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Chap. 9 |  Contents for 1st class of week 10

Review of last class 

• Equivalent circuit model: Lossy transmission lines


Sec 3. General Transmission-Line Equations 

• General equations


• Special cases


• TR-line circuit parameters




• Attenuation in the parallel-plate transmission lines caused by… 
- (1) Lossy dielectric (σ ≠ 0)

- (2) Imperfectly conducting walls (σc ≠ ∞)

Chap. 9 |  Lossy TR lines: Equivalent circuit model (1/3)
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Chap. 9 |  Lossy TR lines: Equivalent circuit model (2/3)

Hx

Ey Ez

• Resistance (R) along the conductors per unit length 
- In actual cases, conductivity of the plate is finite (σc ≠ ∞)

∴ small, yet non-vanishing longitudinal field (Ez) “induced!” (Hx → Jsu → Ez!) 

- R obtained by relationship between power loss at the surface vs. surface current

ay pσ c
 [W/m2 ]= 1

2
Re azEz × axHx

*( ) = 12 Re ay Js
2 Zs( )    !(1)

Zs =
Ez

Hx

=
Ez

Jsu
=ηc    !(2) (= Intrinsic impedance of the plate)

ηc = Rs + jXs = 1+ j( ) π fµc

σ c

   (Ω)   !(3) (Refer to lecture note 3-2)

- Time-average power dissipated on unit surface [W/m2] due to Ez

w

Δz Jsu

Jsu = azHx = azσ cEz   (A/m)
Jsl = −Jsu

“Surface” current (Js) 
(∵f↑ → skin depth↓)

“Surface” impedance (Zs) of the plate

Ez = JsuZs   and   Hx = Jsu    !(4)
- From eqn. (2), we get

pσ c
= 1
2
Re Js

2 Zs( ) = 1
2
Js

2 Rs    (W/m2 )

- By plugging eqn. (4) and (3) into eqn. (1), we get

- Power dissipated per unit length [W/m] through the plate of width w

Pσ c
= wpσ c
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2
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Chap. 9 |  Lossy TR lines: Equivalent circuit model (3/3)

• Distributed parameters of parallel-plate transmission line (width = w, separation = d)

µ d
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σ c
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<Equivalent circuit of a two conductor 
transmission line> 

- How significant is Ez?

Ez

Ey

=
ηcHx

ηHx

= ε
µ
ηc = ε

µ
2 π fµc

σ c

= 2π fε
σ c

e.g.) For copper [σc = 5.8 x 107 (S/m)] and ε = ε0 for dielectric at f = 3 (GHz),

Ez ! 5.3×10
−5 Ey ≪ Ey

∴ Ez = a slight perturbation → TEM approximation holds!


→ “Quasi”-TEM mode in lossy transmission line!



Chap. 9 |  General TR-line equations (1a/4)
•General TR-line equations 

- Generally applied to parallel-plate, two-wire, coaxial TR-lines


- “Disturbed-element” model 
‣ TR-line = infinite series of an infinitesimally short segment (Δz) of the TR-line 
‣ Short segment represented with circuit-elements (R, L, C, G) “distributed” uniformly throughout entire TR-line


(R, L, C, G given per unit length)

y

z

Δz

GΔz

RΔz LΔz

CΔz

Series components 
• R (Ω/m): finite conductivity of the plates (σc)

• L (H/m): H-field in the wire and self-inductance


Shunt components 
• C (F/m): Two conductors + dielectric

• G (S/m): non-zero conductivity of dielectric (σ)Δz

v(z,t) v(z+Δz,t)

i(z,t) i(z+Δz,t)
+

-

- When used?

‣ Very, very long TR-line (>240 km): AC voltage and current at one location different from those at other (∵signal speed ≠ ∞)

‣ At very high frequency: physical dimension of circuit ~ wavelength of electrical signal


‣ For these cases, wires or lines are not perfect conductors and their impedance matters (represented by R, L, C, G)

‣ c.f) Lumped-element model (R, L, C, G NOT depending on length and concentrated at singular points) e.g. regular circuit we use



Chap. 9 |  General TR-line equations (1b/4)

- Disturbed-element model (high frequency)

- Lumped-element model (low frequency)

Can be lumped into single R, G, C, G 

(∴not dependent on z)



