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Chap. 9 |  Contents for 1st class of week 11

Sec 4. Wave characteristics on Finite Transmission Lines (Cont’d) 

• Standing wave ratio


• Resistive termination & arbitrary termination of TR-line


• Wave behavior observed from source



Chap. 9 |  Voltage reflection coefficient

= IL
2

ZL + Z0( )eγ ′z 1+ ZL − Z0
ZL + Z0

e−2γ ′z⎡

⎣
⎢

⎤

⎦
⎥

• Voltage reflection coefficient 
- Under non-matching condition (ZL ≠ Z0)

V ′z( ) = IL
2

ZL + Z0( )eγ ′z + ZL − Z0( )e−γ ′z⎡⎣ ⎤⎦
Incident Reflected

Where Γ ! ZL − Z0
ZL + Z0

∴V ′z( ) = IL
2

ZL + Z0( )eγ ′z 1+ Γe−2γ ′z⎡⎣ ⎤⎦

: Voltage reflection coefficient

ZLVg

Zg
Ii

IL

VL

0l

Source

Load

TR line (γ, Z0)

V ′z( ), I ′z( )

′z = l − z

Here, Γ ! ZL − Z0
ZL + Z0

= Γ e jθΓ

- Ratio of complex amplitude of reflected / incident wave

- |Γ| ≤ 1 (magnitude)



Chap. 9 |  Standing wave ratio (SWR) [1/2]

• Standing wave ratio (SWR) for lossless TR-line 
- Lossless TR-line → γ = jβ and Z0 = R0

→    V ′z( ) = IL
2

ZL + R0( )e jβ ′z 1+ Γe− j2β ′z⎡⎣ ⎤⎦

V ′z( ) = IL
2

ZL + Z0( )eγ ′z 1+ Γe−2γ ′z⎡⎣ ⎤⎦

= IL
2

ZL + R0( )e jβ ′z 1+ Γ e j θΓ−2β ′z( )⎡⎣ ⎤⎦

∵γ = jβ  and  Z0 = R0( )

∵Γ = Γ e− jθΓ( )
- Magnitude of voltage V(z’) oscillating between its maxima and minima

V ′z( ) = IL
2

⋅ ZL + R0 ⋅ e
jβ ′z ⋅ 1+ Γ e j θΓ−2β ′z( )

Const. Const. ? Oscillating due to z’

Γ : Radius of a circle

: distance from origin to the circle1+ Γ e j θΓ−2β ′z( )

 max V ′z( ) =Vmax =
IL
2

⋅ ZL + R0 ⋅ 1+ Γ( )

 min V ′z( ) =Vmin =
IL
2

⋅ ZL + R0 ⋅ 1− Γ( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

SWR or  S ! Vmax
Vmin

=
1+ Γ
1− Γ

Γ = S −1
S +1

1

Γ
z’ ↑

z’↓

max

min

′z ,1+ Γ e j θΓ−2β ′z( )( )

′z
O

1+ Γ e j θΓ−2β ′z( )



Chap. 9 |  Standing wave ratio (SWR) [2/2]

• Standing wave ratio (S) vs. voltage reflection coefficient (Γ) 
- S can be expressed in terms of Γ

- What is the relationship between two like?

S = Vmax

Vmin

=
1+ Γ
1− Γ

   →    S = −1+ 2
1− Γ

–1

1
Γ

S

1

Only allowable range

∵0 ≤ Γ ≤1

- S monotonically increases from “1” to “infinity” with |Γ|!

‣ |Γ|↑ → S↑ (high reflection = high SWR)

‣ |Γ|↑: High reflection of the wave

✓ Low TR-line efficiency

✓ High power loss → Undesirable!

Γ = ZL − Z0
ZL + Z0

  

  ZL = Z0 :   Γ = 0   →    S = 1

  ZL = ∞ :   Γ = 1   →    S = ∞

  ZL = 0 :   Γ = −1   →    S = ∞

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

(matched)

(Open Circuit)

(Short Circuit)

Minimum!

