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Course Intro |  Contents for 1st class of week 1

1. Syllabus 

2. A Review of “Introduction to electromagnetism with practice” (기초전자기학 및 연습; 430.202B) 

• Mathematical basis: vector calculus and important theorem (Ch. 2)


• Electrostatics (Static Electric Field) (Ch. 3)


• Magnetostatics (Static Magnetic Field) (Ch. 6)
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Electromagnetics (전자기학; 430.203A-002)

* Prerequisite: 기초전자기학 및 연습 (430.202B), 공학수학 1, 2 (or any equivalent courses)

* Course will be offered in English.

Course Intro |  Syllabus (1/2)

Staff:

Lecture:

• Instructor: Jaesang Lee (email: jsanlgee@snu.ac.kr)

- Office: 301-906 (Office hour: Mon/Wed/Fri 2:00-3:00 pm)


• Course TA: 양광모 (kwangmo95@snu.ac.kr)

• 전자기학 학습도우미: 최선진 (csj7481@snu.ac.kr)

Textbook: D. K. Cheng, “Field and Wave Electromagnetics”, 2nd Ed. Addison-Wesley, 1989.

Homework: - Total 7 sets

- A problem set (HW) will be given approximately every two weeks at the end of Thursday class.

- HW deadline: one week after assignment

‣ Submit it to TA at the end of the class

‣ Drop it in the HW submission box at my office (301-906) on Thursday until 6 pm


- No late homework will be accepted unless special occasion.

Exam: Two midterm, One Final Exams

Grading 
Policy:

Attendance (10 %)

Homework (15 %)

Midterm I (20 %)

Midterm II (25 %)

Final (30 %)
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기초전자기학 및 연습 
• static electric fields (Ch. 3), static magnetic fields (Ch. 6) / Vector calculus (Ch. 2)


전자기학 
Principle objective: Understand interaction between charges and currents at a distance based on EM model

• Time-varying electric & magnetic fields and their coupling → Maxwell’s equations (Ch. 7)

• A particular solution to Maxwell’s equation: plane electromagnetic waves (Ch. 8)

• How electromagnetic waves propagate in various media (i.e. transmission lines and waveguides) (Ch. 9 and 10)

• Wireless and long-distance propagation of electromagnetic waves (Antennas) (Ch. 11)

Course Intro |  Syllabus (2/2)

Schedule

Description

Week Topic Reading HW / Exam
1 Introduction / Review of static EM fields Ch. 1~6
2 Maxwell’s Equations Ch. 7 HW1
3 Plane Electromagnetic Waves I Ch. 8
4 Plane Electromagnetic Waves II Ch. 8 HW2
5 Plane Electromagnetic Waves III Ch. 8 Midterm I
6 Waveguides I Ch. 10
7 Waveguides II Ch. 10 HW3
8 Waveguides III / Intro of Transmission Lines Ch. 9~10
9 Transmission Lines I Ch. 9 HW4

10 Transmission Lines II Ch. 9 Midterm II
11 Transmission Lines III Ch. 9
12 Transmission Lines IV Ch. 9 HW5
13 Antennas I Ch. 11
14 Antennas II Ch. 11 HW6
15 Antennas III Ch. 11 Final
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Study of electric & magnetic phenomena caused by static or moving electric charges

- Source of Electric fields - positive & negative electric charges

- Source of Magnetic fields - moving charges (i.e. currents)


Field: Spatial distribution of a quantity 

- a function of space coordinates: (x, y, z) or (r, φ, z) or (r, θ, φ)

- may or may not be a function of time

Electrostatics 
When electrons are at rest

Magnetostatics 
When electrons move 

at a constant speed

Electromagnetics 
When movement of electrons changes with time

Static Electric Field Static Magnetic Field
Time-varying, Coupled Electric Field & Magnetic Field


= Electromagnetic Field

Course Intro |  Electromagnetics
What is electromagnetics?

What did we learn previously? What will we learn?

Only functions of space: E,D,B,H(x, y, z)
Independently defined!

Functions of both space and time: 
Coupled!

