Electromagnetics <Chap. 1~ Chap. 6> Static electric & magnetic fields **Course Intro**

(1st class of week 1)

Jaesang Lee Dept. of Electrical and Computer Engineering Seoul National University (email: jsanglee@snu.ac.kr)

Course Intro Contents for 1st class of week 1

- 1. Syllabus
- 2. A Review of "Introduction to electromagnetism with practice" (기초전자기학 및 연습; 430.202B)
 - Mathematical basis: vector calculus and important theorem (Ch. 2)
 - Electrostatics (Static Electric Field) (Ch. 3)
 - Magnetostatics (Static Magnetic Field) (Ch. 6)

Course Intro | Syllabus (1/2)

Lecture:	Electromagnetics (전자기학; 430.203A-002) * <i>Prerequisite</i> : 기초전자기학 및 연습 (430.202B), 공학 * Course will be offered in English.
Staff:	• <i>Instructor:</i> Jaesang Lee (email: j <u>sanlgee@snu.ac</u> - Office: 301-906 (Office hour: Mon/Wed/Fri 2:0 • <i>Course TA:</i> 양광모 (<u>kwangmo95@snu.ac.kr</u>) • 전자기학 학습도우미: 최선진 (<u>csj7481@snu.ac.kr</u>)
Textbook:	D. K. Cheng, "Field and Wave Electromagnetics",
Homework:	 Total 7 sets A problem set (HW) will be given approximately HW deadline: one week after assignment Submit it to TA at the end of the class Drop it in the HW submission box at my offic No late homework will be accepted unless specified
Exam:	<i>Two</i> midterm, <i>One</i> Final Exams
Grading Policy:	Attendance (10 %) Homework (15 %) Midterm I (20 %) Midterm II (25 %) Final (30 %)

남수학 1, 2 (or any equivalent courses)

<u>c.kr</u>) 00-3:00 pm)

2nd Ed. Addison-Wesley, 1989.

y every two weeks at the end of Thursday class.

ce (301-906) on Thursday until 6 pm ecial occasion.

Course Intro | Syllabus (2/2)

기초전자기학 및 연습 Description • static electric fields (Ch. 3), static magnetic fields (Ch. 6) / Vector calculus (Ch. 2) 전자기학 • Time-varying electric & magnetic fields and their coupling \rightarrow Maxwell's equations (Ch. 7)

- Wireless and long-distance propagation of electromagnetic waves (Antennas) (Ch. 11)

Week	Торіс	Reading	HW / Exam
1	Introduction / Review of static EM fields	Ch. 1~6	
2	Maxwell's Equations	Ch. 7	HW1
3	Plane Electromagnetic Waves I	Ch. 8	
4	Plane Electromagnetic Waves II	Ch. 8	HW2
5	Plane Electromagnetic Waves III	Ch. 8	Midterm I
6	Waveguides I	Ch. 10	
7	Waveguides II	Ch. 10	HW3
8	Waveguides III / Intro of Transmission Lines	Ch. 9~10	
9	Transmission Lines I	Ch. 9	HW4
10	Transmission Lines II	Ch. 9	Midterm II
11	Transmission Lines III	Ch. 9	
12	Transmission Lines IV	Ch. 9	HW5
13	Antennas I	Ch. 11	
14	Antennas II	Ch. 11	HW6
15	Antennas III	Ch. 11	Final

Schedule

Principle objective: Understand interaction between charges and currents at a distance based on EM model • A particular solution to Maxwell's equation: plane electromagnetic waves (Ch. 8)

• How electromagnetic waves propagate in various media (i.e. *transmission lines* and *waveguides*) (Ch. 9 and 10)

4

Course Intro Electromagnetics

What is electromagnetics?

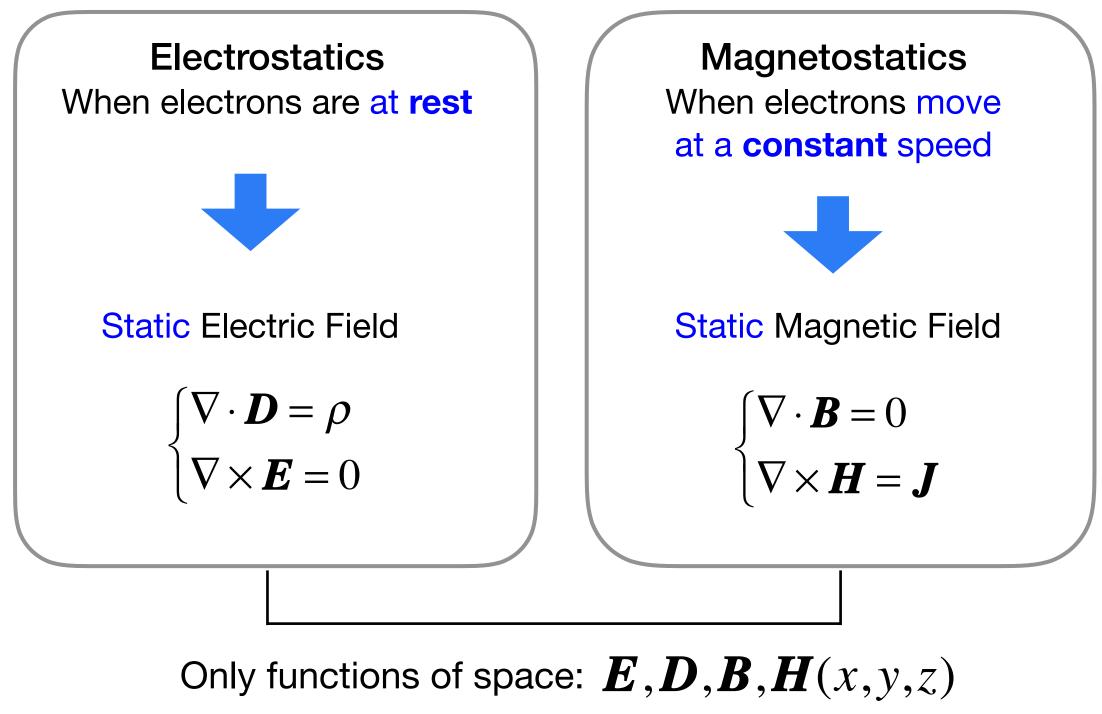
Study of electric & magnetic phenomena caused by static or moving electric charges

- Source of Electric fields positive & negative electric charges
- Source of Magnetic fields moving charges (i.e. currents)

Field: Spatial distribution of a quantity

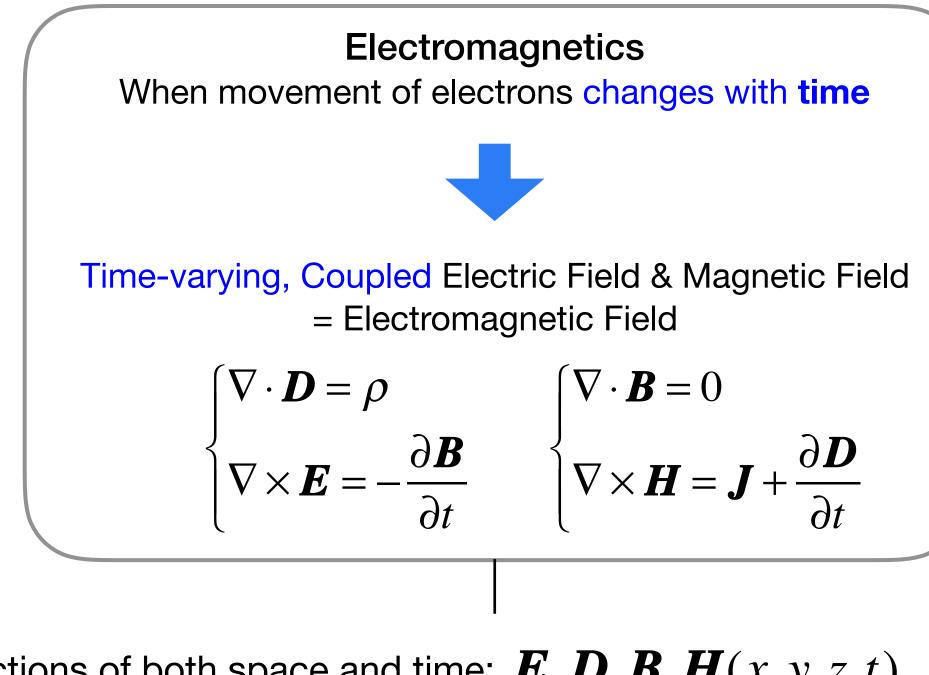
- a function of space coordinates: (x, y, z) or (r, ϕ, z) or (r, θ, ϕ)
- may or may not be a function of time

What did we learn previously?



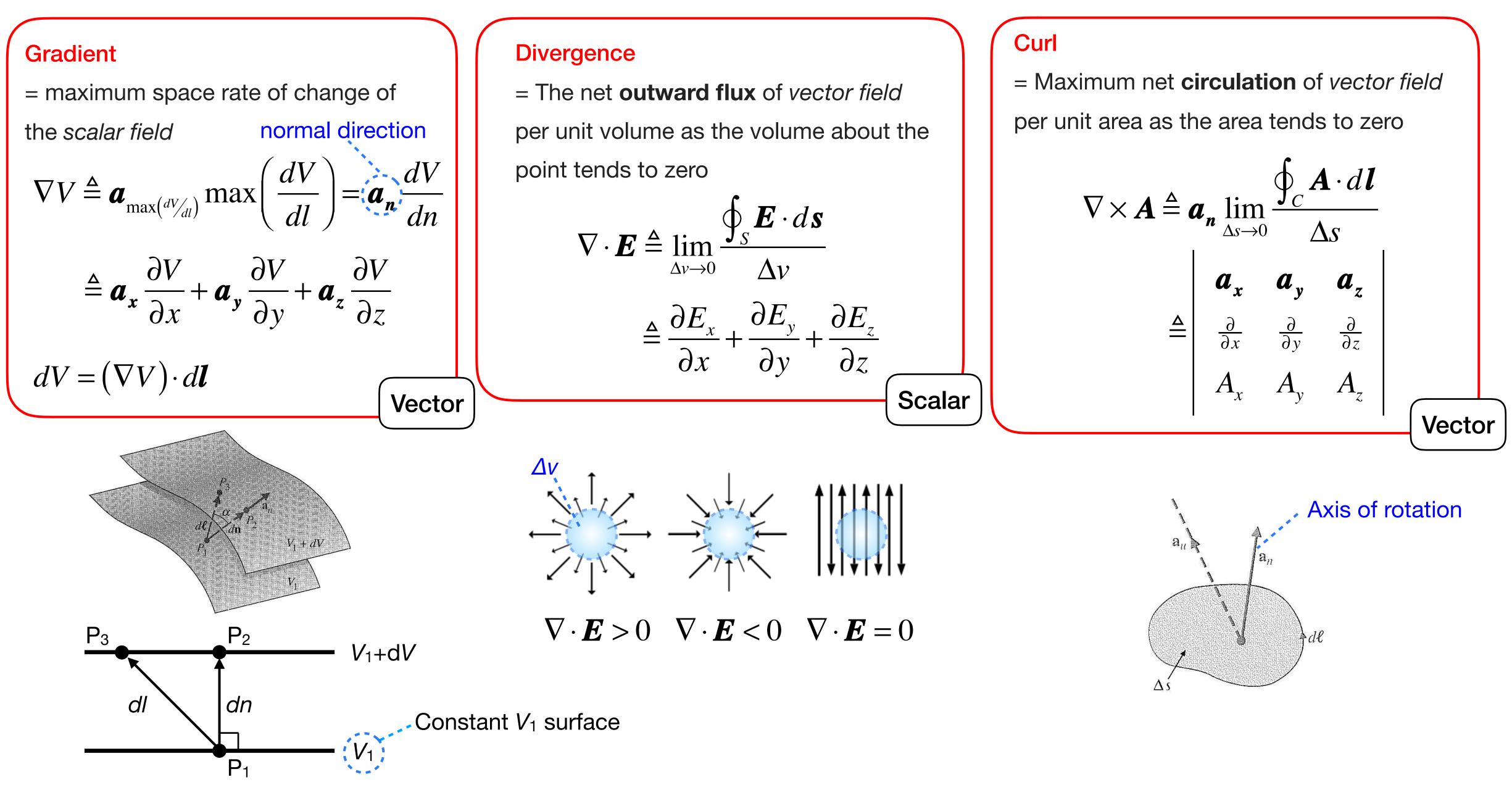
Independently defined!