Undesirable

Undesirable

Vmax

Vmin

z’

V(z’)

High SWR signal
Low SWR signal

∴ S used as a measure how well impedance matched (i.e. ZL = Z0)



Chap. 9 |  Periodicity of V and I [1/2]

• Periodicity of Vmax, Vmin, Imax, Imin 
- V and I are periodic functions with respect to z’

 V ′z( ) = IL
2

ZL + R0( )e jβ ′z 1+ Γ e j θΓ−2β ′z( )⎡⎣ ⎤⎦

 I ′z( ) = IL
2R0

ZL + R0( )e jβ ′z 1− Γ e j θΓ−2β ′z( )⎡⎣ ⎤⎦

⎧

⎨
⎪⎪

⎩
⎪
⎪

(Cond. A) θΓ − 2β ′zM = −2nπ ,   n = 0, 1, 2,!( )

(Cond. B) θΓ − 2β ′zm = − 2n +1( )π ,   n = 0, 1, 2,!( )

Even multiple

Odd multiple

→   Vmax,  Imin

→   Vmin,  Imax

Γ = ZL − R0
ZL + R0

= RL − R0
RL + R0

- Resistive termination (ZL = RL): On TR-line, where we have max and min?

- At z’ = 0 (i.e. at the load end)

θΓ − 2β ′z = 0 → Satisfying (Cond. A) when n = 0

→ First Vmax, Imin

θΓ − 2β ′z = −2nπ ,    n = 1, 2,!( )

→ ′zM = nπ
β

= λπ
2π

n = n λ
2

→ Higher order Vmax, Imin

- At z’ = 0 (i.e. at the load end)

θΓ − 2β ′z = −π → Satisfying (Cond. B) when n = 0

→ First Vmin, Imax

θΓ − 2β ′z = − 2n +1( )π ,    n = 1, 2,!( )

→ ′z = nπ
β

= λπ
2π

n = n λ
2

→ Higher order Vmin, Imax

Case 1)  RL > R0   →  Γ > 0: Positive real & θΓ = 0 Case 2)  RL < R0   →  Γ < 0: Negative real & θΓ = -π

- At z’ ≠ 0 - At z’ ≠ 0



Chap. 9 |  Periodicity of V and I [2/2]

z’

V(z’)
I(z’)

Vmax,0
Vmax,1 Vmax,2 Vmax,3

Imin,0

Imin,1 Imin,2

λ/2 λ 3λ/2 z’

V(z’)
I(z’)

Vmin,0

Imax,0

Imax,1 Imax,2 Imax,3

λ/2 λ 3λ/2

Vmin,1 Vmin,2Imin,3 Vmin,3

- At z’ = 0 (i.e. at the load end)

θΓ − 2β ′z = 0 → Satisfying (Cond. A) when n = 0

→ First Vmax, Imin

θΓ − 2β ′z = −2nπ ,    n = 1, 2,!( )

→ ′zM = nπ
β

= λπ
2π

n = n λ
2

→ Higher order Vmax, Imin

- At z’ = 0 (i.e. at the load end)

θΓ − 2β ′z = −π → Satisfying (Cond. B) when n = 0

→ First Vmin, Imax

θΓ − 2β ′z = − 2n +1( )π ,    n = 1, 2,!( )

→ ′z = nπ
β

= λπ
2π

n = n λ
2

→ Higher order Vmin, Imax

Case 1)  RL > R0   →  Γ > 0: Positive real & θΓ = 0 Case 2)  RL < R0   →  Γ < 0: Negative real & θΓ = -π

- At z’ ≠ 0 - At z’ ≠ 0



Chap. 9 |  Standing wave ratio (SWR) Example
Engineering example We can easily identify an arbitrary load (ZL = RL) at the end of loss TR-line (with characteristic impedance of R0) by 

measuring S. How to express RL in terms of S and R0?

Case 1)  If RL > R0   →  Γ > 0: Positive real & θΓ = 0

- A first voltage maxima: z’ = 0

V ′z( ) = IL
2

ZL + Z0( )eγ ′z + ZL − Z0( )e−γ ′z⎡⎣ ⎤⎦    →    V ′z( ) = IL
2

RL + R0( )e jβ ′z + RL − R0( )e− jβ ′z⎡⎣ ⎤⎦ = IL RL cosβ ′z + jR0 sinβ ′z( )

