Chapter 8 Crystallization

Xtallization rate

- Xtallization by
 - nucleation (at T < Tm) and
 - growth (diffusion of chain at T > Tg)

nucleation

- free energy change for nucleation
 - free E for Xtalliz'n nucleation (< 0) + surface energy (> 0)

$$\Delta G = \Delta g V_{\text{crystal}} + \sum_{i} A_{i} \sigma_{i} = \frac{4\pi r^{3}}{3} \cdot \Delta g + 4\pi r^{2} \sigma \quad \text{- for spherical nucleus}$$

$$\frac{\partial \Delta G}{\partial r} = 4\pi r^{*2} \Delta 8 + 8\pi r^{*} \sigma = 0 \qquad \boxed{r^{*} - \text{critical radius for nucleation}}$$

$$r^{*} = -\frac{2\sigma}{\Delta g} \xrightarrow{\uparrow} r^{*} = -\frac{2\sigma T_{m}^{0}}{\Delta h^{0} \Delta T} \qquad \boxed{\Delta T = T_{m}^{0} - T_{c} - \text{supercooling}}$$

$$\Delta g = \frac{\Delta h^{0} \Delta T}{T_{m}^{0}}$$

- \diamond As ΔT increases,
 - r* decreases
 - G* decreases
 - easier nucleation

$$r^* = -\frac{2\sigma T_{\rm m}^{\rm o}}{\Delta h^{\rm o} \Delta T}$$
$$\Delta G^* = \frac{4\pi\sigma^3 (T_{\rm m}^{\rm o})^2}{(\Delta h^{\rm o})^2 \Delta T^2} \left[-\frac{8}{3} + 4 \right] = \frac{16\pi\sigma^3 (T_{\rm m}^{\rm o})^2}{3(\Delta h^{\rm o})^2 \Delta T^2}$$

homogeneous vs heterogeneous nucleation

- ΔT for homogeneous primary nucleation ~ 50 100 K
 - occurs seldom
- in practice, heterogeneous nucleation
 - followed by secondary and tertiary nucleation

overall crystallization rate

$$\dot{w}_{c} = C \exp\left(-\frac{U^{*}}{R(T_{c} - T_{\gamma})}\right) \exp\left(-\frac{K_{g}}{T_{c}(T_{m}^{o} - T_{c})}\right)$$

- C ~ structural factor
 - regularity and flexibility
 - C = 0 for atactic (amorphous)
 - small C for inflexible polymers
- diffusion
 - segmental mobility, motion
 - WLF or reptation
 - zero at T_q
- nucleation
 - zero at T_m

measurement of Xtallization rate

- dilatometry
- microscopy

Temperature

Equilibrium melting temperature

- $\, \diamond \, T_m^{\ 0} \, \text{is} \, T_m \, \text{of} \,$
 - infinitely thick crystal for high MW
 - extended-chain crystal for low MW

determination

from Thompson-Gibbs eqn

$$T_{\rm m} = T_{\rm m}^{\rm o} \left(1 - \frac{2\sigma}{L_{\rm c}\rho_{\rm c}\Delta h^{\rm o}}\right) \qquad (7.21)$$

- L_c measured and extrapolated to $1/L_c = 0$
- crystal thickening
 - prevented by light Xlinking
- superheating ~ Thick crystal melts slowly.
 - prevented by slow heating

♦ determination (cont'd)

• from Δh_f and Δs_f

$$T_{\rm m}^0 = \lim_{x \to \infty} \frac{\Delta h(x)}{\Delta s(x)}$$
(8.11)