What will we learn?



Functions of both space and time: $\boldsymbol{E}, \boldsymbol{D}, \boldsymbol{B}, \boldsymbol{H}(x, y, z, t)$ Coupled!

Course Intro Must-know vector calculus



Course Intro Mathematical basis for electromagnetics

Helmholtz's theorem

- Any vector field can be decomposed into irrotational (curl-free) and solenoidal (divergence-free) vector fields.
- A vector field can be completely determined if both its divergence and curl are specified everywhere.

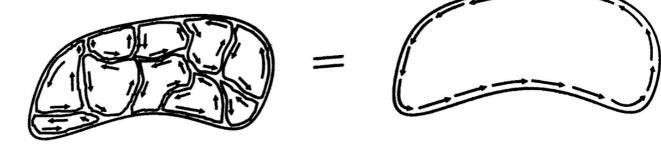
$$\boldsymbol{F} = \boldsymbol{F}_i + \boldsymbol{F}_s \text{ where } \begin{cases} \nabla \times \boldsymbol{F}_i = 0 & \rightarrow & (\nabla \times (-\nabla V) = \nabla \cdot \boldsymbol{F}_s = 0) \\ \nabla \cdot \boldsymbol{F}_s = 0 & \rightarrow & (\nabla \cdot (\nabla \times \boldsymbol{A}) = \nabla \cdot (\nabla \cdot \boldsymbol{A}) = \nabla \cdot (\nabla \cdot \boldsymbol{A}) \end{cases}$$

Stokes theorem

$$\int_{S} (\nabla \times \boldsymbol{E}) \cdot d\boldsymbol{s} = \oint_{C} \boldsymbol{E} \cdot d\boldsymbol{l}$$

Proof of Null Identity I

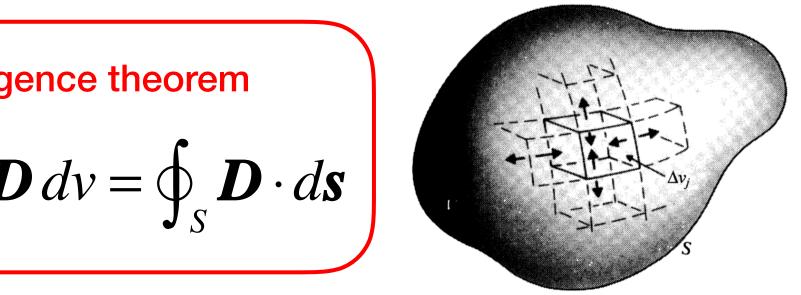
$$\int_{S} \left[\nabla \times (-\nabla V) \right] \cdot d\mathbf{s} = -\oint_{C} \nabla V \cdot d\mathbf{l} = \oint_{C} dV = 0$$



Null Identity I

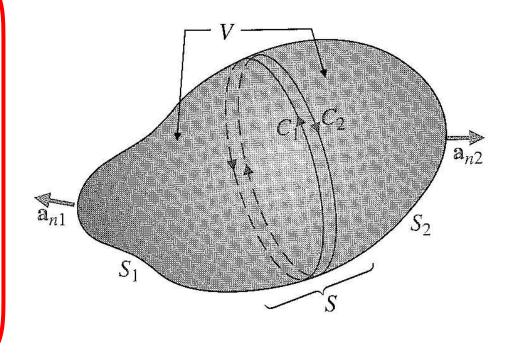
$$\int_V \nabla \cdot \boldsymbol{D}$$

$$= 0 \longrightarrow F_i = -\nabla V$$
 : Irrotational vector (by flow source)
 $= 0 \longrightarrow F_i = \nabla \times A$: Solenoidal vector (by vortex source)



Proof of Null Identity II

$$\int_{V} \nabla \cdot (\nabla \times \mathbf{A}) dv = \oint_{S} (\nabla \times \mathbf{A}) \cdot d\mathbf{s}$$
$$= \oint_{S_{1}} (\nabla \times \mathbf{A}) \cdot \mathbf{a}_{nl} ds + \oint_{S_{1}} (\nabla \times \mathbf{A}) \cdot \mathbf{a}_{n2} ds$$
$$= \oint_{C_{1}} \mathbf{A} \cdot d\mathbf{l} + \oint_{C_{2}} \mathbf{A} \cdot d\mathbf{l} = 0$$

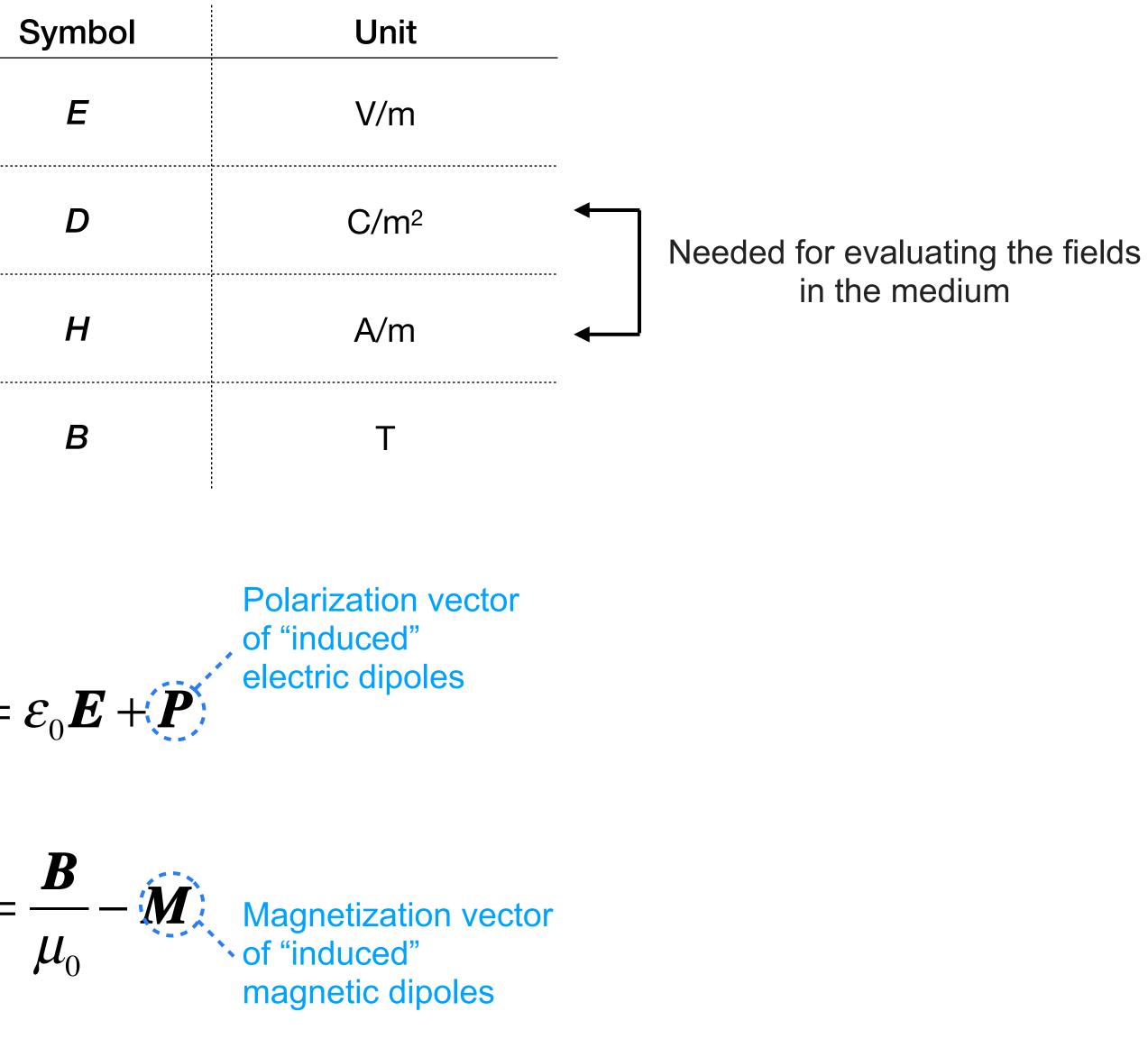


Course Intro 4 fundamental field quantities and 4 postulates

Field quantities

	Name	
Electric	Electric field intensity	
LIECUIC	Electric flux density	
Magnotio	Magnetic field intensity	
Magnetic	Magnetic flux density	

Fundamental postulatesSource: free chargePolarization vector
of "induced"
electric dipolesElectrostatics $\nabla \cdot \boldsymbol{B} = 0$
 $\nabla \times \boldsymbol{B} = 0$ where in the medium, $\boldsymbol{D} = \varepsilon_0 \boldsymbol{E} + \boldsymbol{P}$ Polarization vector
of "induced"
electric dipolesMagnetostatics $\nabla \cdot \boldsymbol{B} = 0$
 $\nabla \times \boldsymbol{H} = \boldsymbol{J}$ where in the medium, $\boldsymbol{H} = \frac{\boldsymbol{B}}{\mu_0} - \boldsymbol{M}$
Source: current densityMagnetization vector
of "induced"
magnetic dipoles