- A first voltage minima: z’ = λ/4

S = Vmax

Vmin

= ILRL

ILR0

= RL

R0

   →    ∴RL = SR0

Case 2)  If RL < R0   →  Γ < 0: Negative real & θΓ = -π

- A first voltage minima: z’ = 0 - A first voltage maxima: z’ = λ/4

θΓ − 2β ′z = 0 = −2nπ n=0

β ′z = 0   →    sinβ ′z = 0   →    V 0( ) =Vmax = ILRL

β ′z = 2π
λ

⋅ λ
4
= π

2
   →    cosβ ′z = 0   →    V λ

4
⎛
⎝⎜

⎞
⎠⎟ =Vmin = ILR0

θΓ − 2β ′z = −π = − 2n +1( )π n=0

β ′z = 0   →    sinβ ′z = 0   →    V 0( ) =Vmin = ILRL

β ′z = 2π
λ

⋅ λ
4
= π

2
   →    cosβ ′z = 0   →    V λ

4
⎛
⎝⎜

⎞
⎠⎟ =Vmax = ILR0

S = Vmax

Vmin

= ILR0

ILRL

= R0

RL

   →    ∴RL =
R0

S



Chap. 9 |  Arbitrary termination of TR-line

• “Resistive” termination (ZL = RL, Previous slides) 
- Voltage minima or maxima at the load end


• “Arbitrary” termination (ZL = RL + jXL) 
- Voltage minima or maxima shifted by d from the load end

- If, additional line extended by lm with resistive termination (Rm)

→ voltage shape does not change! → Circuit I = Circuit II (Equivalent)

ZL

V ′z( )
Arbitrary termination

z’ = 0d

Rm < R0

lm

λ
2

Why?

• How do we identify ZL experimentally? 
- Given condition: we measured S (SWR) and already know R0

- Step 1) Express ZL in terms of R0 and voltage reflection coefficient Γ

ZL =
V ′z( )
I ′z( )

′z =0

= R0
1+ Γ e jθΓ

1− Γ e jθΓ

- Step 2) By applying (Cond. B), we can find θΓ for first voltage minima

θΓ − 2βd = − 2n +1( )π n=0

Circuit I

Circuit II

→    θΓ = 2βd −π

- Step 3) By measuring S, we can get |Γ| as Γ = S −1
S +1



Chap. 9 |  Arbitrary termination of TR-line
Engineering example We measured S = 3 for lossless TR-line of R0 = 50 (Ω). d = 5 (cm) of the first voltage minima for arbitrary terminated TR-

line. Distance between successive voltage minima = 20 (cm). What is an arbitrary load impedance ZL? What is Rm and lm 
for equivalent Circuit II?

- Step 1) Express ZL in terms of R0 and voltage reflection coefficient Γ

ZL =
V ′z( )
I ′z( )

′z =0

= R0
1+ Γ e jθΓ

1− Γ e jθΓ

- Step 2) By applying (Cond. B), we can find θΓ for the first voltage minima

θΓ − 2βd = − 2n +1( )π n=0
   →    θΓ = 2βd −π Here, β = 2π

λ
where

λ
2
= 20 (cm)

Distance between successive voltage minima

→θΓ = 2 × 5π × 0.05 −π = −0.5π  (rad)= 2π
0.4

= 5π  (rad/m)
- Step 3) By measuring S, we can get |Γ| as

Γ = S −1
S +1

= 1
2 ∴ZL = R0

1+ Γ e jθΓ

1− Γ e jθΓ
= 501− j0.5

1+ j0.5
= 30 − j40 (Ω)

- Recall Case 2) in slide p.8,

Rm = R0

S
= 50

3
= 16.7 Ω( ) lm + d =

λ
2

   →    lm = λ
2
− d = 0.2 − 0.05 = 0.15 (m)

- From the relation as below (see voltage graph in previous slide)



Chap. 9 |  Wave behavior observed from source

• Discussion so far 
- Effect of load (ZL) on (V, I) characteristics


• Effect of source (Vg and Zg) on (V, I) characteristics
ZLVg

Zg
Ii

IL

VL = ILZLSource Load

V ′z( ), I ′z( )

′z = l − z

Input 
Port

Output 
Port

z

Vi =Vg − IiZg    !(1)
Purpose 
By using source characteristics (Vg, Zg) & 
line characteristics (γ, Z0, l) &  
load impedance ZL, 
We want to determine V, I at any z of the line