- extrapolated to infinite MW
- for PE $T_{\rm m} = 414.3 \left[\frac{x 1.5}{x + 5.0} \right]$
- Hoffman-Weeks plot
 - plot T_m vs T_c, and extrapolate to T_m = T_c

$$T_{\rm m} = T_{\rm m}^{\rm o} \left[1 - \frac{2\sigma}{\Delta h^{\rm o} \rho_{\rm c} L_{\rm c}^* \beta} \right]$$
$$T_{\rm m} = T_{\rm m}^{\rm o} \left[1 - \frac{2\sigma}{\Delta h^{\rm o} \rho_{\rm c} \beta \frac{2\sigma}{\Delta h^{\rm o} \rho_{\rm c} \beta} \frac{2\sigma}{\Delta h^{\rm o} \rho_{\rm c} (T_{\rm m}^{\rm o} - T_{\rm c})}} \right]$$

\diamond T_m⁰ and structure

- $T_m^0 = \Delta H_f^0 / \Delta S_f^0$
 - $\Delta H_{f} \sim$ interchain interaction

$$T_{\rm m}^{\rm o} = \frac{\Delta h^{\rm o} \cdot x}{\Delta s^{\rm o} \cdot y}$$

• $\Delta S_f \sim chain flexibility$

 T_m⁰ higher for more regular, rigid, closely-packed, and stronger interaction Table 8.1

Polymer	T ^o m(K)	$\frac{\Delta s^0}{(\text{J Kmol})^{-1}}^{\text{a}}$	Δh^0 (kJ mol ⁻¹) ^b	CED (kJ mol ⁻¹) ^c
PE	414.6	9.91 (1)	4.11 (1)	4.18
PTFE	600	5.69 (1)	3.42 (1)	3.35
iPP	460.7	7.55 (2)	2.31 (3)	4.74
POM	457	10.70 (2)	4.98 (2)	5.23
PEO	342	8.43 (3)	2.89 (3)	4.88
PA 6,6	553	10.2 (12)	4.85 (14)	11.7

- T_q and T_m are correlated.
 - $T_g = (0.5 \sim 0.8) T_m$ (in K)

Melting point depression

♦ depression by MW

$$\Delta g = \Delta h^{0} - T\Delta s^{0} - kT \cdot \frac{\ln(Cx)}{xv} \qquad (8.20)$$

$$T_{\rm m} = T_{\rm m}^{\rm o} \left[1 - \frac{2\sigma}{\Delta h^{\rm o}L_{\rm c}} - \frac{RT_{\rm m}^{\rm o}\ln x}{x\Delta h^{\rm o}} \right] \qquad (8.21)$$

depression by diluent (low MW or other polymer)

$$\frac{1}{T_{\rm m}} - \frac{1}{T_{\rm m}^{\rm o}} = \left(\frac{R}{\Delta h_{\rm u}}\right) \left(\left(\frac{V_{\rm u}}{V_{\rm 1}}\right) v_{\rm 1} + \frac{1}{x} \left(v_{\rm 2} + \frac{1}{x - \zeta_{\rm 0} + 1}\right) - \left(\frac{V_{\rm u}}{V_{\rm 1}}\right) \chi_{\rm 1} v_{\rm 1}^{2}\right)$$

Avrami eqn

- describes time-crystallinity relation
 - for any crystallization ~ general
 - useful in molding simulation

or probability of P passed by c waves in t, p(c)

$$p(c) = \frac{\exp(-E)E^{c}}{C!}$$
 E ~ avg # of passing waves for all P

 $p(0) = \exp(-E) = 1 - v_c \sim \text{no wave passing} \sim \text{remain molten (amorphous)}$