Chap. 9 |  General TR-line equations (2/4)
•General TR-line equations

y

z

Δz

GΔz

RΔz LΔz

CΔz

Series components 
• R (Ω/m): finite conductivity of the plates (σc)

• L (H/m): H-field in the wire and self-inductance


Shunt components 
• C (F/m): Two conductors + dielectric

• G (S/m): non-zero conductivity of dielectric (σ)

v(z,t) v(z+Δz,t)

Nodei(z,t) i(z+Δz,t)

Loop

Δz

+

-

- Kirchoff’s voltage law (around loop L)

−v(z,t)+ RΔz ⋅ i(z,t)+ LΔz ∂i(z,t)
∂t

+ v(z + Δz,t) = 0   →    − v(z + Δz,t)− v(z,t)
Δz

! − ∂v(z,t)
∂z

= Ri(z,t)+ L ∂i(z,t)
∂t

<Infinitesimal TR line element> <Equivalent circuit>

Δz→ 0

- Kirchoff’s current law (to node N)

i(z,t)−GΔz ⋅v(z + Δz,t)−CΔz ∂v(z + Δz,t)
∂t

− i(z + Δz,t) = 0   →    − i(z + Δz,t)− i(z,t)
Δz

! − ∂i(z,t)
∂z

= Gv(z,t)+C ∂v(z,t)
∂t



Chap. 9 |  General TR-line equations (3/4)

•General transmission-line equations 
: A pair of 1st-order PDEs in v(z,t) and i(z,t)

 − ∂v(z,t)
∂z

= Ri(z,t)+ L ∂i(z,t)
∂t

 − ∂i(z,t)
∂z

= Gv(z,t)+C ∂v(z,t)
∂t

⎧

⎨
⎪⎪

⎩
⎪
⎪

 v(z,t) = Re V (z)e jωt⎡⎣ ⎤⎦
 i(z,t) = Re I(z)e jωt⎡⎣ ⎤⎦

⎧
⎨
⎪

⎩⎪
,since

 − dV (z)
dz

= R + jωL( ) I(z)

 − dI(z)
dz

= G + jωC( )V (z)

⎧

⎨
⎪⎪

⎩
⎪
⎪

Time-harmonic TR-line equation

• Wave characteristics on an infinite TR line

- To solve for V(z) and I(z), coupled time-harmonic TR equations combined as

 − d
2V (z)
dz2 = R + jωL( ) dI(z)

dz
= − R + jωL( ) G + jωC( )V (z)

 − d
2I(z)
dz2 = G + jωC( ) dV (z)

dz
= − G + jωC( ) R + jωL( ) I(z)

⎧

⎨
⎪⎪

⎩
⎪
⎪

(Double derivative)

 d
2V (z)
dz2 = γ 2V (z)

 d
2I(z)
dz2 = γ 2I(z)

⎧

⎨
⎪⎪

⎩
⎪
⎪

where γ =α + jβ

  = R + jωL( ) G + jωC( )

c.f.) Under lossless condition (R = 0, G = 0)

       (where σc → ∞, σ → 0)

 − dV (z)
dz

= jωLI(z)

 − dI(z)
dz

= jωCV (z)

⎧

⎨
⎪⎪

⎩
⎪
⎪

Consistent with ideal case!  
(in previous class)



γ = R + jωL( ) G + jωC( )

 − dV (z)
dz

= R + jωL( ) I(z)

 − dI(z)
dz

= G + jωC( )V (z)

⎧

⎨
⎪⎪

⎩
⎪
⎪

   !(2)

Chap. 9 |  General TR-line equations (4/4)

• Solution for an infinite TR-line

 d
2V (z)
dz2 = γ 2V (z)

 d
2I(z)
dz2 = γ 2I(z)

⎧

⎨
⎪⎪

⎩
⎪
⎪

where

 V (z) =V0e
−γ z +V1e

γ z

 I(z) = I0e
−γ z + I1e

γ z

⎧
⎨
⎪

⎩⎪
   !(1) (∵No reflection!)