 V ′z( ) = IL
2

ZL + Z0( )eγ ′z 1+ Γe−2γ ′z( )
 I ′z( ) = IL

2Z0

ZL + Z0( )eγ ′z 1− Γe−2γ ′z( )

⎡

⎣

⎢
⎢
⎢
⎢

   !(2)

- At z’ = l (source end)

 V l( ) !Vi =
IL
2

ZL + Z0( )eγ l 1+ Γe−2γ l( )
 I l( ) ! Ii =

IL
2Z0

ZL + Z0( )eγ l 1− Γe−2γ l( )

⎡

⎣

⎢
⎢
⎢
⎢

   !(3)

- If we plug eqn. (3) into eqn. (1), we get
IL
2

ZL + Z0( )eγ l = Z0Vg
Z0 + Zg

1
1− ΓgΓe

−2γ l⎡⎣ ⎤⎦
   !(4)

where Γg =
Zg − Z0
Zg + Z0

Reflection coefficient 
at the source end

- If we plug eqn. (4) into V(z’) of eqn. (2), we get

V ′z( ) = Z0Vg
Z0 + Zg

e−γ z 1+ Γe−2γ ′z

1− ΓgΓe
−2γ l

⎛

⎝⎜
⎞

⎠⎟

Γ = ZL − Z0
ZL + Z0

c.f.)

Reflection coefficient 
at the load end



Chap. 9 |  Wave behavior observed from source

Vg

Zg

Z0VM
Reflection! (Γ)

z = l
′z = 0

z = 0
′z = l

V1
+ =VMe

−γ z

z, ′z

V1
− = ΓVMe

−γ l( )e−γ ′z

V2
+ = Γg ΓVMe

−2γ l( )e−γ z
Reflection! (Γ)

Reflection! (Γg)

Trajectory of each voltage wave 
- V1+ : Initial wave traveling by z in +z direction

- V1– : V1+ reached at z = l (or z’ = 0), reflected (Γ), 

and then traveling by z’ in –z direction

- V2+ : V1– reached at z’ = l (or z = 0), reflected (Γg), 

and then traveling by z in +z direction

- …

∴ Resulting standing wave V(z’) → 

   = Sum of all waves traveling in both directions!

* In the real case (γ = α + jβ)


‣ Amplitude of reflected waves diminishes 
each time it transverses the line


Some special cases 

* Matched condition (ZL = Z0)


‣ Γ = 0 → Only V1+ exists, no reflected wave


* ZL ≠ Z0, but Zg = Z0


‣ Γg = 0 → V1+ and V1– exists, no higher-order 
reflected waves

Taylor expansion

where

V ′z( ) = Z0Vg
Z0 + Zg

e−γ z 1+ Γe−2γ ′z( ) 1− ΓgΓe
−2γ l( )−1

=
Z0Vg
Z0 + Zg

e−γ z 1+ Γe−2γ ′z( ) 1+ ΓgΓe
−2γ l − ΓgΓe

−2γ l( )2 +!⎡
⎣⎢

⎤
⎦⎥

=
Z0Vg
Z0 + Zg

e−γ z + Γe−γ l( )e−γ ′z + Γg Γe−2γ l( )e−γ z +!⎡⎣ ⎤⎦

VM =
Z0Vg
Z0 + Zg

Voltage initially sent down 
to TR-line at the input port

V ′z( ) =V1+ +V1− +V2+ +V2− +!=

 V1
+ =

Z0Vg
Z0 + Zg

e−γ z =VMe
−γ z ,

 V1
− = ΓVMe

−γ l( )e−γ ′z ,

 V2
+ = Γg ΓVMe

−2γ l( )e−γ z ,
       !

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪



Question Distortionless line에서 리액턴스가 0이라는 말이 i(z)와 v(z)의 phasor차이가 없이 동등하게 진행됨은 이해를 했습니다.
그런데 I(z)와 v(z)의 phasor차이가 없다는 사실이 어떤 물리적인 의미를 갖고 전송선에서 이것이 어떤 profit을 가지는지 궁금합니다.