- In athermal nucleation followed by spherical growth
 - nucleation at once and start to grow at t= 0

$$E(t) = \frac{4}{3}\pi (\dot{r}t)^3 g$$

g ~ vol conc'n of nuclei

$$p(0) = \exp(-E) = 1 - v_{c} = \exp(-\frac{4}{3}\pi \dot{r}^{3}gt^{3})$$

In thermal nucleation

sporadic nucleation ~ constant rate in space and time

$$dE = 4\pi r^{2} \left(t - \frac{r}{\dot{r}}\right) I^{*} dr$$

$$E = \int_{0}^{\dot{r}t} 4\pi r^{2} I^{*} \left(t - \frac{r}{\dot{r}}\right) dr = \frac{\pi I^{*} \dot{r}^{3}}{3} t^{4}$$

$$1 - v_{c} = \exp\left(-\frac{\pi I^{*} \dot{r}^{3}}{3} t^{4}\right)$$

$$I^* \sim \# \text{ of nuclei/cm}^3 \text{ s}$$

Avrami eqn

- $1 v_{\rm c} = \exp(-Kt^n)$
- in early stage before impinging

 $v_{\rm c} = Kt^n \sim {\rm G{\ddot o}ler} {\rm eqn}$

 $e^{-x} = 1 - x$ for small x

Table 8.3 Derived Avrami exponents (n: eq. (8.34)) for different nucleation and growth mechanisms

Growth geom.	Athermal ^a	Thermal ^a	Thermal ^b
Linear problem			
Line	1	2	1
Two-dimensional Circular	2	3	2
Three-dimensional			
Spherical	3	4	5/2
Fibrillar	≤ 1	≤ 2	
Circular lamellar	≤ 2	≤ 3	
Solid sheaf	≥ 5	≥ 6	

^a Free growth; $\dot{r} = \text{constant}$.

^b Diffusion control; $\dot{r} \propto 1/\sqrt{t}$.

- for diffusion-controlled growth
 - diffusion of impurity
 - $(f t)^3 t \rightarrow (f t^{\frac{1}{2}})^3 t$
 - n = 2.5 for sporadic nucleation
- high n for 'high-dimensional' growth

semicrystalline

$$1 - \frac{v_{\rm c}}{v_{\rm c\infty}} = \exp(-Kt^n)$$

n betw 3 and 4

secondary (subsidiary) crystallization slow

experiments

$$\ln\left[-\ln\left(1-\frac{v_{\rm c}}{v_{\rm c\infty}}\right)\right] = \ln K + n \ln t$$

Volume crystallinity

♦ PE

- ▶ Iow MW (< 10000) ~ n = 4
 - axialitic growth
- high MW (< 10⁶) ~ n = 3
 - spherulitic growth
- UHMWPE ~ n = 2
 - slow, low-dimensional growth

Theories for crystal growth

- equilibrium theories
 - Crystal thickness increases with T to a certain T.
 - does not predict the effect of supercooling
 - not popular
- kinetic theories
 - The end-state is not of the lowest possible energy.
 - Crystal growth rate is dep on L_c, which is determined by supercooling.
 - enthalpic nucleation theory ~ Lauritzen-Hoffman theory
 - entropic theory ~ Sadler-Gilmer theory

Lauritzen-Hoffman theory

- model
 - (1) Random coil finds a flat surface of substrate crystal.
 - needs a substrate ~ secondary nucleation
 - (2) random coil \rightarrow extended chain
 - segmental relaxation
 - (3) Chain folds.
 - deposit of 1st stem ~ A_0/B
 - secondary ~ 2 sides (+ 2 ends)
 - $A_0 \sim 2bL_c\sigma_L \psi abL_c\Delta g$
 - $B \sim (1-\psi)abL_c\Delta g$

 $\Delta g \sim defined > 0$

- 2nd, 3rd, --- stem ~ A/B
 - fold and deposit
 - $A \sim 2ab\sigma \psi abL_c\Delta g$
 - $B \sim (1-\psi)abL_c\Delta g$

rate $A_{0} = \beta \exp\left[-\frac{2bL_{c}\sigma_{L} - \psi abL_{c}\Delta g}{kT_{c}}\right]$ $\beta = \frac{kT_{c}}{h}J_{1} \exp\left[-\frac{U^{*}}{R(T_{c} - T_{\infty})}\right] \quad \text{or} \quad \beta = \left(\frac{kT_{c}}{h}\right)\left(\frac{1}{\bar{M}_{z}}\right)\exp\left[-\frac{\Delta E_{r}}{RT_{c}}\right]$ $A = \beta \exp\left[-\frac{(2ab\sigma - \psi abL_{c}\Delta g)}{kT_{c}}\right]$ $B = \beta \exp\left[-\frac{((1 - \psi)abL_{c}\Delta g)}{kT_{c}}\right]$

