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Time-varying electromagnetics

time-varying currents

Same

• Functions of both time and space

• E and B are mutually dependent

• a particular solution to Maxwell’s eqns: 

electromagnetic waves propagating with 
the speed of light

Electrostatics Magnetostatics

Source Static electric charges Steady-state currents

Governing 
Equations

Constitutive 
relation 

(for a simple medium)

Characteristics

• Only functions of space:     

• Not a function of time

• Independently defined! 

• Special forms of Maxwell’s equations

E,D,B,H(x, y, z)

Chap. 7 |  Electromagnetics

D = εE H = 1
µ
B

∇⋅D = ρ

∇× E = − ∂B
∂t

⎧
⎨
⎪

⎩⎪

∇⋅B = 0

∇× H = J + ∂D
∂t

⎧
⎨
⎪

⎩⎪

∇⋅D = ρ
∇× E = 0
⎧
⎨
⎩

∇⋅B = 0
∇× H = J
⎧
⎨
⎩

Maxwell’s 
Equations



Chap. 7 |  Faraday’s law of Electromagnetic Induction

Michael Faraday 
(1791~1867)

Faraday’s experiment 
: a current was induced in a conducting loop when the 
magnetic flux linking the loop changes


Fundamental postulate

∇× E = − ∂B
∂t

→ E ≠ −∇V

E ⋅d l
C!∫ = − ∂B

∂t
⋅ds

S∫

E ⋅d l
C!∫ " ν⎡

⎣
⎤
⎦ = − d

dt
B ⋅ds

S∫ = − dΦ
dt

⎡
⎣⎢

⎤
⎦⎥

∴ν = − dΦ
dt

For a stationary circuit in a time-varying B

Faraday’s law of electromagnetic induction 
: Electromotive force (emf) induced in a closed 
circuit C = Negative time rate of change of 
magnetic flux across surface S

Faraday’s experiment 
(1831)

Lenz’s law 
: Induced emf results in a current flowing in a 
direction opposing the change of the linking 
magnetic flux

Electromotive force 
: an electrical energy provided by an external 
source such as a battery or a generator. A device 
converting other forms of energy into electrical 
energy provides emf as its output.

e.g.) battery, solar cell, and so on

liquid  
battery

Galvanometer
Magnetic 

flux 
change

Induced  
current
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Chap. 7 |  Moving circuit in a time-varying B (1/3)

Lorentz’s Equation 
• When a charge q moves with a velocity u in a region where both E and B exist, the electromagnetic force F on q is

F = q E + u × B( )

′E = F
q
= E + u × B

To an observer “moving with q” 
• There is no motion and F on q can be interpreted as caused by E’ such that

E = ′E − u × Bor

• Now, since

E ⋅d l
C!∫ = ∂B

∂t
⋅ds

S∫    (V)

∴ ′E ⋅d l
C!∫ = − ∂B

∂t
⋅ds

S∫ + u × B( ) ⋅d l
C!∫ General form of Faraday’s law

′E ⋅d l
C!∫    (V)

− ∂B
∂t

⋅ds
S∫    (V)

u × B( ) ⋅d l
C!∫    (V)

: induced emf in the “moving frame of reference”

: transformer emf caused by time-varying B

: motional emf due to the motion of circuit in B

Hendrik Lorentz 
(1853~1928)

∵∇× E = − ∂B
∂t

⎛
⎝⎜

⎞
⎠⎟

Img src: Wikipedia



Chap. 7 |  Moving circuit in a time-varying B (2/3)

Derivation of Faraday’s law for a moving circuit 
• Time rate of change of magnetic flux Φ through the contour C is

dΦ
dt

= d
dt

B ⋅ds
S∫

= lim
Δt→0

1
Δt

B t + Δt( ) ⋅ds2S2∫ − B t( ) ⋅ds1S1
∫⎡

⎣⎢
⎤
⎦⎥

    !(1)

• Here, B(t+Δt) can be expanded as Taylor’s series:

B t + Δt( ) = B(t)+ ∂B t( )
∂t

Δt + H .O.T    !(2)

• If we plug (2) into (1), we get

dΦ
dt

= ∂B
∂t

⋅ds
S∫ + lim

Δt→0

1
Δt

B ⋅ds2S2
∫ − B t( ) ⋅ds1 + H .O.T

S1
∫⎡

⎣⎢
⎤
⎦⎥

    !(3)



Chap. 7 |  Moving circuit in a time-varying B (3/3)