- If we plug (1) into (2),

First order ODEs

Second order ODEs− d
dz

V0e
−γ z( ) = γV0e

−γ z⎡
⎣⎢

⎤
⎦⎥
= R + jωL( ) I0e

−γ z    

→ V0

I0

! Z0 =
R + jωL

γ
= γ
G + jωC

= R + jωL
G + jωC

Characteristic Impedance (Z0) & propagation constant (γ) 

- Z0 is uniform across the TR-line (∵uniform cross-section)


- Both NOT depend on z (particular position TR-line)


- Both ONLY depend on distributed parameters (R, L, G, C) and ω



Chap. 9 |  Special cases for TR-lines (1/3)

• 1) Lossless line (R = 0, G = 0)

- Ideal case → infinite conductor conductivity (σc = ∞), zero dielectric conductivity (σ = 0)

- Propagation constant:

γ = R + jωL( ) G + jωC( ) = jω LC
α = 0

β =ω LC (a “linear” function of ω)

- Phase velocity:

up =
ω
β
= 1

LC
(constant)

- Characteristic impedance:

Z0 =
R + jωL
G + jωC

= L
C

R0 =
L
C

X0 = 0

(constant)

• 2) Low-Loss line (R << ωL, G << ωC)

- Realistic case, easily satisfied at very high frequencies

- Propagation constant:

γ = R + jωL( ) G + jωC( ) = jωL 1+ R
jωL

⎛
⎝⎜

⎞
⎠⎟
jωC 1+ G

jωC
⎛
⎝⎜

⎞
⎠⎟
! jω LC 1+ R

2 jωL
⎛
⎝⎜

⎞
⎠⎟
1+ G
2 jωC

⎛
⎝⎜

⎞
⎠⎟

lim
x→0

1+ x( )n ! 1+ nx( )

! jω LC 1+ 1
2 jω

R
L
+ G
C

⎛
⎝⎜

⎞
⎠⎟ −

1
4ω 2

RG
LC

⎛
⎝⎜

⎞
⎠⎟

(Neglected at high frequency!)

∴α ! 1
2

R C
L
+G L

C
⎛

⎝⎜
⎞

⎠⎟
,    

   β !ω LC

(No attenuation) Non-dispersive! 
(i.e. frequency-independent) 
→ No signal distortion!

(“nearly” a linear function of ω)

Binomial approx.



Chap. 9 |  Special cases for TR-lines (2/3)

• 2) Low-Loss line (R << ωL, G << ωC)

- Phase velocity:

Z0 =
R + jωL
G + jωC

= jωL
jωC

1+ R
jωL

⎛
⎝⎜

⎞
⎠⎟

1/2

1+ G
jωC

⎛
⎝⎜

⎞
⎠⎟

−1/2

!
L
C
1+ R
2 jωL

⎛
⎝⎜

⎞
⎠⎟
1− G
2 jωC

⎛
⎝⎜

⎞
⎠⎟

!
L
C
1+ 1
2 jω

R
L
− G
C

⎛
⎝⎜

⎞
⎠⎟ −

1
4ω 2

RG
LC

⎡
⎣⎢

⎤
⎦⎥

(Neglected at high frequency!)
(minor phase shift between E and H)

Lossy transmission line 
 - At high frequency → “nearly” non-dispersive system (Good!)

 - At low frequency → dispersive system (Bad, signal distortion!)


 (Signal = a band of multiple, continuous frequencies)

- Characteristic impedance:

up =
ω
β
!

1
LC

(Approximately constant)

i.e.) α, β: functions of frequency (ω) 
→ attenuates differently vs. ω 
→ travels differently vs. ω

∴R0 !
L
C

,    

   X0 ! −
L
C

1
2ω

R
L
− G
C

⎛
⎝⎜

⎞
⎠⎟ ! 0



Chap. 9 |  Special cases for TR-lines (3/3)

• 3) “Distortionless” line

- If lossy TR-line satisfies the condition as

- Propagation constant:

R
L
= G
C

  or  G = RC
L

,

γ = R + jωL( ) G + jωC( ) = R + jωL( ) RC
L

+ jωC⎛
⎝⎜

⎞
⎠⎟ = R + jωL( ) R + jωL( )C

L
= C

L
R + jωL( )

α = R C
L

,   β =ω LC (A linear function of ω)

- Characteristic impedance:

→    up =
ω
β
= 1

LC
(Constant)

Z0 =
R + jωL
G + jωC

= R + jωL
RC / L + jωC

= L
C

(Constant)

∴ Distortionless TR line can be designed such that
R
L
= G
C

Q: How would you minimize α (i.e. attenuation) though? 