∇⋅D = ρ
∇× E = 0
⎧
⎨
⎩

∇⋅B = 0
∇× H = J
⎧
⎨
⎩

∇⋅D = ρ

∇× E = − ∂B
∂t

⎧
⎨
⎪

⎩⎪

∇⋅B = 0

∇× H = J + ∂D
∂t

⎧
⎨
⎪

⎩⎪

E,D,B,H(x, y, z,t)
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Course Intro |  Must-know vector calculus

Divergence 
= The net outward flux of vector field 

per unit volume as the volume about the 
point tends to zero

∇⋅E ! lim
Δv→0

E ⋅ds
S!∫
Δv

!
∂Ex

∂x
+
∂Ey

∂y
+
∂Ez

∂z

Curl 
= Maximum net circulation of vector field 
per unit area as the area tends to zero

∇× A ! an limΔs→0

A ⋅d l
C!∫
Δs

!

ax ay az
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

Gradient 
= maximum space rate of change of 
the scalar field

∇V ! amax dV
dl( )max

dV
dl

⎛
⎝⎜

⎞
⎠⎟ = an

dV
dn

! ax
∂V
∂x

+ ay
∂V
∂y

+ az
∂V
∂z

dV = ∇V( ) ⋅dl

V1+dV

V1

P2P3

P1

normal direction

dndl

Vector Scalar
Vector

∇⋅E > 0 ∇⋅E < 0 ∇⋅E = 0

Axis of rotation

Δv

Constant V1 surface
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Course Intro |  Mathematical basis for electromagnetics

Proof of Null Identity I

∇× (−∇V )[ ]⋅ds
S∫ = − ∇V

C!∫ ⋅dl = dV = 0
C!∫

Proof of Null Identity II

∇⋅(∇× A)dv
V∫ = (∇× A) ⋅ds

S!∫
= (∇× A) ⋅ an1 dsS1!∫ + (∇× A) ⋅ an2 dsS1!∫
= A ⋅d l

C1!∫ + A ⋅d l
C2!∫ = 0

Stokes theorem

∇× E( ) ⋅ds
S∫ = E

C!∫ ⋅dl ∇⋅Ddv
V∫ = D

S!∫ ⋅ds

Divergence theorem

• Any vector field can be decomposed into irrotational (curl-free) and solenoidal (divergence-free) vector fields.

• A vector field can be completely determined if both its divergence and curl are specified everywhere.

Helmholtz’s theorem

F = Fi + Fs
∇× Fi = 0 → ∇× −∇V( ) = 0 → Fi = −∇V

∇⋅Fs = 0 → ∇⋅ ∇× A( ) = 0 → Fs = ∇× A

⎧
⎨
⎪

⎩⎪
where

: Irrotational vector (by flow source)

: Solenoidal vector (by vortex source)

Null Identity I

Null Identity II
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Name Symbol Unit

Electric
Electric field intensity E V/m

Electric flux density D C/m2

Magnetic
Magnetic field intensity H A/m

Magnetic flux density B T

D = ε0E + P

Course Intro |  4 fundamental field quantities and 4 postulates

Needed for evaluating the fields 
in the medium

∇⋅D = ρ
∇× E = 0
⎧
⎨
⎩

Electrostatics

Field quantities

Fundamental postulates

Magnetostatics
∇⋅B = 0
∇× H = J
⎧
⎨
⎩

where in the medium,

Polarization vector 
of “induced”  
electric dipoles

H = B
µ0

− Mwhere in the medium,

Source: free charge

Source: current density

Magnetization vector 
of “induced” 
magnetic dipoles
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Course Intro |  Coulomb’s law and E-field

E-field intensity E at R due to a positive charge q at R’

E(R) = q
4πε0

R − ′R
R − ′R 3 = aq

q
4πε0

1
R − ′R 2 aq =

R − ′R
R − ′Rwhere

F = q2E1(R2 ) =
q2q1
4πε0

R2 − R1
R2 − R1

3 = a21ke
q2q1

R2 − R1
2

:Attractive or repulsive force 

acting between two point charges

E-field due to a group of n discrete charges

E(R) = 1
4πε0

qk
R − ′Rk

R − ′Rk
3

k=1

n

∑
E-field due to an electric dipole (Ch. 3-3.1)