γ = R + jωL( ) G + jωC( ) = RG −ω 2LC( )+ jω LG + RC( )

  = κ ω( )e jΘ ω( )⎡⎣ ⎤⎦
1
2 = κ ω( )e j

Θ ω( )
2

- Propagation constant (γ)

- Characteristic impedance (Z0)

Z0 =
R + jωL
G + jωC

=ℜ ω( )+ jΛ ω( )

= κ ω( ) cosΘ ω( )
2

+ j sinΘ ω( )
2

⎛
⎝⎜

⎞
⎠⎟
=α ω( )+ jβ ω( )

Lossy TR-line

up =
ω

β ω( ) =
ω

κ ω( ) sinΘ ω( )
2

“Dispersive system” 
signal at different ω travel at different up


→ Signal distortion

Phase shift between V and I

<Signal distortion>

- Phase velocity

Img src: Your Electrical Home



From characteristic impedance (Z0) 

Z0 =
R + jωL
G + jωC

=
R + jωL( ) G − jωC( )
G + jωC( ) G − jωC( ) =

RG +ω 2LC + jω LG − RC( )
G2 +ω 2C 2

To have reactance to be zero,

LG − RC = 0   →    ∴ R
L
= G
C

∴ Zero reactance condition  
(no phase shift between V and I) 

Distortionless condition  
(up = constant)

Question Distortionless line에서 리액턴스가 0이라는 말이 i(z)와 v(z)의 phasor차이가 없이 동등하게 진행됨은 이해를 했습니다.
그런데 I(z)와 v(z)의 phasor차이가 없다는 사실이 어떤 물리적인 의미를 갖고 전송선에서 이것이 어떤 profit을 가지는지 궁금합니다.

Distortionless TR-line (R/L = G/C)

γ = R + jωL( ) G + jωC( ) = C
L

R + jωL( ) up =
ω
β
= 1

LC

Z0 =
R + jωL
G + jωC

= L
C

Non-dispersive

No phase shift
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Chap. 9 |  Contents for 2nd class of week 11

Sec 5. Transients on Transmission Lines 

• Signal reflection at source & load ends


• Non-oscillating signals (step-function, pulse)


• Transient response for TR-line with resistive vs. reactive termination



Chap. 9 |  Wave behavior observed from source (1/2)

• Discussion so far 
- Effect of load (ZL) on (V, I) characteristics


• Effect of source (Vg and Zg) on (V, I) characteristics

Purpose 
By using source characteristics (Vg, Zg) & 
line characteristics (γ, Z0, l) &  
load impedance ZL, 
We want to determine (V, I) at any z of the line

 V ′z( ) = IL
2

ZL + Z0( )eγ ′z 1+ Γe−2γ ′z( )
 I ′z( ) = IL

2Z0

ZL + Z0( )eγ ′z 1− Γe−2γ ′z( )

⎡

⎣

⎢
⎢
⎢
⎢

   !(2)

- At z’ = l (source end)

 V l( ) !Vi =
IL
2

ZL + Z0( )eγ l 1+ Γe−2γ l( )
 I l( ) ! Ii =

IL
2Z0

ZL + Z0( )eγ l 1− Γe−2γ l( )

⎡

⎣

⎢
⎢
⎢
⎢

   !(3)

- If we plug eqn. (3) into eqn. (1), we get
IL
2

ZL + Z0( )eγ l = Z0Vg
Z0 + Zg

1
1− ΓgΓe

−2γ l⎡⎣ ⎤⎦
   !(4)

where Γg =
Zg − Z0
Zg + Z0

Reflection coefficient 
at the source end

- If we plug eqn. (4) into V(z’) of eqn. (2), we get

V ′z( ) = Z0Vg
Z0 + Zg

e−γ z 1+ Γe−2γ ′z

1− ΓgΓe
−2γ l

⎛

⎝⎜
⎞

⎠⎟

ZLVg

Zg
Ii

IL

VL = ILZL

V ′z( ), I ′z( )

′z = l − zz

Vi =Vg − IiZg    !(1)

Γ = ZL − Z0
ZL + Z0

c.f.)

Reflection coefficient 
at the load end

Source Load

Input Port Output Port



Chap. 9 |  Wave behavior observed from source (2/2)

Vg

Zg

Z0VM

z = l
′z = 0

z = 0
′z = l

V1
+ =VMe

−γ z

z, ′z

V1
− = ΓVMe

−γ l( )e−γ ′z

V2
+ = Γg ΓVMe

−2γ l( )e−γ z

Trajectory of each voltage wave 
- V1+ : Initial wave traveling by z in +z direction

- V1– : V1+ reached at z = l (or z’ = 0), reflected (Γ), 

and then traveling by z’ in –z direction

- V2+ : V1– reached at z’ = l (or z = 0), reflected (Γg), 

and then traveling by z in +z direction

- …

∴ Resulting standing wave V(z’) → 

   = Sum of all waves traveling in both directions!