Series components 
• R (Ω/m): finite conductivity of the plates (σc)

• L (H/m): H-field in the wire and self-inductance


Shunt components 
• C (F/m): Two conductors + dielectric

• G (S/m): non-zero conductivity of dielectric (σ)



Chap. 9 |  TR-line parameters (1/3)

• TR-line parameters

- Electrical properties of TR-line COMPLETELY explained by distributed parameters (R, L, C, G) at given ω 
- For simplicity: σc → ∞ (i.e. very good conductors) → R = 0 so that waves nearly TEM!

γ = R + jωL( ) G + jωC( ) = jω LC 1+ G
jωC

⎛
⎝⎜

⎞
⎠⎟

1/2

- By comparing (2) and (1), we know that

∵
G
C

= σ
ε

   "(2)⎛
⎝⎜

⎞
⎠⎟

(From p.3 of this slide)

γ = jkc = jω µεc εc = ε + σ
jω

where

= jω µ ε + σ
jω

⎛
⎝⎜

⎞
⎠⎟

= jω µε 1+ σ
jωε

   !(3)

Propagation constant in lossy medium

= jω LC 1+ σ
jωε

⎛
⎝⎜

⎞
⎠⎟

1/2

   !(1)

LC = µε    !(4)

• Procedures to obtain R, L, C, G

- If L is known, we know C from equation (4) and vice versa

- Once C is determined, we know G from equation (2) 
- R can be obtained by introducing a small Ez as perturbation & by finding ohmic 

power dissipated in a unit length of the TR line (see right)

Zs = Rs + jXs = 1+ j( ) π fµc

σ c

Intrinsic impedance of a good conductor

Ohmic power dissipated per unit area

pσ = Re 1
2
Js

2 Zs
⎛
⎝⎜

⎞
⎠⎟ =

1
2
Js

2 Rs   (W/m2 )

where Js: surface current (A/m)



Chap. 9 |  TR-line parameters (2/3)

• Two-wire TR line

- Capacitance per unit length of a two-wire TR line

C = πε
cosh−1 D / 2a( )

- Inductance per unit length

(Chap. 4-4; Image method)

L = µε
C

= µ
π
cosh−1 D

2a
⎛
⎝⎜

⎞
⎠⎟ ∵LC = µε( )

- Conductance per unit length

G = Cσ
ε
= πσ
cosh−1 D / 2a( ) ∵

G
C

= σ
ε

⎛
⎝⎜

⎞
⎠⎟

- Resistance per unit length of “single” conductor

Pσ  (W/m) = 2πa ⋅ pσ = 2πa 1
2
Js

2 Rs

               = 1
2
2πaJs

2 Rs
2πa

⎛
⎝⎜

⎞
⎠⎟ =

1
2
I 2 Rs

2πa
⎛
⎝⎜

⎞
⎠⎟

R = 2 Rs
2πa

⎛
⎝⎜

⎞
⎠⎟ =

1
πa

π fµc

σ c

• Coaxial TR line

- Inductance per unit length of a coaxial TR line

L = µ
2π
ln b

a
⎛
⎝⎜

⎞
⎠⎟

- Capacitance per unit length

C = µε
L

= 2πε
ln b / a( )

- Conductance per unit length

(Chap. 6-11; Mutual inductance)

G = Cσ
ε
= 2πσ
ln b / a( )

- Resistance per unit length of inner & outer conductors

Pσ  (W/m) = 2πa ⋅ pσ i + 2πb ⋅ pσo = 2πa 1
2
Jsi

2 Rs + 2πb 1
2
Jso

2 Rs

               = 1
2

2πa Jsi( )2 Rs
2πa

⎛
⎝⎜

⎞
⎠⎟ +

1
2

2πb Jso( )2 Rs
2πb

⎛
⎝⎜

⎞
⎠⎟ =

1
2
I 2 Rs

2π
1
a
+ 1
b

⎛
⎝⎜

⎞
⎠⎟

R = Rs
2π

1
a
+ 1
b

⎛
⎝⎜

⎞
⎠⎟



Chap. 9 |  TR-line parameters (3/3)

• Attenuation constant from power relations

γ = R + jωL( ) G + jωC( )   →   α = Re R + jωL( ) G + jωC( )⎡
⎣

⎤
⎦ (One method!)