• Now, Let’s take volume integral for divergence of B

∇⋅Bdv
V∫ = B ⋅ds2S2∫ − B ⋅ds1S1∫ + B ⋅ds3S3

∫ = 0   ∵∇⋅B = 0( )
where ds3 = dl × uΔt

→ B ⋅ds2S2∫ − B ⋅ds1S1∫ = −Δt u × B( ) ⋅d l
C!∫    !(4)

• By plugging (4) into (3), we get

dΦ
dt

= ∂B
∂t

⋅ds
S∫ + lim

Δt→0

1
Δt

B ⋅ds2S2
∫ − B t( ) ⋅ds1 + H .O.T

S1
∫⎡

⎣⎢
⎤
⎦⎥

   !(3)

= ∂B
∂t

⋅ds
S∫ − u × B( ) ⋅d l

C!∫
• According to a general form of Faraday’s law,

dΦ
dt

= − − ∂B
∂t

⋅ds
S∫ + u × B( ) ⋅d l

C!∫
⎛
⎝⎜

⎞
⎠⎟ = − ′E ⋅d l

C!∫( ) ! − ′ν

where v’ is induced emf in circuit C “measured in the moving frame”

∴ ′ν = − dΦ
dt

   (V)
• If a circuit does not move, v’ 

reduces to v 
• Faraday’s law applies to both 

moving and stationary circuits

∵ ′E ⋅d l
C"∫ = − ∂B

∂t
⋅ds

S∫ + u × B( ) ⋅d l
C"∫ General form  

of Faraday’s law



Chap. 7 |  Maxwell’s Equations (1/3)

Curl postulate for H 
• Previously,

∇× H = J   →   ∇⋅ ∇ × H( ) = 0 ≠ ∇⋅ J ∵∇⋅ J = − ∂ρ
∂t

: Equation of continuity  
that must hold at all times under time-varying condition

 ∇⋅ ∇ × H( ) = 0 = ∇⋅ J + ∂ρ
∂t

→  ∇⋅ ∇ × H( ) = ∇⋅ J + ∂D
∂t

⎛
⎝⎜

⎞
⎠⎟

• Thus, under time-varying condition,
Null Identity

∴∇× H = J + ∂D
∂t

:Major contributions of 
James Clerk Maxwell

Displacement current density

Under time-varying condition

Maxwell’s Equations

∇× E = − ∂B
∂t

∇× H = J + ∂D
∂t

∇⋅B = 0
∇⋅D = ρ

where J = ρu   or  J =σ E
Convection current (ρu) due to motion of free charge 
distribution

Conduction current (σE) caused by presence of E-field in 
conducting mediumJames Clerk Maxwell 

(1831~1879)
Img src: Wikipedia



Chap. 7 |  Maxwell’s Equations (2/3)

∇× E = − ∂B
∂t

∇⋅D = ρ

⎧
⎨
⎪

⎩⎪
∇⋅ J = − ∂ρ

∂t
F = q E + u × B( )∇× H = J + ∂D

∂t
∇⋅B = 0

⎧
⎨
⎪

⎩⎪

Maxwell’s Equations Equation of 
Continuity Lorentz Force Equation

+ + =
“Foundation of  

Electromagnetic Theory”
: Explain and predict all


Macroscopic Electromagnetic

Phenomena

When solving electromagnetic problems, 
• Need to understand inter-dependence of Maxwell’s Equations such that

∇⋅D = ρ
∇⋅B = 0
⎧
⎨
⎩

∇× H = J + ∂D
∂t

∇× E = − ∂B
∂t

⎧

⎨
⎪⎪

⎩
⎪
⎪

Two divergence equations can be derived from two curl equations (Proof, HW!)

• To determine 12 unknown variables for E, B, D and H

6 Equations from Maxwell’s Equations

(Not 12, because of inter-dependence) 6 Equations from Constitutive Relation+ =

D = εE,

H = 1
µ
B

⎧
⎨
⎪

⎩⎪

Sufficient to  
solve EM problems!



Chap. 7 |  Maxwell’s Equations (3/3)

∇× E = − ∂B
∂t

Differential form

∇× H = J + ∂D
∂t

∇⋅B = 0

∇⋅D = ρ

E ⋅d l
C!∫ = − ∂B

∂t
⋅ds

S∫

Integral form

H ⋅d l
C!∫ = J + ∂D

∂t
⎛
⎝⎜

⎞
⎠⎟ ⋅dsS∫

B ⋅ds
S∫ = 0

D ⋅ds
S!∫ = ρ dv

V∫ =Q

Faraday’s law of electromagnetic induction

Ampere’s circuital law

Law of conservation of magnetic flux

Gauss’s law

In explaining electromagnetic phenomena in a physical 
environment, 
integral forms are more useful in applying to the finite objects of 
specified shapes and boundary condition.