* Amplitude of reflected waves decreases each 
time it transverses the line 

∵ |Γ| < 1, |Γg| < 1, and γ = α + jβ


Special cases 

* ZL = Z0 (Matched)


‣ Γ = 0 → Only V1+ exists, no reflected wave


* ZL ≠ Z0, but Zg = Z0


‣ Γg = 0 → V1+ and V1– exists, no higher-order 
reflected waves

Taylor expansion

where

V ′z( ) = Z0Vg
Z0 + Zg

e−γ z 1+ Γe−2γ ′z( ) 1− ΓgΓe
−2γ l( )−1

=
Z0Vg
Z0 + Zg

e−γ z 1+ Γe−2γ ′z( ) 1+ ΓgΓe
−2γ l − ΓgΓe

−2γ l( )2 +!⎡
⎣⎢

⎤
⎦⎥

=
Z0Vg
Z0 + Zg

e−γ z + Γe−γ l( )e−γ ′z + Γg Γe−2γ l( )e−γ z +!⎡⎣ ⎤⎦

VM = Z0
Z0 + Zg

Vg

Voltage initially sent down 
to TR-line at the input port

V ′z( ) =V1+ +V1− +V2+ +V2− +!=

 V1
+ = Z0

Z0 + Zg

Vge
−γ z =VMe

−γ z ,

 V1
− = ΓVMe

−γ l( )e−γ ′z ,

 V2
+ = Γg ΓVMe

−2γ l( )e−γ z ,
       !

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪



Chap. 9 |  Transient response: step-function (1/3)

• Discussion so far 
- Steady-state, single-frequency time-harmonic (i.e. oscillating) input & output


• Transient response for non-harmonic signals 
- Example: Pulse, step-function, ramp, and so on

- Reactance (X), λ, k, β (due to oscillation) lose their meanings


• Simplest example: step-function signal 
- DC voltage V0 applied at t = 0

- Rg: internal (series) resistance


- <Case 1> RL = R0


‣ Matched condition → No reflection 
‣ Impedance looking into TR-line: R0 (independent of z)

∴ Voltage signal traveling in +z-direction (V1+) with velocity of u

u = 1
LC

= 1
µε

Switch closed at t = 0 [Step-function]

Voltage vs. time at z = z1

V1
+ = R0

R0 + Rg
V0 and

Delayed step function

- Takes t = z1
u

for V1+ traveling from z = 0 to z1 

- When V1+ reaches z = l (load end)

‣No reflected wave 
‣ Entire line charged at V1+


(i.e. steady-state established)

∵ΓL =
RL − R0
RL + R0

⎛
⎝⎜

⎞
⎠⎟



Chap. 9 |  Transient response: step-function (2/3)

• Simplest example: step-function signal 
- <Case 2> Rg ≠ R0 and RL ≠ R0

At t = 0: V1
+ = R0

R0 + Rg
V0 travels in +z direction with u = 1

LC
= 1

µε

At t = T: V1
+ reaches at z = l and reflected V1

− = ΓLV1
+ travels in -z direction with u

T = l
u

⎛
⎝⎜

⎞
⎠⎟

At t = 2T: V1
− reaches at z = 0 and reflected V2

+ = ΓgV1
− = ΓgΓLV1

+ travels in +z direction with u

ΓL =
RL − R0
RL + R0

⎛
⎝⎜

⎞
⎠⎟
.

0 ≤ t ≤ T T ≤ t ≤ 2T 2T ≤ t ≤ 3T

V2
+

ΓL <1  and  Γg <1

Γg =
Rg − R0
Rg + R0

⎛

⎝⎜
⎞

⎠⎟
.

Then,

Then,



Chap. 9 |  Transient response: step-function (3/3)

• Simplest example: step-function signal 
- <Case 2> Rg ≠ R0 and RL ≠ R0

At t = ∞: At a load end (z = l), we have the steady-state voltage as

VL =V1
+ +V1

− +V2
+ +V2

− +V3
+ +V3

− +!