- Time-average power propagated along the TR line at any z

P z( ) P z + Δz( )

Δz

P z( ) = 1
2
Re V z( ) I * z( )⎡⎣ ⎤⎦ =

V0
2

2 Z0
2 R0e

−2αz
where

 V z( ) =V0e
−γ z =V0e

− α+ jβ( )z

 I z( ) = V0

Z0

e− α+ jβ( )z

⎧

⎨
⎪

⎩
⎪

- Rate of power decrease along the line of length Δz

− lim
Δz→0

P z + Δz( )− P z( )
Δz

   →    − ∂P z( )
∂z

= 2αP z( ) = αV0
2

Z0
2 R0e

−2αz    !(1)

2αP z( ) = PL z( )    →    ∴α =
PL z( )
2P z( ) =

1
2R0

R +G Z0
2( )

- Rate of energy dissipation PL per Δz

PL z( ) = 1
2

I z( ) 2 R + V z( ) 2G⎡
⎣

⎤
⎦ =

V0
2

2 Z0
2 R +G Z0

2( )e−2αz    !(2)

Z0 =
V0
I0

= R0 + jX0 =
R + jωL

γ

- Since (1) = (2),

‣ For a low-loss line Z0 ≅ R0 =
L
C

⎛

⎝⎜
⎞

⎠⎟

α = 1
2R0

R +G Z0
2( ) = 12

R
R0

+GR0
⎛
⎝⎜

⎞
⎠⎟
= 1
2

R C
L
+G L

C
⎛

⎝⎜
⎞

⎠⎟

‣ For a distortion-less line Z0 = R0 =
L
C

  and  R
L
= G
C

⎛

⎝⎜
⎞

⎠⎟

α = 1
2

R C
L
+G L

C
⎛

⎝⎜
⎞

⎠⎟
= 1
2
R C

L
1+ G

R
⋅ L
C

⎛
⎝⎜

⎞
⎠⎟ = R

C
L

Consistent results as in pp. 9~11
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Chap. 9 |  Contents for 2nd class of week 10

Sec 4. Wave characteristics on Finite Transmission Lines 

• Equivalent circuit model


• Impedance matching: load impedance & TR-line length


• Lossy finite-length TR-lines



• General solution for finite-length transmission lines

Chap. 9 |  Circuit model for “finite” TR-line (1/3)

 d
2V z( )
dz2 = γ 2V z( )

 d
2I z( )
dz2 = γ 2I z( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

 V z( ) =V0
+e−γ z +V0

−eγ z

 I z( ) = I0
+e−γ z + I0

−eγ z
⎧
⎨
⎪

⎩⎪
(Proof; HW)

V0
+

I0
+ = −V0

−

I0
− = Z0where

Forward waves

Reflected waves (When TR-line is finite in length, and not impedance-matched)

<Equivalent circuit for finite transmission line>

(Time-harmonic 
Helmholtz’s equations)

• Equivalent circuit model 
- Sinusoidal voltage Vg with an internal impedance Zg 
- TR-line characterized by γ (propagation constant) and Z0 (characteristic impedance)

- Line of length l terminated in an arbitrary impedance ZL

ZL = Z0
ZL: load impedance

Z0: characteristic impedance of TR line

“Reflection-less” matching condition

• What to do to know V(z) and I(z)? 
- Solving for 4 unknowns (V0+, V0-, I0+, I0-)

- They are partly dependent on each other

Source



Chap. 9 |  Circuit model for “finite” TR-line (2/3)

 V l( ) =VL =V0
+e−γ l +V0

−eγ l

 I z( ) = IL =
V0

+

Z0

e−γ l − V0
−

Z0

eγ l

⎧

⎨
⎪

⎩
⎪

• General solution for finite-length transmission lines 
- 4 unknowns (V0+, V0-, I0+, I0-) should be identified

V0
+

I0
+ = −V0

−

I0
− = Z0where

- Express unknown V0+ and V0- vs. VL and IL

 V0
+ = 1

2
VL + ILZ0( )eγ l = 1

2
IL ZL + Z0( )eγ l

 V0
− = 1

2
VL − ILZ0( )e−γ l = 1

2
IL ZL − Z0( )e−γ l

⎧

⎨
⎪⎪

⎩
⎪
⎪

   !(2)