E(R) ≅ 1
4πε0R

3 3 R ⋅ p
R2

R − p⎡
⎣⎢

⎤
⎦⎥

where p = qd

Coulomb’s law

E-field intensity E at R due to a positive charge q at origin

E = aRER = aR
q

4πε0R
2  (V/m)

E ⋅ds
S!∫ = q

ε0

(l.h.s) aRER( ) ⋅ aRds( )
S!∫ = ER ds

S!∫ = 4πR2ER

R

: fundamental postulate  
in free space

d

d

E

Electric Dipole 
Moment

-q +q

S
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E = −∇V according to Null Identity I

Work required to move a unit positive charge from the reference point (usually, infinity) to a specific point against the E-field

W
q

 (J/C) = − E ⋅d l
∞

R

∫ = ∇V ⋅d l
∞

R

∫ = dV
∞

R

∫ =VR  (V)

V due to a point charge

V = − E ⋅d l
∞

R

∫
V due to n discrete charges

V = 1
4πε0

qk
R − ′Rkk=1

n

∑

V due to continuous distribution

V = 1
4πε0

ρ
R
d ′v

′V∫
V = 1

4πε0
ρS

R
d ′s

′S∫

V = 1
4πε0

ρL

R
d ′l

′L∫

V due to electric dipole

V = p ⋅ aR
4πε0R

2

Course Intro |  Electric Potential
Definition

Since ∇× E = 0,

E
…

unit charge at ∞

= aR
q

4πε0R
2

⎛
⎝⎜

⎞
⎠⎟
⋅ aRdR( )

∞

P

∫

= q
4πε0R

(volume)

(surface)

(line)
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Course Intro |  Electric Flux Density, D (1/2)
Dielectric

• Electrical insulator that can be electrically polarized by an applied E-field

- Electric charges are still bound, but slightly displaced from their equilibrium positions


• Such displacements polarize a dielectric material and create electric dipole

• Induced electric dipoles modify E-field both inside and outside the dielectric

P = lim
Δv→0

pk
k=1

nΔv

∑
Δv

Polarization vector

Polarization density vector 
: volume density of permanent or induced electric dipole moments in a dielectric

P indicates macroscopic effects of all the induced dipoles, pk = qdk (k = 1:nΔv)

V = 1
4πε0

P ⋅ aR
R2

d ′v
′V∫

  = 1
4πε0

P ⋅ ′an
R

d ′s
′S!∫

⎡
⎣⎢

⎤
⎦⎥
+ 1
4πε0

− ′∇ ⋅P
R

d ′v
V∫

⎡
⎣⎢

⎤
⎦⎥

  = 1
4πε0

ρS

R
d ′s

′S!∫
⎡
⎣⎢

⎤
⎦⎥
+ 1
4πε0

ρV
R
d ′v

V∫
⎡
⎣⎢

⎤
⎦⎥

∵V = p ⋅ aR
4πε0R

2

⎛
⎝⎜

⎞
⎠⎟

(refer to 3-7.1 for derivation)

ρS = P ⋅ an
V due to polarized dielectric

ρV = −∇⋅P
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Course Intro |  Electric Flux Density, D (2/2)
Divergence of E “in the dielectric”

∇⋅E = 1
ε0

ρ + ρV( ) E: electric field intensity “in the dielectric”

ρ: free charge density

ρV: polarized charge density

∇⋅ ε0E + P( ) = ρ,    ∵ρV = −∇P( )
Electric Flux Density, D

D ! ε0E + P       (C/m2 )

∇⋅D = ρ       (C/m3)
Divergence postulate “in any medium”

Permittivity

P = ε0χeE
For linear and isotropic medium,

where χe is electric susceptibility

D = ε0E + P = ε0 1+ χe( )E = ε0ε rE = εE ε r = 1+ χe

ε = ε rε0
: Relative permittivity (dimensionless)

= Dielectric constant of the medium

: Absolute permittivity (F/m)

D = εE
Constitutive relation

(i.e. Material specific)

!12
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Course Intro | Electrostatics: Fundamental postulates
Two fundamental postulates (repeated)

∇⋅D = ρ

Differential form Integral form

D
S!∫ ⋅ds =Q Gauss’s Law

Divergence 

theorem

Stoke’s

theorem

E
C!∫ ⋅dl = 0∇× E = 0

Total outward flux of D density over any closed 
surface S in any medium equals to the total charge Q 
enclosed in that surface.