Course Intro Coulomb's law and E-field

E-field intensity **E** at **R** due to a positive charge q at origin

$$\boldsymbol{E} = \boldsymbol{a}_{\boldsymbol{R}} \boldsymbol{E}_{\boldsymbol{R}} = \boldsymbol{a}_{\boldsymbol{R}} \frac{q}{4\pi\varepsilon_0 R^2} \text{ (V/m)}$$

E-field intensity **E** at **R** due to a positive charge q at **R**'

$$\boldsymbol{E}(\boldsymbol{R}) = \frac{q}{4\pi\varepsilon_0} \frac{\boldsymbol{R} - \boldsymbol{R'}}{|\boldsymbol{R} - \boldsymbol{R'}|^3} = \boldsymbol{a}_q \frac{q}{4\pi\varepsilon_0} \frac{1}{|\boldsymbol{R} - \boldsymbol{R'}|^2} \text{ where } \boldsymbol{a}_q = \frac{\boldsymbol{R} - \boldsymbol{R'}}{|\boldsymbol{R} - \boldsymbol{R'}|^2}$$

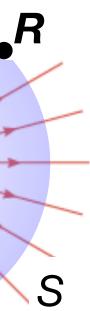
Coulomb's law $\boldsymbol{F} = q_2 \boldsymbol{E}_1(\boldsymbol{R}_2) = \frac{q_2 q_1}{4\pi\varepsilon_0} \frac{\boldsymbol{K}_2 - \boldsymbol{K}_1}{|\boldsymbol{R}_2 - \boldsymbol{R}_1|^3} = \boldsymbol{a}_{21} k_e \frac{q_2 q_1}{|\boldsymbol{R}_2 - \boldsymbol{R}_1|^2}$:Attractive or repulsive force acting between two point charges Ε **Electric Dipole** E-field due to a group of *n* discrete charges E-field due to an **electric dipole** (Ch. 3-3.1) Moment $\boldsymbol{E}(\boldsymbol{R}) \cong \frac{1}{4\pi\varepsilon_0 R^3} \left[3\frac{\boldsymbol{R} \cdot \boldsymbol{p}}{R^2} \boldsymbol{R} - \boldsymbol{p} \right] \quad \text{where} \quad \boldsymbol{p} = q\boldsymbol{d} \quad \boldsymbol{p} = q \boldsymbol{d} \quad \boldsymbol{p} = q \quad \boldsymbol{p} = q \boldsymbol{d} \quad \boldsymbol{p} = q \quad$

$$\boldsymbol{E}(\boldsymbol{R}) = \frac{1}{4\pi\varepsilon_0} \sum_{k=1}^n q_k \frac{\boldsymbol{R} - \boldsymbol{R}'_k}{|\boldsymbol{R} - \boldsymbol{R}'_k|^3}$$

$$\oint_{S} \mathbf{E} \cdot d\mathbf{s} = \frac{q}{\varepsilon_{0}} \text{ in free space}$$

$$(1.h.s) \oint_{S} (\mathbf{a}_{R} E_{R}) \cdot (\mathbf{a}_{R} ds) = E_{R} \oint_{S} ds = 4\pi R^{2} E_{R}$$

$$ere \quad \mathbf{a}_{q} = \frac{\mathbf{R} - \mathbf{R}'}{|\mathbf{R} - \mathbf{R}'|}$$



Course Intro Electric Potential

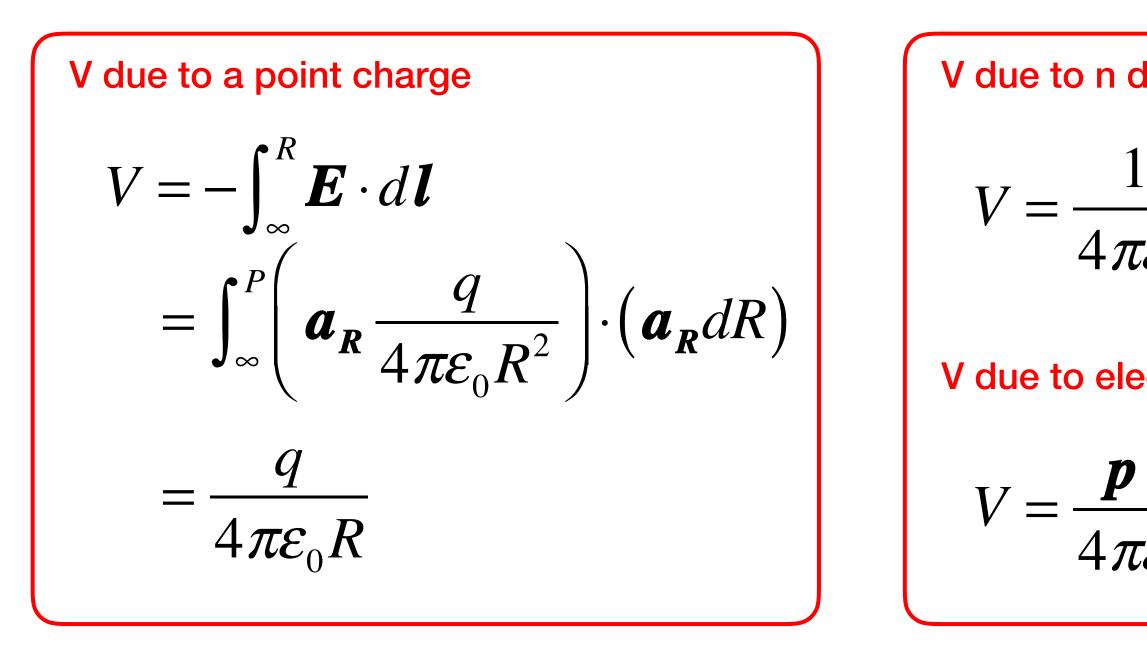
Definition

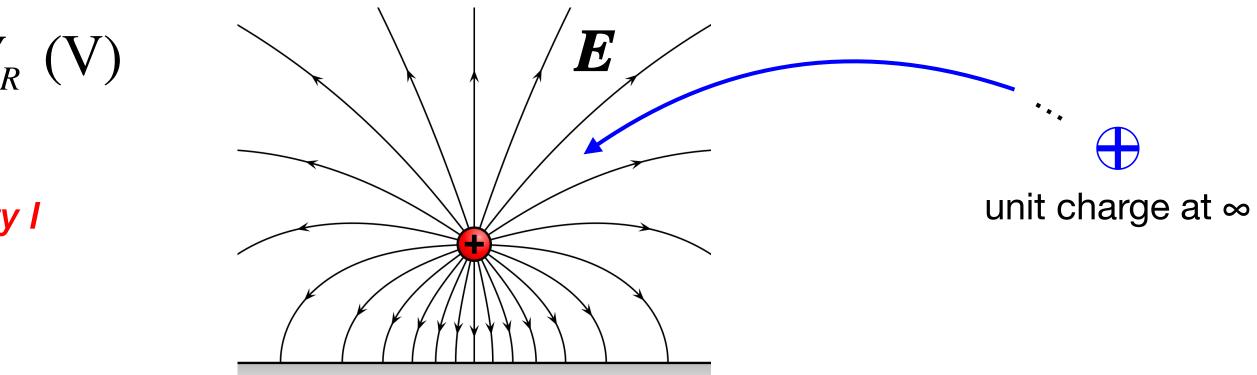
Work required to move a unit positive charge from the reference point (usually, infinity) to a specific point against the E-field

$$\frac{W}{q} (J/C) = -\int_{\infty}^{R} \boldsymbol{E} \cdot d\boldsymbol{l} = \int_{\infty}^{R} \nabla V \cdot d\boldsymbol{l} = \int_{\infty}^{R} dV = V_{R}$$

Since $\nabla \times \boldsymbol{E} = 0$, $\boldsymbol{E} = -\nabla V$

according to *Null Identity I*





V due to n discrete charges

$$\frac{1}{\varepsilon_0} \sum_{k=1}^n \frac{q_k}{|\boldsymbol{R} - \boldsymbol{R}'_k|}$$

V due to electric dipole

$$\frac{\cdot \boldsymbol{a}_{\boldsymbol{R}}}{\varepsilon_0 R^2}$$

V due to continuous distribution

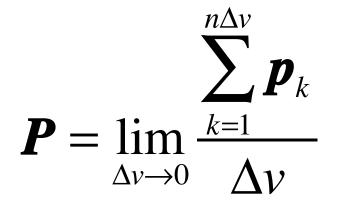
$$V = \frac{1}{4\pi\varepsilon_0} \int_{V'} \frac{\rho}{R} dv' \text{ (volume)}$$
$$V = \frac{1}{4\pi\varepsilon_0} \int_{S'} \frac{\rho_S}{R} ds' \text{ (surface)}$$
$$V = \frac{1}{4\pi\varepsilon_0} \int_{L'} \frac{\rho_L}{R} dl' \text{ (line)}$$

Course Intro Electric Flux Density, *D* (1/2)

Dielectric

- Electrical insulator that can be electrically polarized by an applied E-field
- Electric charges are still bound, but slightly displaced from their equilibrium positions
- Such displacements polarize a dielectric material and create electric dipole
- Induced electric dipoles modify E-field both inside and outside the dielectric

Polarization vector



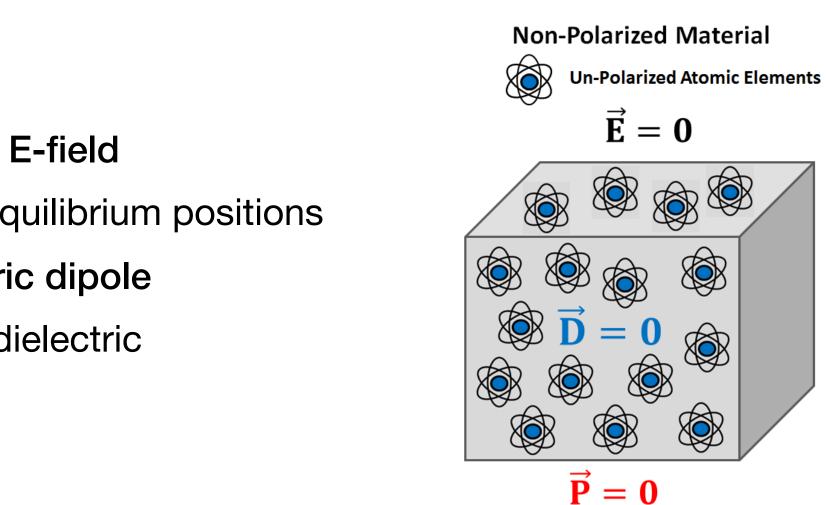
Polarization density vector

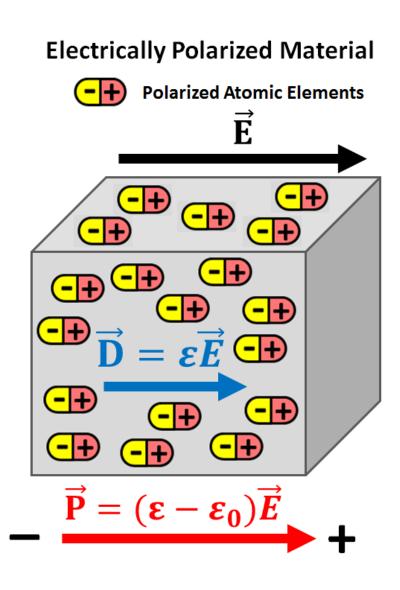
: volume density of permanent or induced electric dipole moments in a dielectric