VL = ILZL

 V z( ) =V0
+e−γ z +V0

−eγ z

 I z( ) = I0
+e−γ z + I0

−eγ z
⎧
⎨
⎪

⎩⎪
   !(1)

- Express “unknowns” vs. V and I at the load end (z = l)

- At z = l, we have

- If we substitute eqn. (2) into (1), we get

 V z( ) = IL
2

ZL + Z0( )eγ l−z( ) + ZL − Z0( )e−γ l−z( )⎡⎣ ⎤⎦

 I z( ) = IL
2Z0

ZL + Z0( )eγ l−z( ) − ZL − Z0( )e−γ l−z( )⎡⎣ ⎤⎦

⎧

⎨
⎪⎪

⎩
⎪
⎪
‣ Voltage and current at z (distance from source) 


are expressed in terms of Z0 and ZL and l

 V ′z( ) = IL
2

ZL + Z0( )eγ ′z + ZL − Z0( )e−γ ′z⎡⎣ ⎤⎦

 I ′z( ) = IL
2Z0

ZL + Z0( )eγ ′z − ZL − Z0( )e−γ ′z⎡⎣ ⎤⎦

⎧

⎨
⎪⎪

⎩
⎪
⎪

(Note: z and z’ dependence on V and I are different!)

- Equivalent expression with z’ = l - z (distance from load):



Chap. 9 |  Circuit model for “finite” TR-line (3/3)
• General solution for finite-length transmission lines 

- Simplified form by using hyperbolic functions

 V ′z( ) = IL
2

ZL + Z0( )eγ ′z + ZL − Z0( )e−γ ′z⎡⎣ ⎤⎦

 I ′z( ) = IL
2Z0

ZL + Z0( )eγ ′z − ZL − Z0( )e−γ ′z⎡⎣ ⎤⎦

⎧

⎨
⎪⎪

⎩
⎪
⎪

Can find voltage and current at 
any z’ using IL, ZL, γ, Z0!

V ′z( ) = IL ZL coshγ ′z + Z0 sinhγ ′z[ ]
I ′z( ) = IL

Z0
ZL sinhγ ′z + Z0 coshγ ′z[ ]

∵eγ ′z + e−γ ′z = 2coshγ ′z  and  eγ ′z − e−γ ′z = 2sinhγ ′z( )

• Input impedance 
- Z(z’)=V(z’)/I(z’): Impedance looking “toward” the load end from z’

Z ′z( ) = V ′z( )
I ′z( ) = Z0

ZL coshγ ′z + Z0 sinhγ ′z
ZL sinhγ ′z + Z0 coshγ ′z

= Z0
ZL + Z0 tanhγ ′z
Z0 + ZL tanhγ ′z

   Ω( )

- At the source end (z’ = l), the source sees an input impedance

Z( ) ′z =l = Z( )z=0⎡⎣ ⎤⎦ ! Zi = Z0
ZL + Z0 tanhγ l
Z0 + ZL tanhγ l

   Ω( )
- Zi = Finite TR-line + load L

- Vi and Ii easily obtainable!



Chap. 9 |  Impedance matching condition 1: Reflection-less
• “Reflection-less” impedance-matching condition 

- load impedance (ZL) = characteristic impedance of the line (Z0)

→ input impedance Zi becomes Z0 as below

Zi = Z0
ZL + Z0 tanhγ l
Z0 + ZL tanhγ l

= Z0    Ω( )

- Under such condition where ZL = Z0, Voltage and current expressions become

 V z( ) = IL
2

ZL + Z0( )eγ l−z( ) + ZL − Z0( )e−γ l−z( )⎡⎣ ⎤⎦ = ILZ0e
γ l( )e−γ z =Vie−γ z

 I z( ) = IL
2Z0

ZL + Z0( )eγ l−z( ) − ZL − Z0( )e−γ l−z( )⎡⎣ ⎤⎦ = ILe
γ l( )e−γ z = Iie−γ z

⎧

⎨
⎪⎪

⎩
⎪
⎪

→ Wave only traveling in +z direction, no reflected wave! (in -z direction) 

∴ When a finite TR-line terminated with its characteristic impedance (ZL = Z0), 

its V(z) and Z(z) are the same as if the line is extended to infinity ZL = Z0    Ω( )