Scalar line integral of E (=voltage) vanishes around 
any closed path = Kirchhoff’s voltage law

Kirchhoff’s voltage law

∇⋅Ddv
V∫ = D

S!∫ ⋅ds⎡
⎣

⎤
⎦ = ρ dv

V∫ =Q⎡
⎣

⎤
⎦

Divergence theorem

Stokes theorem

∇× E ds
S∫ = E

C!∫ ⋅dl⎡
⎣

⎤
⎦ = 0
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Course Intro | Boundary Conditions

ρ = 0
E = 0

⎧
⎨
⎩

Inside

B.C. at a conductor / free space interface

Et = 0

En =
ρs

ε0

⎧
⎨
⎪

⎩⎪

Conductors in a static E

• E-field on the surface everywhere normal 
to the surface


• Conductor surface = equipotential surface

∵ E ⋅ds
S"∫ = ρsΔS

ε0
→ EnΔS =

ρsΔS
ε0

⎛
⎝⎜

⎞
⎠⎟

Boundary condition (B.C.)

E1t = E2t   (V/m)
Tangential component

Normal component

an2 ⋅ D1 − D2( ) = ρs

∵ E ⋅d l
abcda"∫ = E1 ⋅ Δw + E2 ⋅ −Δw( ) = E1tΔw − E2tΔw = 0( )

∵ D ⋅ds
S"∫ = D1 ⋅ an2 + D2 ⋅ an1( )ΔS = ρsΔS( )
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Sum of positive and negative charges in a closed (isolated) system NEVER changes

∇⋅ J = − ∂ρ
∂t

 A /m3( )
For steady-state currents (i.e. ∂ρ/∂t = 0)

∇⋅ J = 0 I j = 0
j
∑ Kirchhoff’s current law 

sum of all the currents leaving out of &  
entering into a junction in a circuit is zero

Where current is change of charge vs. time:

I = dq
dt

 A[ ]

I = J ⋅ds
S∫

Where J (A/m2) is the volume current density:  
a measure of current flowing through a unit area normal to the direction of the current

Course Intro |  Fundamental law of physics
Conservation of electric charge

Equation of Continuity
a net current flows out of (into) the volume = a net charge in the volume decreases (increases)

: Total current I flowing through S = Flux of J vector through S
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Electromagnetics 
<Chap. 1~ Chap. 6> Static electric & magnetic fields 

Course Intro 

(2nd class of week 1)

Jaesang Lee

Dept. of Electrical and Computer Engineering


Seoul National University

(email: jsanglee@snu.ac.kr)

Textbook: Field and Wave Electromagnetics, 2E, Addison-Wesley

mailto:jsanglee@snu.ac.kr


Course Intro |  Contents for 2nd class of week 1

1. Review of last class 

• Vector-valued functions and mathematical theorem (Ch. 2)


• Electrostatics (Ch. 3)


2. (Cont’d) Review of “Introduction to electromagnetism with practice” (기초전자기학 및 연습; 430.202B) 

• Steady electric currents (Ch. 5)


• Magnetostatics (Static Magnetic Field) (Ch. 6)



Course Intro |  Review of the last class (1/2)
Vector-valued functions

Mathematical theorem

∇⋅E ! lim
Δv→0

E ⋅ds
S!∫
Δv

∇× A ! an limΔs→0

A ⋅d l
C!∫
Δs

∇V ! amax dV
dl( )max

dV
dl

⎛
⎝⎜

⎞
⎠⎟ = an

dV
dn

Gradient Divergence Curl

∇× E( ) ⋅ds
S∫ = E

C!∫ ⋅dl ∇⋅Ddv
V∫ = D

S!∫ ⋅ds
Stokes theorem Divergence theorem Helmholtz theorem

F = Fi + Fs = −∇V +∇× A

∇× Fi = ∇× −∇V( ) = 0where

where

: Null Identity I

∇⋅Fs = ∇⋅ ∇ × A( ) = 0 : Null Identity II

∇⋅E > 0 ∇⋅E < 0 ∇⋅E = 0

Δv Axis of rotation

+ –



Course Intro |  Review of the last class (2/2)

