Chapter 6
Molten State
Rheology (流變學)

- study of flow and deformation of (liquid) fluids
- constitutive (stress-strain) relation of fluids

- shear flow
 - shear rate $\sim \frac{dv_1}{dt} \sim$ velocity gradient

\[
\frac{dv_1}{dx_2} = \dot{\gamma} \tag{6.6}
\]

- $dv_1 = dx_1/dt$
- $\gamma = dx_1/dx_2$
stress state in this flow case

\[
\sigma = \begin{pmatrix}
\sigma_{11} & \sigma_{12} & 0 \\
\sigma_{21} & \sigma_{22} & 0 \\
0 & 0 & \sigma_{33}
\end{pmatrix}
\]

- simple shear \(\sim \sigma_{12}\) only, all others = 0
- \(\sigma_1, \sigma_2, \sigma_3?\) \sim normal stress by shear flow

relations in shear flow

\[
\eta = \frac{\sigma_{21}}{\dot{\gamma}} \sim Newton's \ law
\]

\[
\psi_1 = \frac{\sigma_{11} - \sigma_{22}}{\dot{\gamma}^2} \sim 1^{st} \ normal \ stress \ coeff \ \leftrightarrow N_1
\]

\[
\psi_2 = \frac{\sigma_{22} - \sigma_{33}}{\dot{\gamma}^2} \sim 2^{nd} \ normal \ stress \ coeff \ \leftrightarrow N_2
\]
Normal stress difference

- normal stress *caused by* shear flow

\[\sigma_1 - \sigma_2 = N_1 > 0 \sim \text{1st normal stress difference} \]
\[\sigma_2 - \sigma_3 = N_2 \approx 0 \sim \text{2nd normal stress difference} \]

- results of NSD
 - Weisenberg effect
 - rod-climbing
 - die swell
Elongational flow

\[v_i = a_i x_i \quad (i = 1, 2, 3) \quad (6.13) \]

- \(v = dx/dt, \ a = d\varepsilon/dt = dx/xdt \)

- **uniaxial elongational flow**
 - \(\sigma_1 \) only, all other stresses = 0
 \[
 a_1 = \dot{\varepsilon} \quad (6.15) \\
 a_2 = -\frac{\dot{\varepsilon}}{2} \quad (6.16) \\
 a_3 = -\frac{\dot{\varepsilon}}{2} \quad (6.17)
 \]
 - elongational viscosity,
 \[
 \eta = \frac{\sigma_{11} - \sigma_{22}}{\dot{\varepsilon}} \quad (6.18)
 \]
 - \(\eta_E = \sigma/(d\varepsilon/dt) \)
 - spinning, contraction flow
(balanced) biaxial elongation

- $\sigma_1 = \sigma_2$, all other stresses = 0

 - $a_1 = a_2 = \dot{\varepsilon}_B$
 - $a_3 = -2\dot{\varepsilon}_B$

- biaxial elongational viscosity

 $$\eta_B = \frac{\sigma_{11} - 0}{\dot{\varepsilon}_B} = \frac{\sigma_{22} - 0}{\dot{\varepsilon}_B} \approx 2\eta_E$$

- ballooning, film blowing
Dynamic viscosity

from dynamic mechanical measurements

\[\gamma = \gamma_0 \cos \omega t \quad \sigma = \sigma_0 \cos(\omega t + \delta) \]

\[\gamma^* = \gamma_0 \exp(i \omega t) = \gamma' + i \gamma'' \quad (6.24) \]

\[\sigma^* = \sigma_0 \exp[i(\omega t + \delta)] \]

\[\sigma^* = \sigma_0 \cos(\omega t + \delta) + i \sin(\omega t + \delta) \quad (6.25) \]

\[G^* = \frac{\sigma^*}{\gamma^*} = \frac{\sigma_0}{\gamma_0} \cos \delta + i \frac{\sigma_0}{\gamma_0} \sin \delta = G' + iG'' \quad (6.26) \]

\[\eta^* = \frac{\sigma^*}{i \omega \gamma^*} = \frac{\sigma_0}{i \omega \gamma_0} \sin \delta \cdot \frac{1}{\omega} - i \frac{\sigma_0}{\gamma_0} \cos \delta \cdot \frac{1}{\omega} \]

\[\eta^* \sim \text{complex viscosity} \quad \eta' \sim \text{dynamic viscosity} \]

\[= \frac{G''}{\omega} - \frac{i G'}{\omega} = \eta' - i \eta'' \quad (6.27) \]
Non-Newtonian behavior