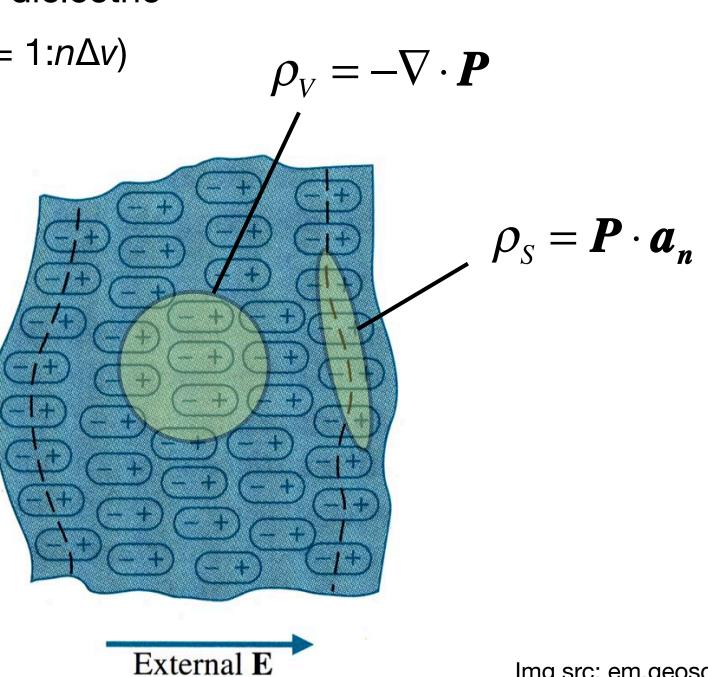
P indicates macroscopic effects of all the induced dipoles, $\mathbf{p}_k = q\mathbf{d}_k$ ($k = 1:n\Delta v$)

V due to polarized dielectric

$$V = \frac{1}{4\pi\varepsilon_0} \int_{V'} \frac{\boldsymbol{P} \cdot \boldsymbol{a}_R}{R^2} dv' \quad \left(\because V = \frac{\boldsymbol{p} \cdot \boldsymbol{a}_R}{4\pi\varepsilon_0 R^2} \right)$$
$$= \frac{1}{4\pi\varepsilon_0} \left[\oint_{S'} \frac{\boldsymbol{P} \cdot \boldsymbol{a}'_n}{R} ds' \right] + \frac{1}{4\pi\varepsilon_0} \left[\int_{V} \frac{-\nabla' \cdot \boldsymbol{P}}{R} dv' \right]$$
$$= \frac{1}{4\pi\varepsilon_0} \left[\oint_{S'} \frac{\rho_S}{R} ds' \right] + \frac{1}{4\pi\varepsilon_0} \left[\int_{V} \frac{\rho_V}{R} dv' \right] \quad \text{(refer to 3-7.1 formula})$$







11

Course Intro Electric Flux Density, *D* (2/2)

Divergence of *E* "in the dielectric"

$$\nabla \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} (\rho + \rho_v)$$

E: electric field intensity "in the dielectric" ρ : free charge density ρ_V : polarized charge density

$$\nabla \cdot (\boldsymbol{\varepsilon}_0 \boldsymbol{E} + \boldsymbol{P}) = \boldsymbol{\rho}, \quad (\because \boldsymbol{\rho}_V = -\nabla \boldsymbol{P})$$

Electric Flux Density, **D**

$$\boldsymbol{D} \triangleq \boldsymbol{\varepsilon}_0 \boldsymbol{E} + \boldsymbol{P}$$
 (C/m²)

Divergence postulate "in any medium"

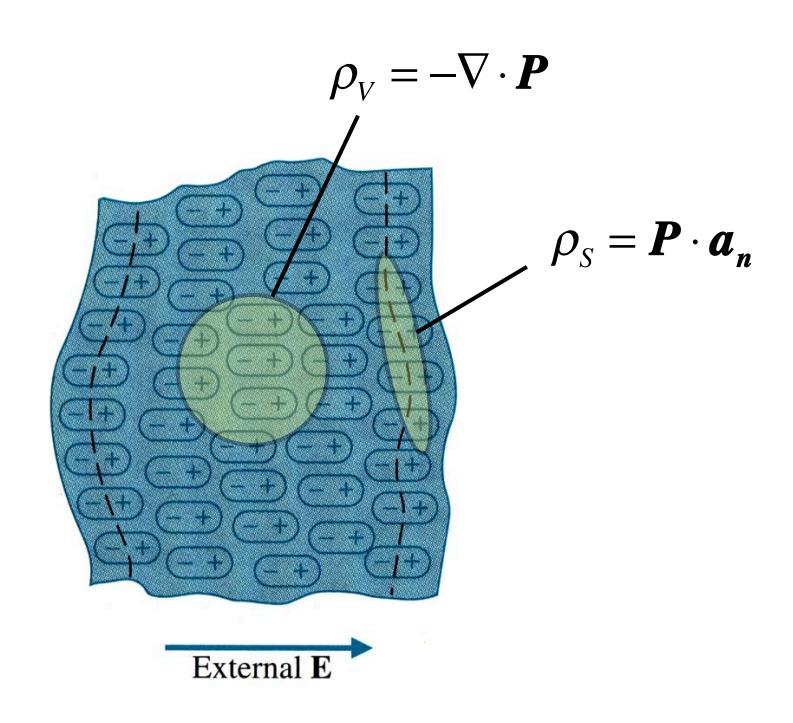
$$\nabla \cdot \boldsymbol{D} = \boldsymbol{\rho} \qquad (\mathrm{C/m}^3)$$

Permittivity

For linear and isotropic medium,

$$\mathbf{P} = \mathcal{E}_0 \chi_e \mathbf{E}$$
 where χ_e is electric susceptibility

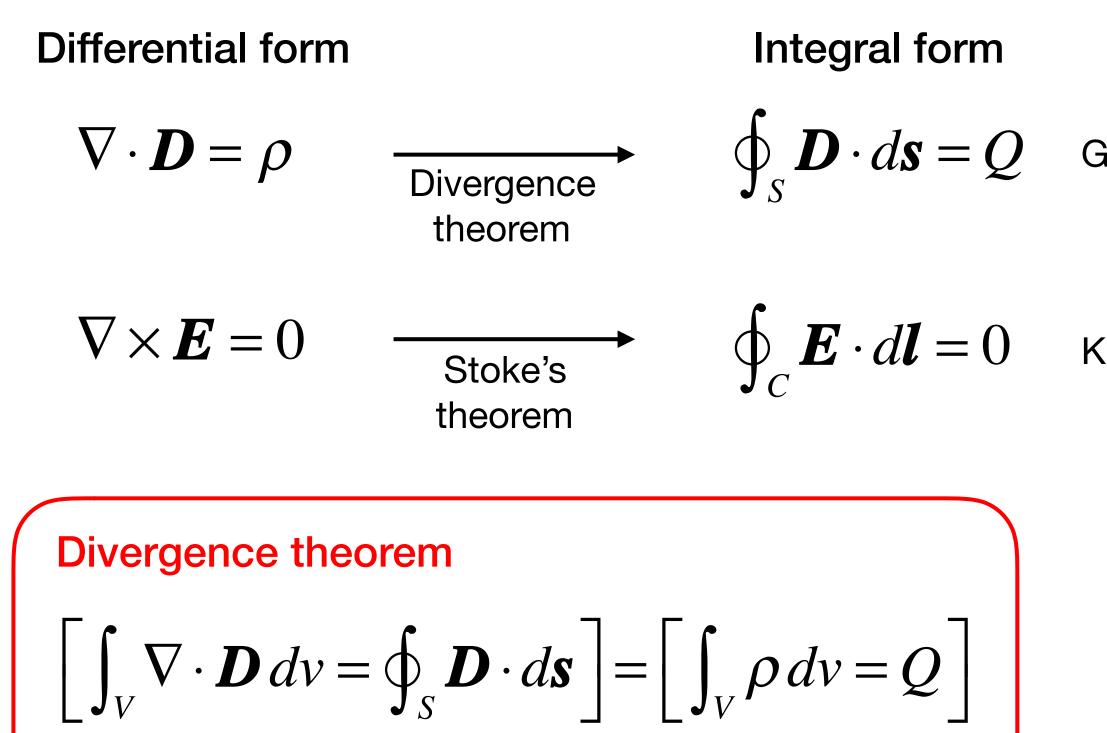
$$\boldsymbol{D} = \boldsymbol{\varepsilon}_0 \boldsymbol{E} + \boldsymbol{P} = \boldsymbol{\varepsilon}_0 \left(1 + \boldsymbol{\chi}_e \right) \boldsymbol{E} = \boldsymbol{\varepsilon}_0 \boldsymbol{\varepsilon}_r \boldsymbol{E} = \boldsymbol{\varepsilon} \boldsymbol{E}$$



Constitutive relation $\boldsymbol{D} = \boldsymbol{\varepsilon} \boldsymbol{E}$ $\mathcal{E} = \mathcal{E}_r \mathcal{E}_0$: Absolute permittivity (F/m) $\mathcal{E}_r = 1 + \chi_e$: Relative permittivity (dimensionless) = Dielectric constant of the medium

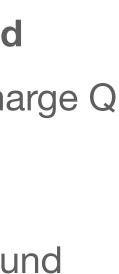
Course Intro | Electrostatics: Fundamental postulates

Two fundamental postulates (repeated)



Stokes theorem $\left[\int_{S} \nabla \times \boldsymbol{E} \, d\boldsymbol{s} = \oint_{C} \boldsymbol{E} \cdot d\boldsymbol{l}\right] = 0$

Total outward flux of D density over any closed
surface S in any medium equals to the total cha
enclosed in that surface.
Scalar line integral of <i>E</i> (=voltage) vanishes arou
any closed path = Kirchhoff's voltage law



13

Course Intro Boundary Conditions

Boundary condition (B.C.)