Electrostatics 
Static electric fields

Magnetostatics 
Static magnetic fields

Source:

Stationary charges

Source:

Steady-state current

∇⋅D = ρ
∇× E = 0
⎧
⎨
⎩

∇⋅B = 0
∇× H = J
⎧
⎨
⎩

Only functions of space: E,D,B,H(x, y, z)
Independently defined!

E-field intensity E at R due to a positive charge q at R’

Coulomb’s law

E(R) = q
4πε0

R − ′R
R − ′R 3 = aq

q
4πε0

1
R − ′R 2

F = q2E1(R2 ) =
q2q1
4πε0

R2 − R1
R2 − R1

3 = a21ke
q2q1

R2 − R1
2

E = −∇V

W
q

= − E ⋅d l
∞

R

∫ = ∇V ⋅d l
∞

R

∫ = dV
∞

R

∫ =VR

D = ε0E + P = ε0 1+ χe( )E = ε0ε rE = εE

Electric potential

Electric Flux Density

If medium is linear and isotropic

∇⋅D = ρ D
S!∫ ⋅ds =Q

E ⋅d l
C!∫ = dV =

C!∫ 0∇× E = 0

Divergence 

theorem

Stoke’s

theorem

Differential form Integral form ∵∇× E = 0( )



Course Intro |  Electric current

ΔQ = qN uΔt ⋅ Δs( ),   unit: C ⋅ 1
m3 ⋅

m
s
⋅m2 = C⎛

⎝⎜
⎞
⎠⎟

Derivation

• Amount of charges passing through Δs

where N is the number of charges per unit volume, uΔt is a distance vector that charge carriers moved

• Since electric current = time rate of change of charge,

ΔI = ΔQ
Δt

= qNu ⋅ Δs

= J ⋅ Δs   (A or C/s) where J = qNu = ρu  (A/m2 )
Volume current density

∴Total current I flowing through a surface S:

I = J ⋅ds
S∫   (A)

(Essential as a source of magnetic field!)

volume charge density



Course Intro |  Ohm’s law

• Result of drift motion of many groups of charge carriers affected by E-field

Conduction current

J = qiNiui
i
∑ = ρu   (A/m2 )

• where u is average drift velocity,

u = −µeE   (m/s) where μe is electron mobility (m2/V·s)

Ohm’s law

J = ρeu = −ρeµeE =σ E   (A/m2 )
where σ = −ρeµe is conductivity

(a measure of how well the medium conducts electrons)

* For semiconductors,

σ = −ρeµe + ρhµh

Mateirals Electron mobility 
(cm2/V·s)

Silicon 1,360

GaAs 8,000

GaN 1,500

Organic 
semiconductors 10-8 ~ 10-3

Carrier concentration
mobility

Thin organic device (e.g. OLED) is not an 
option, but a must to avoid using >1,000V 
operating voltage!

• Ohmic media
Isotropic material satisfying the relationship, J =σ E



• Sum of positive and negative charges in a closed (isolated) system NEVER changes

∇⋅ J = − ∂ρ
∂t

 A /m3( )

∇⋅ J = 0 I j = 0
j
∑ Kirchhoff’s current law 

sum of all the currents leaving out of &  
entering into a junction in a circuit is zero

Course Intro |  Equation of continuity

Conservation of electric charge

Equation of Continuity

• a net current flows out of the volume = a decreased time rate of net charge in the volume

∵ I = J ⋅ds
S"∫ = ∇⋅ J dv

V∫⎡
⎣

⎤
⎦ = − dQ

dt
= − d

dt
ρ dv

V∫ = ∂ρ
∂t
dv

V∫
⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

• For steady-state currents (i.e. ∂ρ/∂t = 0)

∇⋅ J dv
V∫ = J ⋅ds

S!∫ = 0

Divergence theorem

I1

I2

I3

I4I5

S



Course Intro |  Joule’s law

Power dissipation (loss)