    =V1
+ 1+ ΓL + ΓgΓL + ΓgΓL

2 + Γg
2ΓL

2 + Γg
2ΓL

3 +!( )
    =V1

+ 1+ ΓL( ) 1+ ΓgΓL + Γg
2ΓL

2 +!( )
    =V1

+ 1+ ΓL

1− ΓgΓL

⎛

⎝⎜
⎞

⎠⎟
∵ ΓLΓg <1( )

We have the steady-state current as

IL = I1
+ + I1

− + I2
+ + I2

− + I3
+ + I3

− +!

    = V1
+

R0
1− ΓL + ΓgΓL − ΓgΓL

2 + Γg
2ΓL

2 − Γg
2ΓL

3 +!( )

    = V1
+

R0
1− ΓL( ) 1+ ΓgΓL + Γg

2ΓL
2 +!( )

    = V1
+

R0
1− ΓL

1− ΓgΓL

⎛

⎝⎜
⎞

⎠⎟

Recall the relation

V0
+

I0
+ = −V0

−

I0
− = Z0

Phase of current changed by π upon reflection

 V ′z( ) = IL
2

ZL + R0( )e jβ ′z 1+ Γ e j θΓ−2β ′z( )⎡⎣ ⎤⎦

 I ′z( ) = IL
2R0

ZL + R0( )e jβ ′z 1− Γ e j θΓ−2β ′z( )⎡⎣ ⎤⎦

⎧

⎨
⎪⎪

⎩
⎪
⎪



Chap. 9 |  Reflection diagram

• Reflection diagram

Source

End

Load

End

- Graphical representation of (V, I) propagation vs. t or z

- At 0 ≤ t ≤ T


‣ V1+ travels in +z direction from z = 0 to l 
‣ I1+ travels in +z direction from z = 0 to l 

- At T ≤ t ≤ 2T

‣ V1– = ΓLV1+ travels in -z direction from z = l to 0 
‣ I1– = –ΓLI1+ travels in -z direction from z = l to 0 

- At 2T ≤ t ≤ 3T

‣ V2+ = ΓgΓLV1+ travels in +z direction from z = 0 to l 
‣ I1– = ΓgΓLI1+ travels in +z direction from z = 0 to l 

- (V, I) vs. time (t) at any location: algebraic sum along vertical 
line!


- (V, I) vs. location (z) at any given time: algebraic sum below 
horizontal line!

Source

End

Load

End

<Voltage reflection diagram> <Current reflection diagram>

(ΓL)

(ΓL)

(Γg)

(Γg)

(ΓL)

(ΓL)

(Γg)

(Γg)



Chap. 9 |  Transient response: Example

• voltage, current variation vs. time (at z = z1) 
- If RL = 3R0 (ΓL = 1/2) and Rg = 2R0 (Γg = 1/3),

VL =V1
+ 1+ ΓL

1− ΓgΓL

⎛

⎝⎜
⎞

⎠⎟
= R0
R0 + Rg

V0
1+ ΓL

1− ΓgΓL

⎛

⎝⎜
⎞

⎠⎟
= 3
5
V0 IL =

V1
+

R0
1+ ΓL

1− ΓgΓL

⎛

⎝⎜
⎞

⎠⎟
= V0
R0 + Rg

1− ΓL

1− ΓgΓL

⎛

⎝⎜
⎞

⎠⎟
= V0
5R0

• voltage distribution vs. location (at t = t4) • Some special cases 
- I. RL = R0


‣ ΓL = 0 → No reflection at load end

‣ After t = T = l/u, only V1+ and I1+ exist


- II. RL ≠ R0, Rg = R0

‣ Γg = 0 → No reflection at source end

‣ After t = 2T, only (V1+, V1–) and (I1+, I1–) exist



Chap. 9 |  Transient response: pulse signal (1/2)

• Discussion so far 
- Transient response for step-function signal represented by


• Pulse signal 
- superposition of two step-functions:


• Example 
- Given condition


‣ Magnitude: V0 = 15 (V), duration: T0 = 1 (µs)


‣ Series resistance: Rg = 25 (Ω)

‣ Characteristic impedance of TR-line: R0 = 50 (Ω)

‣ l = 400 (m), material within TR-line ε = 2.25

‣ Load impedance: ZL = RL = 0 (Ω) (→Short-circuited!)

vg t( ) =V0U t( ) =  0,    t < 0
 V0,    t > 0

⎧
⎨
⎩

vg t( ) =V0 U t( )−U t −T0( )⎡⎣ ⎤⎦

- Q: Voltage change at z = l/2 = 200 (m) between 0 ≤ t ≤ 8 (µs)?