Reflection-less condition



Chap. 9 |  Impedance matching condition 2: Maximum power transfer

• Impedance matching for maximum power transfer 
- Input impedance (Zi) = Complex conjugate of internal impedance of the source (Zg*)

→ Maximum power transfer! (Proof as below)

Pav( )L = Pav( )i =
1
2
Re ViIi

*⎡⎣ ⎤⎦

 Vi =
Zi

Zg + Zi
Vg

 Ii =
Vg

Zg + Zi

⎧

⎨
⎪
⎪

⎩
⎪
⎪

= 1
2
Re

VgVg
*Zi

Zg + Zi( ) Zg + Zi( )*
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1
2

Vg
2
Ri

Rg + Ri( )2 + Xg + Xi( )2

where Zg = Rg + jXg  and  Zi = Ri + jXi

Output power = Input power delivered to input terminal 
(assuming “lossless” TR-line)

 
∂ Pav( )L
∂Ri

= 0   →    Ri = Rg

 
∂ Pav( )L
∂Xi

= 0   →    Xi = −Xg

⎧

⎨
⎪
⎪

⎩
⎪
⎪

To maximize output power:

[i.e. max(Pav)L ]

Zi = Ri + jXi = Rg − jXg ! Zg
*

∴Zi = Zg
*

Power dissipation: Pav( )L = Pav( )G =
Vg

2

8Rg
(50 % of the generated power!)

Maximum power-transfer matching

(see right figure→)



Chap. 9 |  Input impedance vs. load impedance (Open-circuit)

• Open-circuit = infinite load impedance (ZL → ∞) 
- For simplicity, let’s assume “lossless” TR-line represented by

 γ = jβ
 Z0 = R0

⎧
⎨
⎩

Zi = Z0
ZL + Z0 tanhγ l
Z0 + ZL tanhγ l

= R0
ZL + jR0 tanβl
R0 + jZL tanβl

   Ω( )Then, input impedance given by

∵ tanh γ l( ) = tanh jβl( ) = j tan βl( )( )
- Input impedance with ZL → ∞

lim
ZL→∞

Zi = lim
ZL→∞

R0
ZL + jR0 tanβl
R0 + jZL tanβl

= R0

j tanβl
= − jR0 cotβl    Ω( ) → Purely imaginary [reactive] (either capacitive or inductive)

βl

upper: inductive
Zi = jXi = − jR0 cotβl

upper: capacitive

‣ Depending on choice of length l, input impedance can be modified

‣ For O.C. TR-line with very short length (l) comparable to wavelength,

βl = 2π l
λ
≪1   →    lim

ZL→∞
Zi =

R0

j tanβl
≅ R0

jβl
= − j

L C
ω LCl

= − j 1
ωCl

∵β =ω LC ,   R0 =
L
C

Purely 
Capacitive!

π 2π
π/2 3π/2

0
5π/2



Chap. 9 |  Input impedance vs. load impedance (short-circuit)
• Short circuit = zero load impedance (ZL = 0) 

- Input impedance with ZL = 0

lim
ZL→0

Zi = lim
ZL→0

R0
ZL + jR0 tanβl
R0 + jZL tanβl

= jR0 tanβl    Ω( )

βl

Zi = jXi = jR0 tanβl
upper: inductive

upper: capacitive

‣ Depending on choice of length l, input impedance can be modified

‣ For S.C. TR-line with very short length (l) comparable to wavelength,

βl = 2π l
λ
≪1   →    lim

ZL→∞
Zi = jR0 tanβl ≅ jR0βl = j L

C
ω LCl = jωLl

∵β =ω LC ,   R0 =
L
C

Purely 
inductive!

π 2π

π/2 3π/2
0



Chap. 9 |  Input impedance vs. TR-line length
• “Quarter-wave” TR-line 

- Length of the line, l = odd multiple of λ/4

l = 2n −1( )λ
4

,   n = 1, 2, 3, !( )

∴ lim
tan βl( )→±∞

Zi = lim
tan βl( )→±∞

R0
ZL + jR0 tanβl
R0 + jZL tanβl

= R0
2

ZL

   Ω( )

βl = 2π
λ

⋅ 2n −1( )λ
4
= 2n −1( )π

2
   →    tanβl = tan 2n −1( )π

2
⎡
⎣⎢

⎤
⎦⎥
→ ±∞Then,

Quarter-wave lines 
= Impedance inverter (1/ZL)