• Power delivered to many charges in dv by E-field

• Under E-field in the conductor, electrons drift and collide with atoms on lattice sites → lose kinetic energy from E-field into 
thermal vibration (i.e. heat)

• Power loss = Power delivered to a charge q by E-field

p = lim
Δt→0

Δw
Δt

= lim
Δt→0

qE ⋅ Δl
Δt

= qE ⋅u where Δw is work “done by E-field” moving a charge q a distance Δl 

c.f.) For electric potential, W
q

 (J/C) = − E ⋅d l
∞

R

∫ = ∇V ⋅d l
∞

R

∫ = dV
∞

R

∫ =VR  (V)

dP = Pi
i
∑ = qi Nidv( )E ⋅ui =

i
∑ E ⋅ qiNiui

i
∑⎛⎝⎜

⎞
⎠⎟
dv = E ⋅ Jdv dP

dv
= E ⋅ J   (W/m3) : Power density

• Total power delivered to many charges = total power dissipated as heat for a given volume V

∴P = E ⋅ J dv
V∫   (W) : Joule’s law

ds

dl

J P = E ⋅ J dv
V∫ = Edl

L∫ J ds
S∫ =VI = I 2R  (W)

Power of i-th group of charges



Course Intro |  Magnetostatics (1/2)
Magnetic field
• Source: moving charge (=electric current)

• When a test charge q moves in a magnetic field, it experiences the magnetic force as

Fm = qu × B  (N)
where u is the velocity vector (m/s) and B is the magnetic flux density (T or Wb/m2)

Lorentz’s force equation

F = Fe + Fm = q E + u × B( )   (N)
: Electromagnetic force on q

Another fundamental postulate of  
electromagnetic model (Cannot be derived by other postulates!)

Static magnetic field
• Source: steady-state currents

• Two fundamental postulates for static magnetic field in any medium,

∇⋅B = 0
∇× H = J
⎧
⎨
⎩

where in the medium, H = B
µ0

− M
Magnetization vector 
of “induced” 
magnetic dipoles

c.f.) D = ε0E + P
Polarization vector 
of “induced”  
electric dipoles

Source: steady-state current



Course Intro |  Magnetostatics (2/2)
Static magnetic field
• Divergence postulate of B

∇⋅B = 0 ∇⋅Bdv
V∫ = B

S!∫ ⋅ds = 0 The law of Conservation  
of Magnetic Flux

N 

‣ There are NO magnetic charges (or monopoles) (i.e. they are always paired!)

‣ Magnetic field is not a flow source, but a solenoidal source

‣ Magnetic flux always closes upon itself

S

N 

S

X X O

• Curl postulate of H

∇× H = J

Divergence theorem

∇⋅ ∇ × H( ) = 0 = ∇⋅ J

Null Identity II

(For steady-state current) ∵∇⋅ J = − ∂ρ
∂t

⎛
⎝⎜

⎞
⎠⎟

∇× H( ) ⋅ds
S∫ = H ⋅d l

C!∫⎡
⎣

⎤
⎦ = J ⋅ds

S∫ = I⎡
⎣

⎤
⎦

Stoke’s theorem

∇× H = J

∴ H ⋅d l
C!∫ = I   (A)

Ampere’s circuital law
Only useful when there is symmetrical geometry.

(i.e. when B is constant over the closed path C.)



Course Intro |  “Vector” Magnetic Potential

Magnetic potential
• Divergence-free postulate of B

∇⋅B = 0 ∇⋅ ∇ × A( ) = 0 ∴B = ∇× A  (T)
Null Identity I

c.f.) E = −∇V   (V/m)

where A is vector magnetic potential

∇× E = 0

Null Identity II
Vector Poisson’s equation

∇× B = µ0J
• Starting from a curl postulate,

∇× ∇× A( ) = µ0J ∇×∇× A = ∇ ∇⋅ A( )−∇2A

∇2A = ∇ ∇⋅ A( )−∇×∇× A

Laplacian of A

or

= ax∇
2Ax + ay∇

2Ay + az∇
2Az

If we choose ∇⋅ A = 0 for simplicity,

∇2A = −µ0J : Vector Poisson’s equation

• Solution to Vector Poisson’s équation

A = µ0
4π

J
R
d ′v

′V∫   (Wb/m) c.f.) V = 1
4πε0

ρ
R′V∫ dv for −∇⋅E = ∇2V = − ρ

ε0

∇⋅ A = −µε ∂V
∂t

Lorentz Gauge

∇⋅ A = 0
Coulomb’s Gauge

E = −∇V



Course Intro |  Magnetic dipole
Magnetic dipole
• Small current-carrying loop (with a radius b, and carrying the current I)