Tangential component

 $E_{1t} = E_{2t}$ (V/m)

$$\left(:: \oint_{\text{abc da}} \boldsymbol{E} \cdot d\boldsymbol{l} = \boldsymbol{E}_{\boldsymbol{1}} \cdot \Delta \boldsymbol{w} + \boldsymbol{E}_{\boldsymbol{2}} \cdot (-\Delta \boldsymbol{w}) = E_{1t} \Delta w - E_{2t} \Delta w = 0\right)$$

Normal component

$$\boldsymbol{a}_{n2}\cdot \left(\boldsymbol{D}_{1}-\boldsymbol{D}_{2}\right)=\boldsymbol{\rho}_{s} \quad \left(\cdot\right)$$

$$\left(:: \oint_{S} \boldsymbol{D} \cdot d\boldsymbol{s} = \left(\boldsymbol{D}_{1} \cdot \boldsymbol{a}_{n2} + \boldsymbol{D}_{2} \cdot \boldsymbol{a}_{n1}\right) \Delta S = \rho_{s} \Delta S\right)$$

Conductors in a static **E**

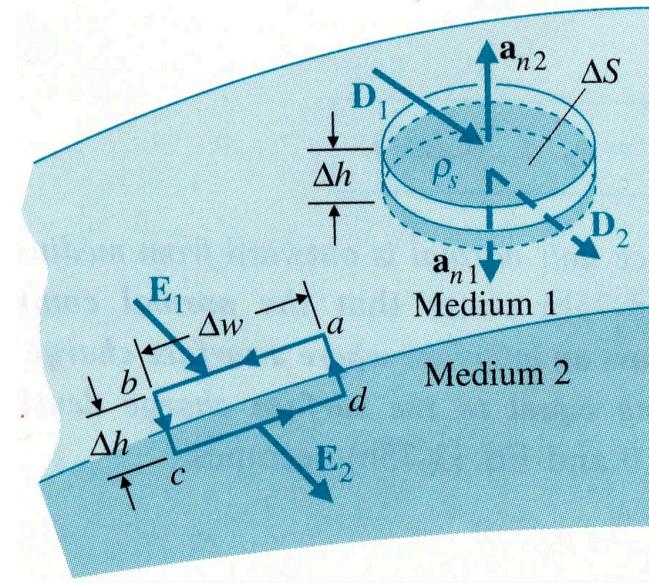
Inside
$$\begin{cases} \rho = 0 \\ \boldsymbol{E} = 0 \end{cases}$$

B.C. at a conductor / free space interface

$$\begin{cases} E_t = 0 \\ E_n = \frac{\rho_s}{\mathcal{E}_0} \end{cases} & \text{E-field on the to the surface of the sur$$

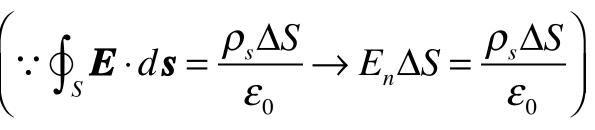
 \mathcal{E}_0

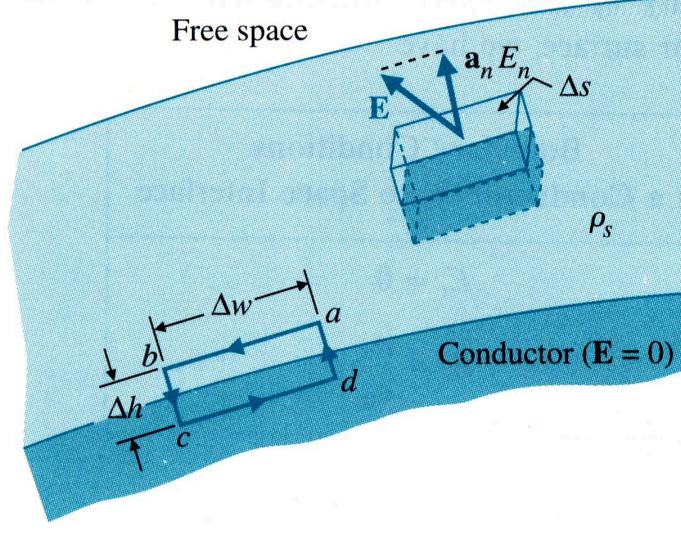
• 5



surface everywhere normal

urface = equipotential surface





14

Course Intro Fundamental law of physics

Conservation of electric charge

Sum of positive and negative charges in a closed (isolated) system NEVER changes

Equation of Continuity

a net current flows out of (into) the volume = a net charge in the volume decreases (increases)

$$\nabla \cdot \boldsymbol{J} = -\frac{\partial \rho}{\partial t} \left(A / m^3 \right)$$

For steady-state currents (i.e. $\partial \rho / \partial t = 0$)

$$\nabla \cdot \boldsymbol{J} = 0 \qquad \sum_{j} I_{j} = 0$$

Kirchhoff's current law

sum of all the currents leaving out of & entering into a junction in a circuit is zero

Where current is change of charge vs. time:

 $I = \frac{dq}{dt} \quad [A]$ $I = \int_{S} J \cdot ds$: Total current / flowing through S = Flux of J vector through S

Where J (A/m²) is the volume current density:

a measure of current flowing through a unit area normal to the direction of the current

Electromagnetics <Chap. 1~ Chap. 6> Static electric & magnetic fields **Course Intro**

(2nd class of week 1)

Jaesang Lee Dept. of Electrical and Computer Engineering Seoul National University (email: jsanglee@snu.ac.kr)

Course Intro Contents for 2nd class of week 1

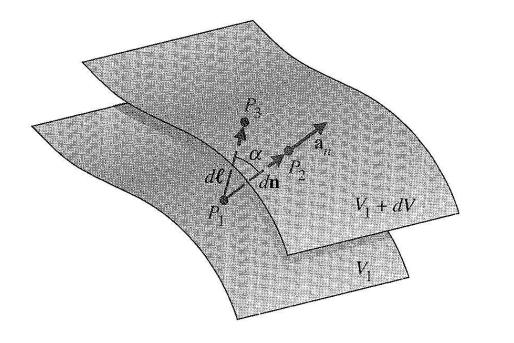
- 1. Review of last class
 - Vector-valued functions and mathematical theorem (Ch. 2)
 - Electrostatics (Ch. 3)
- 2. (Cont'd) Review of "Introduction to electromagnetism with practice" (기초전자기학 및 연습; 430.202B)
 - Steady electric currents (Ch. 5)
 - Magnetostatics (Static Magnetic Field) (Ch. 6)

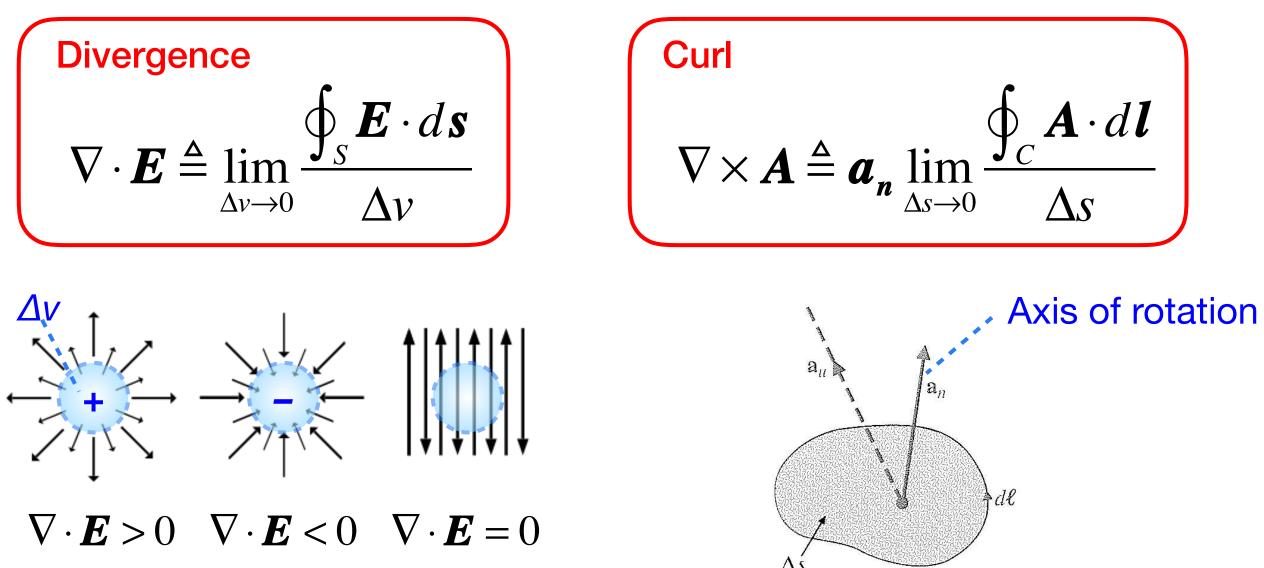
Course Intro Review of the last class (1/2)

Vector-valued functions

Gradient

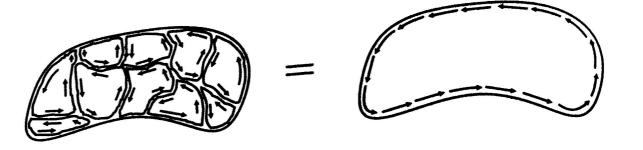
$$\nabla V \triangleq \boldsymbol{a}_{\max(dV/dl)} \max\left(\frac{dV}{dl}\right) = \boldsymbol{a}_n \frac{dV}{dn}$$



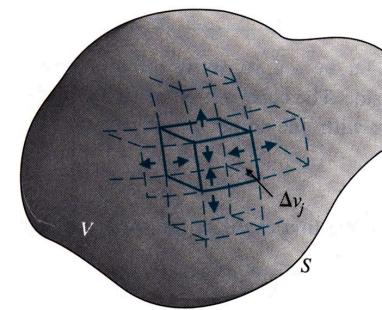


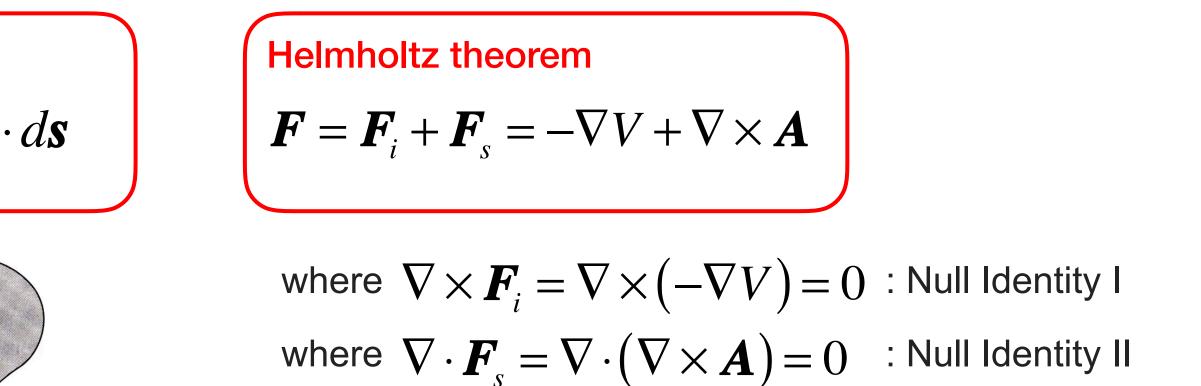
Mathematical theorem

Stokes theorem $\int_{S} (\nabla \times \boldsymbol{E}) \cdot d\boldsymbol{s} = \oint_{C} \boldsymbol{E} \cdot d\boldsymbol{l}$