Ilux

 \bigotimes

$$S = N_0 A_0 - N_1 B = N_1 A - N_2 B = \cdots = N_v A - N_{v+1} B$$
$$N_{v+1} = \left(\frac{A}{B}\right) N_v - \frac{S}{B} \qquad N_{v+1} = \left(\frac{A}{B}\right)^2 N_{v-1} - \frac{S}{B} \left(1 + \frac{A}{B}\right)$$
$$S = N_0 A_0 \left(1 - \frac{B}{A}\right)$$
$$S(L_c) = N_0 \beta \left[\exp\left(-\frac{(2bL_c\sigma_L - \psi abL_c\Delta g)}{kT_c}\right) \times \left[1 - \exp\left(-\frac{(2ab\sigma - abL_c\Delta g)}{kT_c}\right)\right]\right]$$

 $L_{c}, \min \text{ when } T_{c} = T_{m} \text{ from}$ Thompson-Gibbs eqn $T_{m} = T_{m}^{0} \left(1 - \frac{2\sigma}{L_{c}\rho_{c}\Delta h^{0}}\right) \qquad (7.21)$ $L_{c\min} = \frac{2\sigma}{\Delta g} = \frac{2\sigma T_{m}^{0}}{\Delta h^{0}\rho_{c}(T_{m}^{0} - T_{c})}$

$$L_{c}^{*} = \frac{2\sigma}{\Delta g} + \frac{kT}{2b\sigma_{L}} \cdot \frac{\left(2 + (1 - 2\psi)a \cdot \frac{\Delta g}{2\sigma}\right)}{\left(1 - \frac{a\Delta g\psi}{2\sigma_{L}}\right) \cdot \left(1 + \frac{a\Delta g(1 - \psi)}{2\sigma_{L}}\right)} = \frac{2\sigma}{\Delta g} + \delta L_{c}$$

- agrees well with experimental L_c - ΔT relation
- solution-grown crystals ~ large ΔT ~ small L_c (~10 nm)
- melt-grown crystals ~ small ΔT ~ large L_c
 - faster (1) + slower (2) \rightarrow less perfect crystals

crystallization regimes

- regime I
 - small ΔT
 - $g >> i \rightarrow G_1 = b iL$
 - adjacent reentry
- regime II
 - $g \le i \rightarrow G_{II} = b (ig)^{\frac{1}{2}}$
- regime III

switchboard

$$L_{\rm c}^* = \frac{C_1}{\Delta T} + C_2 \tag{8.76}$$

$$G = \beta \, \exp\!\left(-\frac{K_{\rm g}}{T_{\rm c}\Delta T_f}\right) \tag{8.77}$$

	Regime I	Regime II	Regime III
K_{g}^{a} ΔT (K)	$\frac{4b\sigma\sigma_{\rm L}T_{\rm m}^{\rm o}}{\Delta h^{\rm o}k} < 17$	$\frac{2b\sigma\sigma_{\rm L}T_{\rm m}^{\rm o}}{\Delta h^{\rm o}k}$ 17–23	$\frac{4b\sigma\sigma_{\rm L}T_{\rm m}^{\rm o}}{\Delta h^{\rm o}k} > 23$
8	>> 1	<1	~ 1
Supermolecular structure	axialitic	spherulitic	spherulitic

100 000

400

0

20 000

60 000

Molar mass (g mol⁻¹)

100 000

60 000

Molar mass (g mol⁻¹)