André-Marie Ampère 
(1775-1836)

Carl F. Gauss 
(1777~1855)

Michael Faraday 
(1791~1867)

James C. Maxwell 
(1831~1879)

Img src: Wikipedia



Chap. 7 |  Potential functions (1/3)

Vector magnetic potential A 
• Starting from the curl equation for H

B = ∇× A   (T)   ∵∇⋅B = 0( )

• By substituting above equation into ∇× E = − ∂B
∂t
, we get

∇× E = − ∂
∂t

∇× A( )    or   ∇× E + ∂A
∂t

⎛
⎝⎜

⎞
⎠⎟ = 0

• Thus, we get

E + ∂A
∂t

= −∇V

∴E = −∇V − ∂A
∂t

   (V/m) Electric field
spatial distribution of charges

Time-varying magnetic field

−∇V

− ∂A
∂t



Chap. 7 |  Potential functions (2/3)

Non-homogeneous wave equations for A 
• Starting from the curl equation for H

∇× H = J + ∂D
∂t
. H = 1

µ
B = 1

µ
∇× A D = εE = ε −∇V − ∂A

∂t
⎛
⎝⎜

⎞
⎠⎟ ,

Since and we get

∇×∇× A = µJ + µε ∂
∂t

−∇V − ∂A
∂t

⎛
⎝⎜

⎞
⎠⎟

→∇ ∇⋅ A( )−∇2A = µJ −∇ µε ∂V
∂t

⎛
⎝⎜

⎞
⎠⎟ − µε ∂

2 A
∂t 2

→∇2A− µε ∂
2 A
∂t 2

= −µJ +∇ ∇⋅ A+ µε ∂V
∂t

⎛
⎝⎜

⎞
⎠⎟

• If we apply Lorentz condition to above equation, we get

∇⋅ A+ µε ∂V
∂t

= 0
Lorentz Condition for potentials 
• Consistent with Equation of Continuity (HW!)

• Reduces to                    for static fields∇⋅ A = 0

∇2A− µε ∂
2 A
∂t 2

= −µJ Nonhomogeneous equation  
for magnetic potential A



Chap. 7 |  Potential functions (3/3)

Non-homogeneous wave equations for V 
• Starting from the divergence equation for D

∇⋅D = ρ. Since we get

−∇⋅ε ∇V + ∂A
∂t

⎛
⎝⎜

⎞
⎠⎟ = ρ

→∇2V + ∂
∂t

∇⋅ A( ) = − ρ
ε

• By plugging Lorentz Condition

D = εE = ε −∇V − ∂A
∂t

⎛
⎝⎜

⎞
⎠⎟ ,

into above equation, we get

∇2V − µε ∂
2V
∂t 2

= − ρ
ε

Nonhomogeneous equation  
for electric potential V ∇2A− µε ∂

2 A
∂t 2

= −µJ Nonhomogeneous equation  
for magnetic potential Ac.f.)

∇⋅ A+ µε ∂V
∂t

= 0

∴ Lorentz condition decouples the Maxwell’s equations for V and for A



Chap. 7 |  Electromagnetic Boundary Condition (1/2)

How to obtain Boundary Condition (B.C.) for time-varying electromagnetic fields? 
• B.C. obtained by applying the integral form of Maxwell’s equations to a small region at an interface between two media


‣ Application of integral form of a “curl” equation to Scheme 1 → B.C. for tangential components 
‣ Application of integral form of a “divergence” equation to Scheme 2 → B.C. for normal components

Medium 2

Medium 1

Medium 2

Medium 1

Scheme 1

Scheme 2

E ⋅d l
C!∫ = − ∂B

∂t
⋅ds

S∫   →   E1t = E2t    (V/m)

H ⋅d l
C!∫ = J + ∂D

∂t
⎛
⎝⎜

⎞
⎠⎟ ⋅dsS∫   →   an2 × H1 − H2( ) = JS    (A/m)

an2

an2

B.C. for tangential components of E and H

B.C. for normal components of D and B

∇⋅D = ρ   →   an2 ⋅ D1 − D2( ) = ρS    (C/m2 )
∇⋅B = 0  →   B1n = B2n    (T)

Δh

Δh

Time-varying terms vanishes as S goes to 0!