Divergence theorem $\int_{V} \nabla \cdot \boldsymbol{D} \, dv = \oint_{\varsigma} \boldsymbol{D} \cdot d\boldsymbol{s}$





Course Intro Review of the last class (2/2)

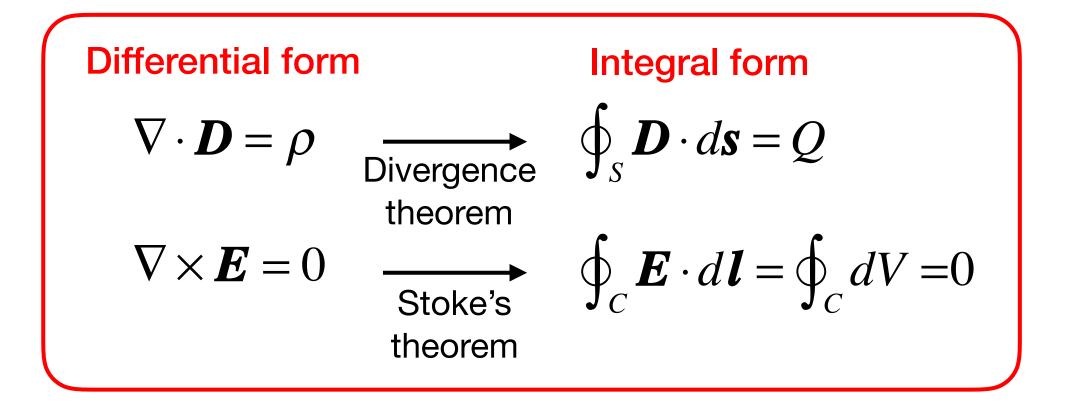
Source: **Stationary** charges

> $\nabla \cdot \boldsymbol{D} = \rho$ $\nabla \times \boldsymbol{E} = 0$

Magnetostatics Static magnetic fields Source: Steady-state current $\nabla \cdot \boldsymbol{B} = 0$

$$\int \nabla \times \boldsymbol{H} = \boldsymbol{J}$$

Only functions of space: $\boldsymbol{E}, \boldsymbol{D}, \boldsymbol{B}, \boldsymbol{H}(x, y, z)$ Independently defined!



E-field intensity **E** at **R** due to a positive charge q at **R**'

$$\boldsymbol{E}(\boldsymbol{R}) = \frac{q}{4\pi\varepsilon_0} \frac{\boldsymbol{R} - \boldsymbol{R'}}{|\boldsymbol{R} - \boldsymbol{R'}|^3} = \boldsymbol{a}_{\boldsymbol{q}} \frac{q}{4\pi\varepsilon_0} \frac{1}{|\boldsymbol{R} - \boldsymbol{R'}|^2}$$

Coulomb's law

$$\boldsymbol{F} = q_2 \boldsymbol{E}_1(\boldsymbol{R}_2) = \frac{q_2 q_1}{4\pi\varepsilon_0} \frac{\boldsymbol{R}_2 - \boldsymbol{R}_1}{|\boldsymbol{R}_2 - \boldsymbol{R}_1|^3} = \boldsymbol{a}_{21} k_e \frac{q_2 q_1}{|\boldsymbol{R}_2 - \boldsymbol{R}_1|^2}$$

Electric potential

$$\frac{W}{q} = -\int_{\infty}^{R} \boldsymbol{E} \cdot d\boldsymbol{l} = \int_{\infty}^{R} \nabla V \cdot d\boldsymbol{l} = \int_{\infty}^{R} dV = V_{R}$$
$$\boldsymbol{E} = -\nabla V \quad (\because \nabla \times \boldsymbol{E} = 0)$$

Electric Flux Density

$$\boldsymbol{D} = \boldsymbol{\varepsilon}_0 \boldsymbol{E} + \boldsymbol{P} = \boldsymbol{\varepsilon}_0 \left(1 + \boldsymbol{\chi}_e \right) \boldsymbol{E} = \boldsymbol{\varepsilon}_0 \boldsymbol{\varepsilon}_r \boldsymbol{E} = \boldsymbol{\varepsilon} \boldsymbol{E}$$

If medium is linear and isotropic

Course Intro Electric current (Essential as a source of magnetic field!)

Derivation

• Amount of charges passing through Δs

$$\Delta Q = qN(\mathbf{u}\Delta t \cdot \Delta \mathbf{s}), \text{ unit: } \left(C \cdot \frac{1}{m^3} \cdot \frac{m}{s} \cdot m^2\right) =$$

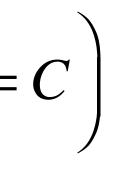
where N is the number of charges per unit volume, $u\Delta t$ is a distance vector that charge carriers moved

• Since electric current = time rate of change of charge,

$$\Delta I = \frac{\Delta Q}{\Delta t} = qN\boldsymbol{u} \cdot \Delta \boldsymbol{s}$$

= $\boldsymbol{J} \cdot \Delta \boldsymbol{s}$ (A or C/s) where $\boldsymbol{J} = \boldsymbol{d}$

$$\therefore \text{Total current } I \text{ flowing through a surface } S:$$
$$I = \int_{S} J \cdot ds \quad (A)$$



ne current density $qN\boldsymbol{u} = \rho \boldsymbol{u} (A/m^2)$ volume charge density

Course Intro Ohm's law

Conduction current

• Result of drift motion of many groups of charge carriers affected by E-field

$$\boldsymbol{J} = \sum_{i} q_{i} N_{i} \boldsymbol{u}_{i} = \rho \boldsymbol{u} \quad (A/m^{2})$$

• where *u* is average drift velocity,

 $\boldsymbol{u} = -\mu_{e}\boldsymbol{E}$ (m/s) where μ_{e} is electron mobility (m²/V·s)

Ohm's law

$$\boldsymbol{J} = \rho_e \boldsymbol{u} = -\rho_e \mu_e \boldsymbol{E} = \boldsymbol{\sigma} \boldsymbol{E} \quad (A/m^2)$$

where $\sigma = -\rho_e \mu_e$ is conductivity

(a measure of how well the medium conducts electrons)

• Ohmic media

Isotropic material satisfying the relationship, $\boldsymbol{J}=\boldsymbol{\sigma}\boldsymbol{E}$

* For semiconductors,

$$\sigma = -\rho_e \mu_e + \rho_h \mu_h$$

mobility **Carrier concentration**

Mateirals	Electron mobility (cm²/V·s)
Silicon	1,360
GaAs	8,000
GaN	1,500
Organic semiconductors	10 ⁻⁸ ~ 10 ⁻³

Thin organic device (e.g. OLED) is not an option, but **a must** to avoid using >1,000V operating voltage!

Course Intro | Equation of continuity

Conservation of electric charge

• Sum of positive and negative charges in a closed (isolated) system NEVER changes

Equation of Continuity

• a net current flows out of the volume = a decreased time rate of net charge in the volume

$$\nabla \cdot \boldsymbol{J} = -\frac{\partial \rho}{\partial t} \left(A / m^3 \right) \qquad \left(\because I = \left[\oint_{S} \boldsymbol{J} \cdot ds = \int_{V} \nabla \cdot \boldsymbol{J} \, dv \right] = \left[-\frac{dQ}{dt} = -\frac{d}{dt} \int_{V} \rho \, dv = \int_{V} \frac{\partial \rho}{\partial t} \, dv \right] \right)$$

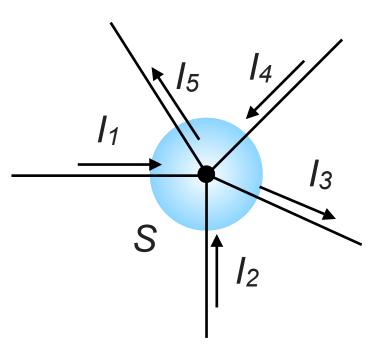
• For steady-state currents (i.e. $\partial \rho / \partial t = 0$)

$$\nabla \cdot \boldsymbol{J} = 0 \longrightarrow \int_{V} \nabla \cdot \boldsymbol{J} \, dv = \oint_{S} \boldsymbol{J} \cdot d\boldsymbol{s} = 0 \longrightarrow$$

Divergence theorem

$$\sum_{j} I_{j} = 0$$

Kirchhoff's current law sum of all the currents leaving out of & entering into a junction in a circuit is zero



Course Intro Joule's law

Power dissipation (loss)

- Under E-field in the conductor, electrons drift and collide with atoms on lattice sites → lose kinetic energy from E-field into thermal vibration (i.e. heat)
- Power loss = Power delivered to a charge q by *E*-field

$$p = \lim_{\Delta t \to 0} \frac{\Delta w}{\Delta t} = \lim_{\Delta t \to 0} \frac{q \boldsymbol{E} \cdot \Delta \boldsymbol{l}}{\Delta t} = q \boldsymbol{E} \cdot \boldsymbol{u} \quad \text{where } \Delta w \text{ is work "done by E-field" moving a charge } q \text{ a distance } \Delta l$$

c.f.) For electric potential, $\frac{W}{q} (J/C) = \bigoplus_{\infty}^{R} \boldsymbol{E} \cdot d\boldsymbol{l} = \int_{\infty}^{R} \nabla V \cdot d\boldsymbol{l} = \int_{\infty}^{R} dV = V_{R}$

• Power delivered to many charges in *dv* by *E*-field

$$dP = \sum_{i} P_{i} = \sum_{i} q_{i} (N_{i} dv) \boldsymbol{E} \cdot \boldsymbol{u}_{i} = \boldsymbol{E} \cdot \left(\sum_{i} q_{i} N_{i} \boldsymbol{u}_{i} \right) dv = \boldsymbol{E} \cdot \boldsymbol{J} dv \longrightarrow \frac{dP}{dv} = \boldsymbol{E} \cdot \boldsymbol{J} \quad (W/m^{3}): \text{Power dense}$$

• Total power delivered to many charges = total power dissipated as heat for a given volume V

$$\therefore P = \int_{V} \boldsymbol{E} \cdot \boldsymbol{J} \, dv \quad (W) : \text{Joule's law}$$

ds

$$I = \int_{V} \mathbf{E} \cdot \mathbf{J} \, dv = \int_{L} E \, dl \int_{S} J \, ds = VI = I^{2} R \quad (W)$$

sity

Course Intro Magnetostatics (1/2)

Magnetic field

- Source: moving charge (=electric current)
- When a test charge q moves in a magnetic field, it experiences the magnetic force as

 $F_m = q \boldsymbol{u} \times \boldsymbol{B}$ (N)

where \boldsymbol{u} is the velocity vector (m/s) and \boldsymbol{B} is the magnetic flux density (T or Wb/m²)

Lorentz's force equation

$$\boldsymbol{F} = \boldsymbol{F}_{e} + \boldsymbol{F}_{m} = q(\boldsymbol{E} + \boldsymbol{u} \times \boldsymbol{B}) \quad (N)$$

: Electromagnetic force on q

Static magnetic field

- Source: steady-state currents
- Two fundamental postulates for static magnetic field in any medium,

$$\begin{cases} \nabla \cdot \boldsymbol{B} = 0 \\ \nabla \times \boldsymbol{H} = \boldsymbol{J} \end{cases}$$
 Source: steady-state current
where in the medium, $\boldsymbol{H} = \frac{\boldsymbol{B}}{\mu_0} - \boldsymbol{M} = \frac{\boldsymbol{M}}{\boldsymbol{M}_0} = \frac{$

Another fundamental postulate of electromagnetic model (Cannot be derived by other postulates!)