- If load impedance ZL → ∞ (Open), Zi → 0 (Short)

- If load impedance ZL → 0 (short), Zi → ∞ (Open)

• “Half-wave” TR-line 
- Length of the line, l = integer multiple of λ/2

l = n
2
λ,   n = 1, 2, 3, !( ) βl = 2π

λ
⋅ nλ

2
⎛
⎝⎜

⎞
⎠⎟ = nπ    →    tanβl = 0Then,

∴ lim
tan βl( )→0

Zi = lim
tan βl( )→0

R0
ZL + jR0 tanβl
R0 + jZL tanβl

= ZL    Ω( ) half-wave lines



Chap. 9 |  TR-line characteristics vs. input impedance
• Determination of TR-line characteristics 

- TR-line represented by Z0 (characteristic impedance) and γ (propagation constant)

- Can be obtained by measuring input impedance Zi under open & short-circuit condition

ZL →∞

ZL = 0

Zio = Z0
ZL + Z0 tanhγ l
Z0 + ZL tanhγ l

= Z0 cothγ l    Ω( )

Zis = Z0
ZL + Z0 tanhγ l
Z0 + ZL tanhγ l

= Z0 tanhγ l    Ω( )

Open-circuit: 

Short-circuit: 

Zio ⋅Zis = Z0
2 tanhγ l ⋅cothγ l = Z0

2   →   ∴Z0 = Zio ⋅Zis

Zis
Zio

= tanh2 γ l   →   ∴γ = 1
l
tanh−1 Zis

Zio

• Input impedance for a “lossy” and “short-circuited” TR-line 
- Lossy → γ = α + jβ

- Short-circuit → ZL = 0

These apply to lossy TR-line as well!

Zis = Z0
ZL + Z0 tanhγ l
Z0 + ZL tanhγ l

= Z0 tanhγ l

= Z0
sinh α + jβ( )l
cosh α + jβ( )l

= Z0
sinh αl( )cos βl( )+ j cosh αl( )sin βl( )
cosh αl( )cos βl( )+ j sinh αl( )sin βl( )

 cosh a + b( ) = cosh a( )cosh b( )+ sinh a( )sinh b( )
 sinh a + b( ) = sinh a( )cosh b( )+ cosh a( )sinh b( )

⎧
⎨
⎪

⎩⎪

 cosh ja( ) = cosa
 sinh ja( ) = j sina

⎧
⎨
⎪

⎩⎪

Simple hyperbolic math!



Chap. 9 |  Lossy TR-line

• “lossy” and “short-circuited” TR-line (realistic case) 
- For a half-wave line

Zis = Z0
sinh αl( )cos βl( )+ j cosh αl( )sin βl( )
cosh αl( )cos βl( )+ j sinh αl( )sin βl( )

l = n
2
λ,   n = 1, 2, 3, !( ) βl = 2π

λ
⋅ nλ
2

⎛
⎝⎜

⎞
⎠⎟ = nπ    →    sinβl = 0   →    Zis = Z0 tanh αl( ) ≅ Z0αl

- For a quarter-wave line

l = 2n −1( )λ
4

,   n = 1, 2, 3, !( ) βl = 2π
λ

⋅ 2n −1( )λ
4
= 2n −1( )π

2
   →    cosβl = 0   →    Zis =

Z0
tanh αl( ) ≅

Z0
αl

• “lossless” and “short-circuited” TR-line (Ideal case) 
- For a half-wave line

- Both assumed low loss condition, αl << 1.

Small, but non-zero

Large, but finite

lim
tan βl( )→±∞

Zi = lim
tan βl( )→±∞

R0
ZL + jR0 tanβl
R0 + jZL tanβl

= R0
2

ZL

   →    ∞

lim
tan βl( )→0

Zi = lim
tan βl( )→0

R0
ZL + jR0 tanβl
R0 + jZL tanβl

= ZL    →    0

- For a quarter-wave line

Zero

Infinity

Half-wave line Quarter-wave line

Impedance 
at resonance

Minimum

(0 for lossless)

Maximum

(∞ for lossless)

Frequency 
dependent Band-pass Band-stop

Similarity Series-RLC 
resonant circuit

Parallel-RLC 
resonant circuit