(HW!)



Chap. 7 |  Electromagnetic Boundary Condition (2/2)
Lossless non-conductive media

∵P = E ⋅ J dv
V∫ = σE2 dv

V∫( )

• σ = 0

Joule’s law

No free charges and no free surface 
currents at the interface

ρS = 0
JS = 0

⎧
⎨
⎩

D1t
ε1

= D2t

ε2

D1n = D2n   →   ε1E1n = ε2E2n

General B.C.

E1t = E2t

B1n = B2n

an2 × H1 − H2( ) = JS

an2 ⋅ D1 − D2( ) = ρS

H1t = H2t   →   B1t

µ1

= B2t

µ2

µ1H1n = µ2H2n

B.C. between  
two lossless media

dielectric / Perfect conductor

• For perfect conductor, σ ~ ∞

‣E = 0 in the interior of a perfect conductor 
‣B, H = 0 because they are interrelated 

through Maxwell’s equations

Medium 1 
(dielectric)

Medium 2 
(Perfect conductor)

E1t = 0 E2t = 0

H2t = 0an2 × H1 = JS
an2 ⋅D1 = ρS D2n = 0

B2n = 0B1n = 0

E1t = E2t

B1n = B2n

an2 × H1 − H2( ) = JS
an2 ⋅ D1 − D2( ) = ρS

General B.C.
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Chap. 7 |  Maxwell’s Equations

∇× E = − ∂B
∂t

∇× H = J + ∂D
∂t

∇⋅B = 0

∇⋅D = ρ

Time-varying electric & magnetic fields

H = 1
µ
B

D = εE
Constitutive relation

E ⋅d l
C!∫ = − ∂B

∂t
⋅ds

S∫

H ⋅d l
C!∫ = J + ∂D

∂t
⎛
⎝⎜

⎞
⎠⎟ ⋅dsS∫

B ⋅ds
S∫ = 0

D ⋅ds
S!∫ = ρ dv

V∫ =Q

Differential form Integral form

Maxwell’s equations 
• Explain and predict all electric and magnetic phenomena under 

static or time-varying condition


• New curl postulates with time-dependent term introduced

‣ Curl of E: consistent with Faraday’s law

‣ Curl of H: consistent with Equation of continuity

‣ Mutual dependence between E and B 

• Two divergence equations can be derived from two curl 
equations (HW!)


• Along with constitutive relation, Maxwell’s equations are 
sufficient to solve all electromagnetic problems with given 
boundary conditions


• A particular solution to Maxwell’s equations: Electromagnetic 
wave propagating with speed of light



Chap. 7 |  Potential functions and Non-homogeneous equations

∇× H = J + ∂D
∂t

H = 1
µ
B = 1

µ
∇× A

D = εE = ε −∇V − ∂A
∂t

⎛
⎝⎜

⎞
⎠⎟

∇2A− µε ∂
2 A
∂t 2

= −µJ +∇ ∇⋅ A+ µε ∂V
∂t

⎛
⎝⎜

⎞
⎠⎟

∇2A− µε ∂
2 A
∂t 2

= −µJ

Non-homogeneous equation for A

∇⋅D = ρ

∇2V + ∂
∂t

∇⋅ A( ) = − ρ
ε

B = ∇× A   ∵∇⋅B = 0( )

E = −∇V − ∂A
∂t

   ∵∇× E = − ∂B
∂t

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

Potential functions

Non-homogeneous equation for V

D = εE = ε −∇V − ∂A
∂t

⎛
⎝⎜

⎞
⎠⎟

∇2V − µε ∂
2V
∂t 2

= − ρ
ε

∇⋅ A+ µε ∂V
∂t

= 0

Lorenz condition

“Obtain E and B”

A goal of solving EM problems

Non-homogeneous 
Equations for A and V

Maxwell’s 
Equations

Maxwell’s Equations

This slide is about…



Chap. 7 |  Retarded Potential functions
Procedures to obtain E and B from Non-homogeneous eqns

(1) we solve non-homogeneous equations for V and A with given ρ and J

∇2V − µε ∂
2V
∂t 2

= − ρ
ε

∇2A− µε ∂
2 A
∂t 2

= −µJ

⎧

⎨
⎪⎪

⎩
⎪
⎪

(2) With determined V and A, apply

B = ∇× A

E = −∇V − ∂A
∂t

⎧
⎨
⎪

⎩⎪
to obtain B and E.