0

20 000

- based on Xtallization behavior of small molecules
 - at T < T_r (roughening temperature)
 - growth with faceted surfaces
 - at $T > T_r$
 - macroscopically round, microscopically rough
 - G $\propto \Delta T$ and log G $\propto 1/(T_c \Delta T)$
 - free energy barrier is presents at high T, and
 - It should be entropic ← Roughening does not require new surface.
- the same observed in polymer Xtals
 - solution-grown PE Xtals, as T increases
 - diamond → truncated → leaf
 - melt-grown PE Xtals at high T (regime I), isolated
 - rounded crystal with rough surface

 $\Delta T = 45^{\circ}$ C; $T_{c} = 70^{\circ}$ C (p-xylene) $\Delta T = 15^{\circ}$ C; $T_{c} = 130^{\circ}$ C (melt)

Xtallization with 'segment'

- segment shorter than whole stem (L_c) ^(a)
- interaction energy betw segment and surface is small
 - for PE ~ segment of 6 repeat units with E ~ 0.6 kT

Xtallization on a rough surface

- Segments attached to surface randomly. ~ 'blind attachment'
- Stem growth limited. ~ 'pinning'
- Non-viable conformations sorted out.
 - ~ 'detachment'
- Chain extended and parallel to neighbor participates in crystallization
 entropic

(b)

$$\frac{k_{-}}{k_{+}} = \exp\left(\frac{2\varepsilon}{kT_{\rm m}^{\rm o}} - \frac{m\varepsilon}{kT_{\rm c}}\right)$$

♦ results

$$G \propto \exp\left(-\frac{K_{\rm g}}{T_{\rm c}\Delta T}\right)$$
$$L_{\rm c}^* = \frac{C}{\Delta T} + \delta L_{\rm c}$$

Molecular fractionation

- separate Xtallization of different species
 - structure
 - molecular weight
 - Chains with M > M_{crit} only can crystallize.
 - Shorter chains crystallize at a low Temp. ~ subsidiary Xtallization
 - dynamic equilibrium
 - betw fully extended-chain crystal and melt
 - Species increasing free energy are rejected.

$$\frac{1}{T_{\rm m}} - \frac{1}{T_{\rm m}^{\rm o}(M)} = \frac{R}{\Delta H} \times \left[-\ln v_{\rm p} + (\bar{x} - 1)(1 - v_{\rm p}) - \bar{x}\chi(1 - v_{\rm p})^2 \right]$$

mol⁻¹

mass

Critical molar

Crystallization temperature (K)

molecular nucleation

- At high T, theory and expt agrees.
- At low T, M_{crit}(calc) < M_{crit}(expt)
 - molecular nucleation before molecular crystallization

 $\Delta G = vabL_{c}\Delta g + 2bL_{c}\sigma_{L} + 2vab\sigma + 2ab\sigma_{ce}$

 σ_{ce} ~ free energy associated with chain end, due to entropy reduction of cilia

$$L_{\rm crit} = \frac{4\sigma\sigma_{\rm L}b(T_{\rm m}^{\rm o})^2}{(\Delta h^{\rm o})^2\Delta T^2} + \frac{2\sigma_{\rm ce}T_{\rm m}^{\rm o}}{\Delta h^{\rm o}\Delta T} + \frac{2kT_{\rm c}T_{\rm m}^{\rm o}}{ab\Delta h^{\rm o}\Delta T}$$

♦ blends of high- and low-MW polymers

In blends of linear and branched polymers

• as T_c decreases, L only \rightarrow L and B separately \rightarrow L/B cocrystallize

Crystallization and property

- degree of crystallinity
 - modulus, yield strength
- spherulite size
 - clarity, toughness
- structure in spherulite
 - toughness
 - Keith-Padden theory
 - $\delta = D/G$
 - D ~ diffusion of impurity
 - G ~ radial growth rate
 - d ~ coarseness of lamellae

Temperature