Polarization vector ector c.f.) $\boldsymbol{D} = \boldsymbol{\varepsilon}_0 \boldsymbol{E} + \boldsymbol{P} - \boldsymbol{O} \boldsymbol{O} \boldsymbol{O} \boldsymbol{O}$ of "induced" electric dipoles

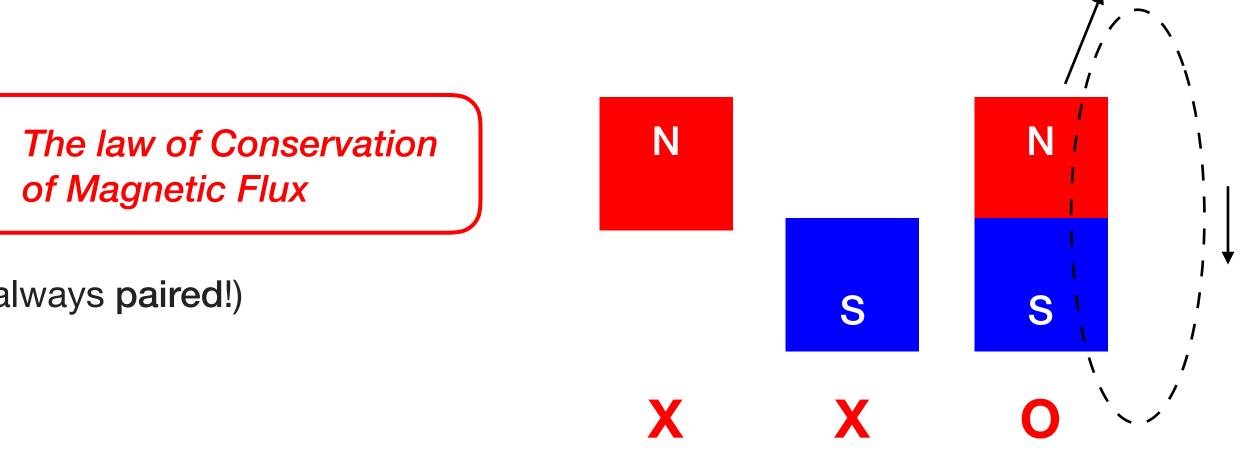
Course Intro Magnetostatics (2/2)

Static magnetic field **Divergence theorem** • Divergence postulate of **B** $\nabla \cdot \boldsymbol{B} \, dv = \Phi_{\sigma} \, \boldsymbol{B} \cdot d\boldsymbol{s} = 0$ $\nabla \cdot \boldsymbol{B} = 0$ J_V

- There are NO magnetic charges (or monopoles) (i.e. they are always paired!)
- Magnetic field is not a flow source, but a solenoidal source
- Magnetic flux always closes upon itself

• Curl postulate of
$$H$$

 $\nabla \times H = J$ \longrightarrow $\nabla \cdot (\nabla \times H) = 0 = \nabla \cdot J$ (For steady-state current) $(\because \nabla \cdot J = -\frac{\partial \rho}{\partial t})$
Stoke's theorem
 $\nabla \times H = J$ \longrightarrow $\left[\int_{S} (\nabla \times H) \cdot ds = \oint_{C} H \cdot dl \right] = \left[\int_{S} J \cdot ds = l \right]$
Ampere's circuital law
 $\therefore \oint_{C} H \cdot dl = I$ (A) Only useful when there is symmetrical geon
(i.e. when **B** is constant over the closed path)



netry. th C.)

Course Intro "Vector" Magnetic Potential

Magnetic potential

• Divergence-free postulate of **B**

$$\nabla \cdot \boldsymbol{B} = 0 \quad \stackrel{\frown}{\uparrow} \quad \nabla \cdot (\nabla \times \boldsymbol{A}) = 0 \quad (\therefore \boldsymbol{B} = \nabla \cdot \boldsymbol{B})$$
Null Identity I
$$c.f.) \quad \boldsymbol{E} = -\frac{1}{2}$$

Vector Poisson's equation

• Starting from a curl postulate,

$$\nabla \times \boldsymbol{B} = \boldsymbol{\mu}_0 \boldsymbol{J} \longrightarrow \nabla \times (\nabla \times \boldsymbol{A}) = \boldsymbol{\mu}_0 \boldsymbol{J}$$

If we choose $\nabla \cdot \boldsymbol{A} = 0$ for simplicity,

 $\nabla^2 A = -\mu_0 J$: Vector Poisson's equation

Solution to Vector Poisson's équation

$$\boldsymbol{A} = \frac{\mu_0}{4\pi} \int_{V'} \frac{\boldsymbol{J}}{R} dv' \quad \text{(Wb/m)} \qquad \qquad \text{c.f.)} \quad V = \frac{1}{4\pi\varepsilon_0} \int_{V'} \frac{\rho}{R} dv \quad \text{for} \quad -\nabla \cdot \boldsymbol{E} = \nabla^2 V = -\frac{\rho}{\varepsilon_0}$$
$$\boldsymbol{E} = -\nabla V$$

 $\nabla \times \boldsymbol{A}$ (T) where \boldsymbol{A} is vector magnetic potential

$$-\nabla V \quad (V/m) \longleftarrow \nabla \times \boldsymbol{E} = 0$$

Null Identity II

Laplacian of
$$\boldsymbol{A}$$

 $\nabla \times \nabla \times \boldsymbol{A} = \nabla (\nabla \cdot \boldsymbol{A}) - \nabla^2 \boldsymbol{A}$
or
 $\nabla^2 \boldsymbol{A} = \nabla (\nabla \cdot \boldsymbol{A}) - \nabla \times \nabla \times \boldsymbol{A}$
 $= \boldsymbol{a}_x \nabla^2 A_x + \boldsymbol{a}_y \nabla^2 A_y + \boldsymbol{a}_z \nabla^2 A_z$

Lorentz Gauge $\nabla \cdot \mathbf{A} = -\mu \varepsilon \frac{\partial V}{\partial t}$

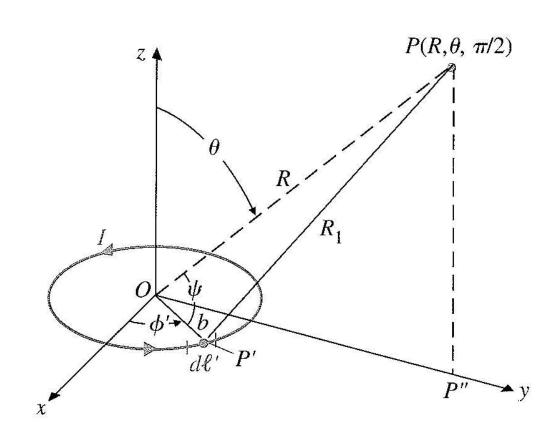
Coulomb's Gauge

$$\nabla \cdot \boldsymbol{A} = 0$$

Course Intro Magnetic dipole

Magnetic dipole

• Small current-carrying loop (with a radius *b*, and carrying the current *I*)



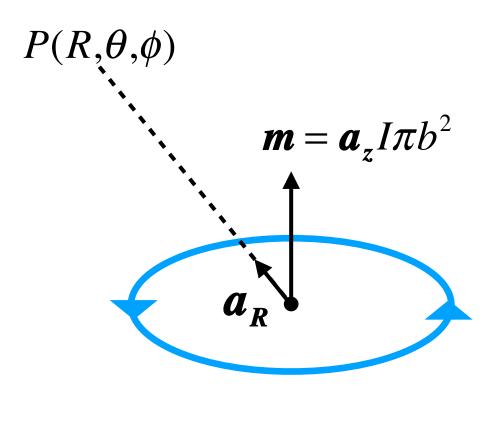
$$\boldsymbol{A} = \frac{\mu_0}{4\pi} \int_{C'} \frac{I \cdot d\boldsymbol{l}'}{R} \stackrel{\downarrow}{=} \boldsymbol{a}_{\phi} \frac{\mu_0 I b^2}{4R^2} \sin \theta$$
$$\boldsymbol{B} = \nabla \times \boldsymbol{A} = \frac{\mu_0 I b^2}{4R^3} (\boldsymbol{a}_R 2 \cos \theta + \boldsymbol{a}_{\theta} \sin \theta) \quad (Wb/m^2)$$

Magnetic dipole Moment,
$$\boldsymbol{m}$$

 $\boldsymbol{A} = \boldsymbol{a}_{\phi} \frac{\mu_0 I b^2}{4R^2} \sin \theta = \boldsymbol{a}_{\phi} \frac{\mu_0 (I \pi b^2) \sin \theta}{4\pi R^2} = \frac{\mu_0 \boldsymbol{m} \times \boldsymbol{a}_{\boldsymbol{R}}}{4\pi R^2}$
where $\boldsymbol{m} = \boldsymbol{a}_z I \pi b^2 = \boldsymbol{a}_z IS = \boldsymbol{a}_z m$
 \boldsymbol{A} Also applicable to non-circular shape