Refer to Ch. 6-5 for derivation

B by magnetic dipole

E by electric dipole

m = az Iπb
2

P(R,θ ,φ)

aR

B = ∇× A = µ0Ib
2

4R3
aR2cosθ + aθ sinθ( )   (Wb/m2 )

A = µ0
4π

I ⋅d ′l
R′C∫ = aφ

µ0Ib
2

4R2
sinθ

A = aφ
µ0Ib

2

4R2
sinθ = aφ

µ0 Iπb2( )sinθ
4πR2

= µ0m × aR
4πR2

Magnetic dipole Moment, m

where m = az Iπb
2 = az IS = azm

• B in terms of m

B = µ0m
4πR3

aR2cosθ + aθ sinθ( )   (T)

c.f.)

whereE = p
4πε0R

3 aR2cosθ + aθ sinθ( )   (V/m) p = qd

Also applicable to 
non-circular shape!

Img src: Wikipedia



Course Intro |  Magnetization
Magnetic dipoles “in the medium”
• Microscopic view: orbiting electrons around nucleus → circulating currents → microscopic magnetic dipoles


• Under no external magnetic field, magnetic dipoles of atom are in random orientations → No net magnetic moments 

• External magnetic field applies to the medium → Induced magnetic moments due to changed electron orbiting motion

M = lim
∇v→0

mk
k=1

n∇v

∑
∇v

  (A/m)

Magnetization vector

where mk is the magnetic dipole moment of k-th atom and 

n is the number of atoms per unit volume

B

Vector magnetic potential caused by magnetization

A = µ0M × aR
4πR2

d ′v
′V∫ ∵A = µ0m × aR

4πR2
⎛
⎝⎜

⎞
⎠⎟

= µ0
4π

′∇ × M
R

d ′v
′V∫ + µ0

4π
M × ′an
R′S!∫ d ′s

= µ0
4π

Jm
R
d ′v

′V∫ + µ0
4π

Jms
R′S!∫ d ′s (refer to Ch 6-6 for derivation)

Jms = M × an

Jm = ∇× M

M: Volume density of magnetic dipole moment

→ Macroscopic effect of induced magnetic dipoles

Img src: mriquestions.com

M out of paper

http://mriquestions.com


Course Intro |  Magnetic field intensity, H

Curl postulate of magnetic field “in the medium”

1
µ0

∇× B = J + Jm
B: magnetic flux density “in the medium”

J: free volume current density

Jm: Magnetized volume current density

∇× 1
µ0

B − M
⎛
⎝⎜

⎞
⎠⎟
= J,   ∵ Jm = ∇× M( )

Magnetic field intensity, H

H ! 1
µ0

B − M   (A/m)

Curl postulate “in any medium”

∇× H = J   (A/m2 )

Permeability
For linear and isotropic medium,

M = χmH where χm is magnetic susceptibility

→  H = 1
µ0

B − M = 1
µ0

B − χmH

→  B = µ0 1+ χm( )H = µ0µrH = µH

Constitutive relation

B = µH
µ = µ0µr
µr = 1+ χm

: Absolute permeability

: relative permeability

(i.e. Material specific)

Jms = M × an

Jm = ∇× M

M out of paper



Course Intro |  Boundary Conditions

Normal component of B

B1n = B2n ∵∇⋅B = 0( ) → Continuous across the interface

Tangential component of B

where an2 is outward unit normal from medium 2 at the interface

where JS is the surface current density flowing at the interface

an2 × H1 − H2( ) = JS   (A/m)

→ Tangential component is discontinuous across the interface where a surface current exists