Solutions to non-homogeneous equations

∇2V − µε ∂
2V
∂t 2 = − ρ

ε
   →    V R,t( ) = 1

4πε
ρ t − R u( )

R
d ′v

′V∫    (V)

∇2A− µε ∂
2 A
∂t 2 = −µJ    →    A R,t( ) = µ

4π
J t − R u( )

R
d ′v

′V∫    (Wb/m)

where u =
1
µε

 (m/s) is a velocity of propagation

Retarded potential V 
• Potential measured at R created by a charge 

distribution ρ in a volume V’ at origin


• Takes time (R/u) for the effect of ρ to be sensed 
at R → It is called “Retarded potential”


• Equivalently, it takes time for EM waves to travel 
and for the effects of time-varying charges (ρ) to 
be sensed at a distant point (R).

delayed time

“Obtain E and B”

Non-homogeneous 
Equations for A and V

Maxwell’s 
Equations

This slide is about…



Chap. 7 |  Source-free wave equations
EM waves in a source-free region (ρ = 0 and J = 0)
• We are more interested in how EM waves are propagated than how they are originated (generated)

• If the wave is in a simple (linear, isotropic, and homogeneous) non-conducting medium, Maxwell’s equations read

∇× E = − ∂B
∂t

∇× H = J + ∂D
∂t

∇⋅B = 0

∇⋅D = ρ

∇× E = −µ ∂H
∂t

∇× H = ε ∂E
∂t

∇⋅H = 0

∇⋅E = 0

• Let’s take a curl to each side of ∇× E = −µ ∂H
∂t

→∇×∇× E = −µ ∂
∂t

∇× H( )

(l.h.s) ∇×∇× E = ∇ ∇⋅E( )−∇2E = −∇2E

(r.h.s) − µ ∂
∂t

∇× H( ) = −µ ∂
∂t

ε ∂E
∂t

⎛
⎝⎜

⎞
⎠⎟ = −µε ∂

2E
∂t 2

H = B
µ

,  D = εE
(l.h.s) = (r.h.s)→−∇2E = −µε ∂

2E
∂t 2

∴∇2E − 1
u2

∂2E
∂t 2

= 0 Homogenous vector wave equation

∴∇2H − 1
u2

∂2H
∂t 2

= 0Similarly, where u = 1
µε

is a velocity of propagation



Chap. 7 |  Time-harmonic electromagnetic fields

ρ,  J

Source Field quantities

E,  H
• Function forms of fields (E, H)  = Function forms of source (ρ, J)

• Arbitrary periodic time functions can be expanded into Fourier series of harmonic 

sinusoidal components

x t( ) = a0 + ak cos kωt( )+ bk sin kωt( )
k=−∞

∞

∑ = cke
jkωt

k=−∞

∞

∑
• Non-periodic time functions can be expressed as Fourier integralsMaxwell’s Equations

Sinusoidal (time-harmonic) source 
ρ and J with a given frequency ω

Sinusoidal (time-harmonic) fields 
E and H with the same frequency ω

Maxwell’s Equations

(linear PDE)



Chap. 7 |  Phasor
Example: Loop equation for a series RLC circuit

L di t( )
dt

+ Ri t( )+ 1
C

i t( )dt∫ = v(t) =V cosωt

We want to get i t( ) = I cos ωt +φ( )
I: Amplitude

ω: angular frequency (ω=2πf [rad/s])

φ: phase

• By using exponential functions for convenience, we get

v(t) =V cosωt = Re Vej0( )e jωt⎡⎣ ⎤⎦ = Re VSe
jωt( )

i(t) = I cos ωt +φ( ) = Re Ie jφ( )e jωt⎡⎣ ⎤⎦ = Re ISe
jωt⎡⎣ ⎤⎦

Here,

VS =Ve
j0 =V

IS = Ie
jφ

Phasor 
• Containing “Amplitude” and “phase” info

• Independent of time

di t( )
dt

= Re jω ISe
jωt( )

i t( )dt∫ = Re 1
jω

ISe
jωt⎛

⎝⎜
⎞
⎠⎟
,

Re R + jωL + C
jω

⎛
⎝⎜

⎞
⎠⎟
ISe

jωt⎡

⎣
⎢

⎤

⎦
⎥ = Re ESe

jωt⎡⎣ ⎤⎦

L di t( )
dt

+ Ri t( )+ 1
C

i t( )dt∫ = v(t) =V cosωt

Since

∴ R + jωL + C
jω

⎛
⎝⎜

⎞
⎠⎟
IS =VS

where

∴i(t) = Re ISe
jωt⎡⎣ ⎤⎦

Time-independent!



