Basic Task Block
(SDF or FSM)

Task Wrapper

Execution Type

port semantic

CAP Laboratory, SNU 95

Task-level Specification

Task execution type
periodic : triggered by time
sporadic : triggered by external IO
function : triggered by data

Port properties
port type : queue or buffer
data size : static or variable
data rate : static or dynamic

CAP Laboratory, SNU 96

Diverse Task Execution Types

Function type
Basic execution type of SDF and FSM model
When data is available, it starts an iteration and sends
output data

Periodic task
Specify “period” of the task at task wrapper
After triggered by time period, it becomes active

Sporadic task
Specify “interrupt conditions” of the task at task wrapper
When the condition is met, it is activated

Network
layer

Internet Packet
decoder

H.263
decoder

MP3
player

periodic
functionsporadic

interrupt
condition no type

period

CAP Laboratory, SNU 97

Dynamic Execution Rate

Port properties
data rate : static or dynamic
data size : static or variable
port type : queue or buffer

Automatic translation for basic ports in SDF and FSM models
Explicit specification for dynamic rate port at task wrapper

Creates additional information to handle blocking operations

dynamic-rate variable-size queue

Network
layer

Internet Packet
decoder

H.263
decoder

MP3
player

dynamic rate connection
constant rate streaming

CAP Laboratory, SNU 98

Automatic Translation for Basic
Ports

Port type Port property
Data port of SDF model Static-rate static-size queue

Data port of FSM model Dynamic-rate static-size buffer

Scheduling control port Static-rate static-size queue

Parameter delivery control port Static-rate static-size buffer

Exception handling control port Dynamic-rate static-size queue

Control port for periodic task Static-rate static-size queue

Control port for sporadic task Static-rate static-size queue

CAP Laboratory, SNU 99

Layered Structure of SW
Implementation

Application tasks
Task in task-level specification model task in operating system

Virtual operating system (OS) API
Architecture and design step independent API to application tasks

Operating system wrapper
Implementation of virtual OS API on the target architecture

Inter-process
Communication (IPC) SchedulerTask

Management
Interrupt
Handling

Communication API
Task

Management
API

Interrupt
Service

API

Operating System Wrapper

Application tasks
Virtual

Operating
System API

Target
Architecture

CAP Laboratory, SNU 100

OS Wrapper based on POSIX Thread

AVI
Reader

H.263
Decoder

MP3
Decoder

control
FSM

user
interface

periodicsporadic

exit

scheduler

OS API
scheduling
control task

scheduling control
operating system API
parameter delivery

POSIX thread library

OS Wrapper

CAP Laboratory, SNU 101

Multi-mode Multimedia Terminal

CAP Laboratory, SNU 102

System Level Specification

V id eo p h on e ta sk D ivX p la ye r ta sk M p 3 p la y e r ta sk

U se r
in te rfa ce

V id eo p h on e ta sk D ivX p la ye r ta sk M p 3 p la y e r ta sk

U se r
in te rfa ce

H.263 Encoder

G.723 Encoder G.723 Decoder

H.263 Decoder

TCP/IP

Video Phone task

MP3 decoderDivX Player task MP3 decoderDivX Player task MP3 Player taskMP3 Player task

Top-level schematic

Mode control FSM

Three mode schematics:
Each mode is a multi-task application.

CAP Laboratory, SNU 103

Performance Profile

CAP Laboratory, SNU 104

Summary

Different models are used for different application areas
State-oriented model: control-intensive reactive system

− FSM, statechart, Esterel
Activity-oriented model

− DSP application: dataflow model
− Timed simulation: Discrete model
− SIMULINK: system simulation

Concurrent processes model
− concurrent SW development

Heterogeneous Modeling
Use a mixture of heterogeneous models to specify a complicated
system behavior
Inter-model interface should be well defined.
Ptolemy II, PeaCE

CAP Laboratory, SNU 105

Questions
1. Assume a system that has the following behavior:
input: user control button B. data input Y
output: Z
Y input gets a new event every clock while B input gets irregular input. If B gets an input,
control signal X is toggeled. In case X = 0, Z becomes 1 at every third appearance of
(Y=1). In case X = 1, Z becomes 1 at every second appearance of (Y=1). The bottom
figure illustrates an example scenario of the system.

(a) Specify the system behavior using a hierarchical and concurrent FSM.
(b) How many states are required if the FSM obtained in (a) is translated to a flat FSM?