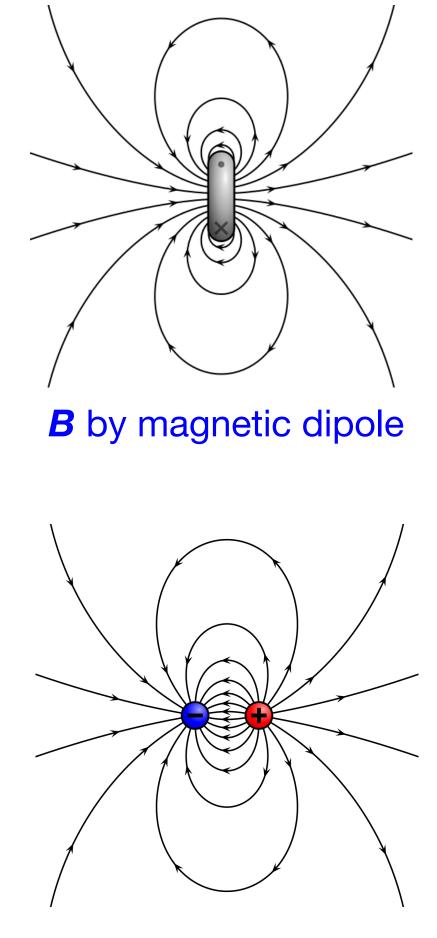
$$\boldsymbol{B} = \frac{\mu_0 m}{4\pi R^3} (\boldsymbol{a}_{\boldsymbol{R}} 2 \cos \theta)$$

c.f.) $\boldsymbol{E} = \frac{p}{4\pi\varepsilon_0 R^3} (\boldsymbol{a}_R 2\cos\theta + \boldsymbol{a}_\theta \sin\theta) \quad (V/m) \text{ where } \boldsymbol{p} = q\boldsymbol{d}$

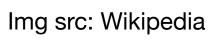


Refer to Ch. 6-5 for derivation

 $\cos\theta + \boldsymbol{a}_{\theta}\sin\theta$ (T)



E by electric dipole

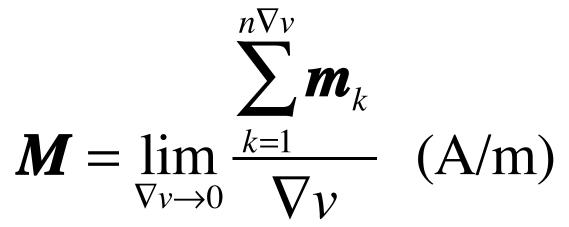


Course Intro | Magnetization

Magnetic dipoles "in the medium"

- Microscopic view: orbiting electrons around nucleus \rightarrow circulating currents \rightarrow microscopic magnetic dipoles
- Under no external magnetic field, magnetic dipoles of atom are in random orientations → No net magnetic moments
- External magnetic field applies to the medium → Induced magnetic moments due to changed electron orbiting motion

Magnetization vector



M: Volume density of magnetic dipole moment

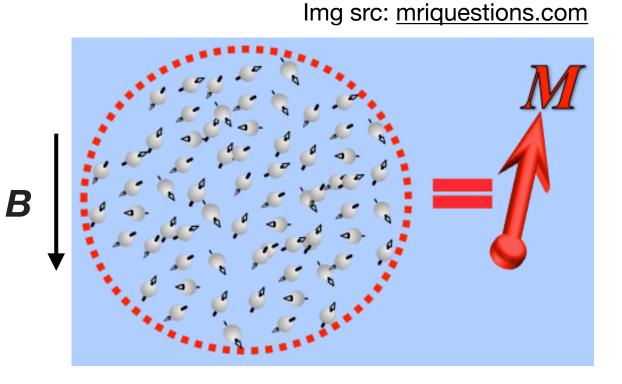
 \rightarrow Macroscopic effect of induced magnetic dipoles

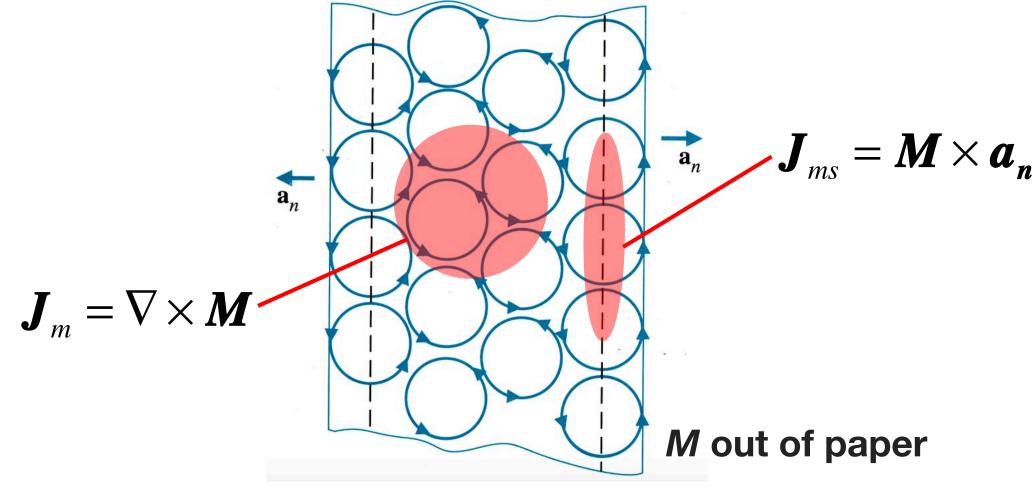
n is the number of atoms per unit volume

Vector magnetic potential caused by *magnetization*

$$\mathbf{A} = \int_{V'} \frac{\mu_0 \mathbf{M} \times \mathbf{a}_R}{4\pi R^2} dv' \quad \left(\because \mathbf{A} = \frac{\mu_0 \mathbf{m} \times \mathbf{a}_R}{4\pi R^2} \right)$$
$$= \frac{\mu_0}{4\pi} \int_{V'} \frac{\nabla' \times \mathbf{M}}{R} dv' + \frac{\mu_0}{4\pi} \oint_{S'} \frac{\mathbf{M} \times \mathbf{a}'_n}{R} ds'$$
$$= \frac{\mu_0}{4\pi} \int_{V'} \frac{\mathbf{J}_m}{R} dv' + \frac{\mu_0}{4\pi} \oint_{S'} \frac{\mathbf{J}_{ms}}{R} ds' \quad \text{(refer to Ch 6-6 for})$$

- where m_k is the magnetic dipole moment of k-th atom and





r derivation)

Course Intro | Magnetic field intensity, H

Curl postulate of magnetic field "in the medium"

$$\frac{1}{\mu_0} \nabla \times \boldsymbol{B} = \boldsymbol{J} + \boldsymbol{J}_{\boldsymbol{m}}$$

B: magnetic flux density "in the medium" *J*: free volume current density *J_m*: Magnetized volume current density

$$\nabla \times \left(\frac{1}{\mu_0} \boldsymbol{B} - \boldsymbol{M}\right) = \boldsymbol{J}, \quad \left(\because \boldsymbol{J}_m = \nabla \times \boldsymbol{M}\right)$$

Magnetic field intensity, *H*

Permeability

For linear and isotropic medium,

$$\boldsymbol{M} = \boldsymbol{\chi}_m \boldsymbol{H}$$
 where

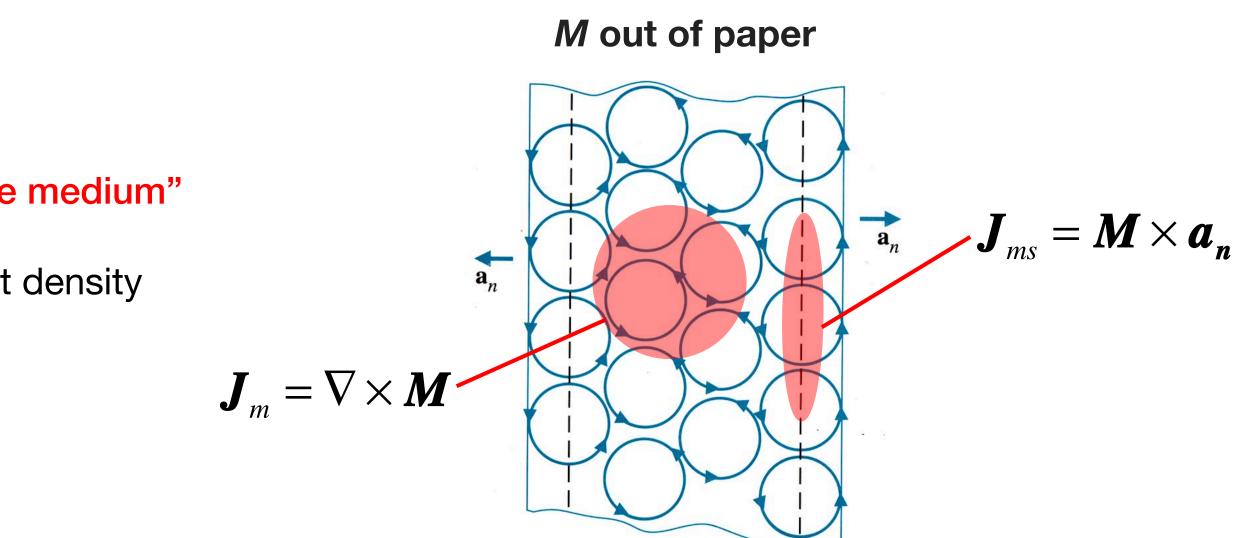
 $\rightarrow H = -B -$ -- μ_0

$$\rightarrow \boldsymbol{B} = \mu_0 (1 + \chi)$$

$$\boldsymbol{H} \triangleq \frac{1}{\mu_0} \boldsymbol{B} - \boldsymbol{M} \quad (A/m)$$

Curl postulate "in any medium"

$$\nabla \times \boldsymbol{H} = \boldsymbol{J} \; (A/m^2)$$



(i.e. Material specific)

 $re \chi_m$ is magnetic susceptibility

$$\boldsymbol{M} = \frac{1}{\mu_0} \boldsymbol{B} - \boldsymbol{\chi}_m \boldsymbol{H}$$

 $(\boldsymbol{\chi}_m)\boldsymbol{H} = \mu_0 \mu_r \boldsymbol{H} = \mu \boldsymbol{H}$

Constitutive relation $\boldsymbol{B} = \boldsymbol{\mu} \boldsymbol{H}$ $\mu = \mu_0 \mu_r$: Absolute permeability $\mu_r = 1 + \chi_m$: relative permeability

Course Intro | Boundary Conditions

Normal component of **B**

$$B_{1n} = B_{2n}$$
 $(\because \nabla \cdot B = 0) \rightarrow Continuous across the integral of the second secon$

Tangential component of **B**

$$\boldsymbol{a}_{n2} \times (\boldsymbol{H}_1 - \boldsymbol{H}_2) = \boldsymbol{J}_S \quad (A/m)$$

where a_{n2} is outward unit normal from medium 2 at the interface where J_s is the surface current density flowing at the interface

→ Tangential component is *discontinuous across the interface* where a surface current exists