- Newtonian ~ constant viscosity
 - many solutions and melts

- non-Newtonian
 - dilatant ~ shear thickening
 - suspensions
 - pseudoplastic ~ shear-thinning
 - polymer melts
 - chains aligned to shear direction
 - zero-shear-rate viscosity, η_0
 - at $d\gamma/dt = 0$, $N_1 \rightarrow N_{1,0}$
 - Bingham plastic ~ yielding
 - slurries, margarine
- power-law expression

\[\sigma_{21} = K \dot{\gamma}^n \quad (6.28) \]

\[\eta = K \dot{\gamma}^{n-1} \quad (6.29) \]

\[n < 1 \text{ and } \downarrow \]

n const in 1-2 decades only
- **time-dependence**
 - **thixotropic**
 - decrease in η with shearing time
 - polymer melts, inks
 - seldom in polymers, more in colloids
 - thixotropic is pseudoplastic; PP is not necessarily thixo
 - **rheopectic (anti-thixotropic)**
 - gypsum and soils
 - rheopecetic is dilatant; dilatant is not necessarily rheo

![Graph showing shear stress vs. shear rate for thixotropy and rheopecty](image)

Figure 6.6 Hysteresis loops for time-dependent liquids.
measurement of rheological properties

- shear flow
 - Couette flow
 - parallel-plate, cone-and-plate, two-cylinder
 - \(\eta \) by velocity and torque
 - \(N \) by plate-separating force
 - \(\eta^* \) by oscillation
 - Poiseuille flow
 - capillary, slit
 - \(\eta \) by pressure drop and flow rate
 - \(N \) by non-zero exit pressure

- elongational flow
 - difficult to perform expt
 - possible only at small strain rate
- melt index (MI) or melt flow index (MFI)
 - melt indexer ~ a simple capillary viscometer

- \[M(F)I = g \text{ of resin/10 min} \]
 - at specified weight and temperature
 - high MI ~ low \(\eta \) ~ low MW of a polymer
Viscoelastic fluid

- linear viscoelasticity only at small strain and shear rate
 - little use in polymer processing condition
 - useful for comparison of materials and molecular factors (MW, MWD)

- Boltzmann superposition principle

\[
\sigma(t) = \sum_{i=1}^{N} G(t - t_i) \delta \gamma(t_i)
\]

\[
\sigma(t) = \int_{-\infty}^{t} G(t - t') \, d\gamma(t') \quad \text{for smooth strain history}
\]

\[
\sigma(t) = \int_{-\infty}^{t} G(t - t') \dot{\gamma}(t') \, dt'
\]

\[
\sigma(t) = \int_{0}^{t} G(t - t') \, d\gamma(t') \quad \text{starting expt at time 0}
\]

\[
\sigma = \dot{\gamma} \int_{0}^{\infty} G(s) \, ds \quad \text{t - t' = s, for steady flow (d\gamma/dt = \text{const})}
\]

\[
\eta_0 = \int_{0}^{\infty} G(s) \, ds \quad \eta = \sigma/(d\gamma/dt), \ \eta_0 \text{ at low shear rate limit}
\]
(stress) relaxation modulus

\[G(t) = \frac{\sigma(t)}{\gamma_0} \]

- glassy ~ solid
- rubbery plateau region
 - due to entanglement
 - physical crosslink
 - plateau modulus
 \[G_N^0 = \frac{\rho RT}{M_e} \]
 - \(M_e \sim \) entanglement mol wt
 - avg mol wt betw entanglements
- terminal zone ~ flow ~ liquid

A ~ monodisperse, \(M_w < M_C \)
B ~ monodisperse, \(M_w > M_C \)
C ~ polydisperse, \(M_w > M_C \)
\(M_C \sim 2 - 3 M_e \)
creep compliance

\[J(t) = \gamma(t) / \sigma_0 \]

- steady-state compliance, \(J_e^0 \)
- constant shear rate at long times
- \(J(t) = J_e^0 + t / \eta_0 \)
- recovery compliance
 - recovery test

- recoil function or recovery compliance, $R(t) = \gamma_r(t)/\sigma_0$
- $\lim_{(t=\infty)} [R(t)] = J_e^0 \sim$ steady-state recovery compliance
dynamic η and VE

$$\eta^* = \frac{G''}{\omega} - \frac{iG'}{\omega} = \eta' - i\eta''$$

- as $\omega \to 0$ (large t, small $d\gamma/dt$)
 - $G' = \omega \eta'' \to 0$, $G'' = \omega \eta' \to 0$
 - $\eta' = G''/\omega \to \eta_0$
 - Newtonian