‣ Reflection coefficient

ΓL =
RL − R0
RL + R0

= −1,    Γg =
Rg − R0
Rg + R0

= 25 − 50
75

= − 1
3

vg t( ) = 15 U t( )−U t −10−6( )⎡⎣ ⎤⎦  (V)

‣ Propagation speed & transverse time

u = 1
µε

= c
ε r

= 3×10
8

2.25
= 2 ×108  (m/s),    T = u

l
= 2 (µs)

‣ Voltage sent down to TR-line

V1
+ = R0

Rg + R0
V0 =

25
25 + 50

×15 = 10 V( )



Chap. 9 |  Transient response: pulse signal (2/2)

• Example: pulse signal

vg t( ) = 15 U t( )−U t − T
2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 (V)

   
 T = 2 (µs)
 V1

+ = 10 V( )
⎧
⎨
⎩⎪

Response by U(t)

Response by –U(t – T/2)

Response by U(t)

Response by –U(t – T/2)

Response by U(t) – U(t – T/2)

ΓL = −1

Γg = − 1
3

T( )

2T( )

3T( )

4T( )

V1
+

ΓLV1
+

−V1
+

−ΓLV1
+

<Reflection diagram for U(t) and –U(t – T/2)>



Chap. 9 |  TR-line with reactive termination (1/2)

• TR-line terminated with reactive load 
- ZL = RL + jXL (Due to XL, phase shift introduced upon reflection)

- Time-dependence of incident wave ≠ reflected wave

- Not simple as the resistive termination


• Inductive termination (XL > 0) 
- Condition


‣ TR-line terminated with an inductor load (LL)

‣ Internal (or series) impedance Rg = R0 (What does it mean?)

‣ Voltage initially sent down to TR-line: 

∵ΓL =
ZL − R0
ZL + R0

⎛
⎝⎜

⎞
⎠⎟

V1
+ = R0

Rg + R0
V0

- At t = T (= u/l)

‣ V1+ reached at z = l, reflected by inductor (ΓL)

‣ V1– = ΓLV1+ generated and travel in -z direction


(→ Because ΓL complex, V1– no longer constant, 
but time-dependent!)

vL t( ) =V1+ +V1− t( )    ! 1( )
- At z = l after reflection (i.e. t ≥ T)

- Equivalently, vL t( ) = LL
diL t( )
dt

   ! 2( )

where iL t( ) = V1
+

R0
−
V1

− t( )
R0

   →    R0iL t( ) =V1+ −V1− t( )    ! 3( )

- By eliminating V1-(t) by combining eqns. (1) and (3), we have

vL t( ) = 2V1+ − R0iL t( )    ! 4( )

- By substituting eqn. (2) into eqn. (4), we have

LL
diL t( )
dt

+ R0iL t( ) = 2V1
+ ,    t ≥ T( )



Chap. 9 |  TR-line with reactive termination (2/2)
• Inductive termination (XL > 0) 

- IVP for first-order differential equation

diL t( )
dt

+ R0
LL
iL t( ) = 2V1

+

LL
,    t ≥ T( ) and iL T( ) = 0

- By applying Laplacian operator,

sI s( )− iL T( )+ R0
LL

I s( ) = 2V1
+

LLs
   →    I s( ) = 2V1

+

LL
1

s s + R0 LL( ) =
2V1

+

R0
1
s
− 1
s + R0 LL

⎡

⎣
⎢

⎤

⎦
⎥

- By applying inverse Laplacian operator, we get iL(t) (Current variation at load end)

iL t( ) = 2V1
+

R0
1− e

− R0
LL

t−T( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

vL t( ) = LL
diL t( )
dt

= 2V1
+e

− R0
LL

t−T( )
V1

− t( ) =V1+ − vL t( )

Current increases after V1+ arrived at z = l
<Voltage distribution vs. z at t = t1>

(T < t1 < 2T)