X 0 1 0
Y 0 1 1 0 0 1 1 1 0 1 1 0 1 1
Z 0 0 0 0 0 1 0 0 0 1 0 0 1 0

CAP Laboratory, SNU 106

Continue…
2. The right figure shows a hierarchical &
concurrent FSM (Statechart). The initial state
is designated by an arc from the starting
point. That is, the initial states of this FSM are
{F(G), E(A)}. F and E are hierarchical states.
To avoid ambiguity, we do not allow
instantaneous transition except for internal
events. High-level transition has priority.

A

B

C

D

E

x/b

y/c

z

w/e

F

G

H

u/g

x

(a) The system receives the events starting from the initial state. What will be final state of
the system. And show the output events during the transition.
Input events: x,u,x,w

(b) Assume that it is translated to a pure & flat FSM. How many states and arcs will exist in
the translated FSM?

(c) Two arcs between G and H and between B and D violate the compositionality.
Translate the FSM to make it compositable by using internal events.

CAP Laboratory, SNU 107

Continue…

3. What is the meaning of “synchronous” in Synchronous/Reactive
Model? What will be the output of the following SR graph?

4. Explain the limitation of discrete event model.
5. Simulink has “continuous-time semantics“. Explain its meaning with a
simple example.
6. Discuss the similarity and difference between PeaCE model and
STATEMATE model.
7. Kahn process network can not accept asynchronous input. What does
the YAPI solve this limitation?
8 Discuss two interaction mechanism between fFSM and SDF in PeaCE

f(x,y) = x+y g(x) = x(4-x)4
x

y

x Output?

	Schedule
	References
	References
	References
	Outline
	System Design Flow
	System Specification
	Understanding Specification Requirements
	Specification Development Approaches
	Performance Based Approach
	Model Based Approach
	Behavior Specification Models
	Heterogeneous Models
	Model Classification
	Synchronous Model
	Synchronous Reactive Model
	Timed Model of Computation
	Model and Design Environment
	Outline
	State-oriented Model
	FSM
	Finite State Machines
	Statechart
	FSM Hierarchy
	AND Decomposition
	Internal Event
	Comments on statechart
	Problems with Statecharts
	Variants of Statecharts
	flexible FSM (f FSM)
	Example: Traffic Light
	Example : Traffic Light
	Esterel
	FSM and Statechart Examples
	FSM-based Design Environment
	Activity chart
	Transition Labeling of Statechart
	Executable Specification
	POLIS: Codesign FSM
	CFSM Example
	Formality of CFSM
	Outline
	Discrete-Event Model
	Execution Policy of Discrete Event Model
	Event Driven Simulation
	Simulink
	Simulink Model (1)
	Simulink Model (2)
	Simulink Model (3)
	H.264 Decoder Modeling in Simulink
	Top model of H.264 decoder in Simulink
	Block Definition in Simulink
	SystemC Model
	Dataflow Coordination Languages
	Computation Graphs of Karp and Miller
	Marked Graph
	Petri Nets
	Analysis Example
	Reachability Tree
	Extension to Petri nets
	Outline
	Kahn Process Networks
	KPN Characteristics
	Design Framework : COSY
	COSY
	YAPI
	Dataflow Process
	Sequential Firing Rules
	Dataflow Process
	Kahn Process vs. Dataflow Process
	Execution Models
	PN Summary
	Outline
	Ptolemy Classic
	Ptolemy II
	*Charts: Exploiting Domain Polymorphism
	* chart: Ptolemy II approach
	Requirements of Concurrent Model
	Dataflow with FSM
	Multirate Dataflow with FSM
	Heterochronous Dataflow with FSM
	Discrete Events with FSM
	Synchronous/Reactive System with FSM
	CoCentric System Studio
	PeaCE from SNU CAP Lab.
	Motivational Example
	Challenges of Target Application
	PeaCE Specification
	Communication between fFSM and SDF
	Asynchronous Interaction
	Problem 1: Multi-mode Support
	DIVX Player System Specification
	Supported Action Scripts in FSM model
	Task-Level Specification Model (P4, P5)
	Task-level Specification
	Diverse Task Execution Types
	Dynamic Execution Rate
	Automatic Translation for Basic Ports
	Layered Structure of SW Implementation
	OS Wrapper based on POSIX Thread
	Multi-mode Multimedia Terminal
	System Level Specification
	Performance Profile
	Summary
	Questions
	Continue…
	Continue…