- as $\omega \to \infty$ (small t, large $d\gamma/dt$)
 - $\eta' \to \eta_\infty$
 - $G' \to \omega \eta_\infty$
 - Hookean

![Graph showing viscosity vs. shear rate with G' and G'' as functions of log t, log ω, or log $(d\gamma/dt)$]
- rheometric and VE functions
 - rheometric ftns
 - \(\eta, N_1 (\leftrightarrow \eta_0, N_{1,0}) \)
 - linear (Newtonian) \(\rightarrow \) non-linear (non-Newtonian) as \(d\gamma/dt \uparrow \)
 - viscoelastic ftns
 - \(\eta', \eta^* \)
 - viscous \(\rightarrow \) elastic as \(\omega \uparrow \)

- stress ratio
 - \(N_1/\tau (>1) \)
 - a measure of elasticity
Behavior of polymeric liquids

- polymeric liquids
 - dilute solution ~ as conc’n \(\to 0 \), Newtonian
 - concentrated sol’n ~ behaves as melt
 - melt ~ Newtonian as shear rate \(\to 0 \)

- \(\eta \) and \(N_1 \)
 - shear thinning
 - \(\eta = K (d\gamma/dt)^{n-1} \) (\(n < 1 \))
 - \(N_1 > 0 \)
 - \(N_1 > \tau \)
 - \(\eta_E \) not much dep on \(d\varepsilon/dt \)
 - at \(d\varepsilon/dt \to 0 \), \(\eta_E \approx 3 \eta_0 \)
- **effect of temp**
 - at $T_g < T < T_g + 100\ K \sim WLF\ eqn$
 - $\log \eta = \log \eta_{T_g} - C_1(T-T_g)/(C_2+T-T_g)$
 - at $T > T_g + 100\ K \sim Arrhenius\ relation$
 - $\eta = A \exp\left[E/RT\right]$

- **effect of pressure**
 - $\eta = A \exp[BP]$
 - conversion factor, $-(\Delta T/\Delta P)_h$
 - example p107
effect of mol wt

- \(\eta \)
 - at \(M_w < M_c \), \(\eta_0 \propto M \)
 - at \(M_w > M_c \), \(\eta_0 \propto M^{3.4} \)
 - \(M_c \sim 2 - 3 M_e \)

\[M_e = \frac{\rho RT}{G_e^0} \quad (6.36) \]

- \(M_e \) depends on chemical structure of chain
 - chain stiffness and interactions
 - PE \(\sim 1200 \), PS \(\sim 20000 \), PC \(\sim 2500 \)

- \(J_e^0 \)
 - at \(M_w < M'_c \), \(J_e^0 = (0.4)M_w/\rho RT \)
 - at \(M_w > M'_c \), \(J_e^0 = (0.4)M'_c/\rho RT \)
 - \(M'_c \sim 5 - 10 M_e \)

- \(G_N^0 J_e^0 = \text{constant} \sim 3 \)
branching

- when $M_b < M_c$
 - smaller $<s^2>_0$
 - lower η_0, J_e^0
- when $M_b > M_c$
 - smaller $<s^2>_0$, but larger reptation time
 - higher η_0, J_e^0
 - $\eta_0 = (M_w)^k$, $k > 6$
Macromolecular Dynamics

- Motions in polymers
 - Defomation in bond angle and length ~ elastic
 - Change in conformation ~ segmental motion ~ viscoelastic
 - Translational motion ~ viscous
Models for macromolecular dynamics

- Rouse (– Bueche – Zimm) model
 - bead (friction) and spring (elastic)
 - single chain with completely flexible repeat units moving in a medium
 - three forces ~ friction, elastic, and Brownian

\[
\eta_0 = \left(\frac{k_N K_p \rho}{6 M_{\text{rep}}} \right) M \quad (6.41)
\]

\[
J_e^0 = \left(\frac{2}{5 \rho R T} \right) M \quad (6.42)
\]

- not for \(M_w > M_c \)
- for \(M_w < M_c \)
 - correctly describes \(\eta_0, J_e^0 \)
 - does not describe shear thinning
Reptation (de Gennes (– Doi – Edwards)) model

- chain and obstacles (entanglements)
 - chain reptates between obstacles
 - friction $\propto M$
- chain in a tube
 - tube disappears and regenerated
 - diffusion of tube $\propto M^2$

\[\eta_0 \propto M^3 \quad \text{(6.49)} \]
\[j_e^0 \propto M^0 \quad \text{(6.50)} \]

- successfully describes
 - effect of entanglement
 - effect of branching
- predicts higher η_0 with lower power (3 instead of 3.4)
 - other mechanism should exist
Rheology of liquid crystals

- solution

- melt