Chap. 7 |  Time-harmonic electromagnetics
Time-harmonic (sinusoidal) E-field

E x, y, z,t( ) = Re E(x, y, z)e jωt⎡⎣ ⎤⎦
where E(x, y, z) is a vector phasor with direction, magnitude, and phase information

Differential & Integral of 
Time-varying vector Vector phasor

E x, y, z,t( ) E(x, y, z)

∂
∂t
E x, y, z,t( ) jωE(x, y, z)

E x, y, z,t( )dt∫
1
jω
E(x, y, z)

Time-harmonic Maxwell’s equations

∇× E = −µ ∂H
∂t

∇× H = J + ε ∂E
∂t

∇⋅H = 0

∇⋅E = ρ
ε

∇× E = −µ jωH( )

∇× H = J + ε jωE( )

∇⋅H = 0

∇⋅E = ρ
ε

where E, H are vector field phasors and ρ and J are source phasors

Once again, phasors are NOT a function of time (t).

It is customary to use cos(ωt) as a reference instead of sin(ωt)!



Chap. 7 |  Time-harmonic wave equations and potential functions
Time-harmonic wave equations

∇2V − µε ∂
2V
∂t 2

= − ρ
ε

∇2A− µε ∂
2 A
∂t 2

= −µJ

∇2V + µεω 2V = − ρ
ε

∇2A+ µεω 2A = −µJ

∇2V + k2V = − ρ
ε

∇2A+ k2A = −µJ

Non-homogeneous Helmholtz’s Equations

where A, V are phasors, and

k =ω µε = ω
u
= 2π f

u
= 2π

λ
is called wavenumber.

Lorentz Condition for potentials

∇⋅ A+ µε ∂V
∂t

= 0 ∇⋅ A+ jωµεV = 0

Solutions to Non-homogeneous Equations (retarded potential)

 V R,t( ) = 1
4πε

ρ t − R u( )
R

d ′v
′V∫

 A R,t( ) = µ
4π

J t − R u( )
R

d ′v
′V∫

 V R( ) = 1
4πε

ρe− jkR

R
d ′v

′V∫

 A R( ) = µ
4π

Je− jkR

R
d ′v

′V∫

wavelength

Relation to the static case

e− jkR = 1− jkR + k
2R2

2
+!

If kR = 2πR/λ <<1, Helmholtz solutions reduce to

those for quasi-static fields.



FROM NOW ON,  
WE WILL NEARLY EXCLUSIVELY USE “PHASORS” 

SINCE WE WILL ONLY DEAL WITH TIME-HARMONIC 
ELECTROMAGNETICS 

IN THE REST OF THE COURSE. 

ALTHOUGH NOT SPECIFIED VECTOR FIELD QUANTITIES (E, D, B, 
H) THAT WE WILL USE ARE GOING TO BE PHASORS, AND THEY 

ARE ONLY FUNCTIONS OF SPACE AND NOT A FUNCTION OF 
TIME.



Chap. 7 |  “Source-free” EM fields in simple media

Time-harmonic Maxwell’s Equations  
in a simple, nonconducting, source-free media 

(ρ = 0, J = 0, σ = 0)

∇× E = − jωµH
∇× H = J + jωεE
∇⋅H = 0

∇⋅E = ρ
ε

∇× E = − jωµH
∇× H = jωεE
∇⋅H = 0
∇⋅E = 0

Homogeneous Vector Helmholtz’s equations

∇E 2 − 1
u2

∂2E
∂t 2

= 0

H 2 − 1
u2

∂2H
∂t 2

= 0

∇E 2 + k2E = 0
∇H 2 + k2H = 0

Principle of Duality
• If (E, H) are solutions of source-free Maxwell’s equations in a simple medium, then so are (E’, H’) where

′E =ηH

′H = − 1
η
E

where η is called intrinsic impedance of the medium.

(Ch 7-7.3 for proof. Fairly simple!)



Chap. 7 |   Simple conducting, lossy medium (1/2)

Complex permittivity (σ ≠ 0)

∇× H = J + jωεE∇× H = J + ∂D
∂t

= σ + jωε( )E = jω ε + σ
jω

⎛
⎝⎜

⎞
⎠⎟
E = jωεcE

where εc = ε − j σ
ω

   (F/m) is complex permittivity

• Indicates that materials polarization does not change instantaneously 
when E-field is applied (i.e. out-of-phase polarization)


• When external time-varying E-field applied to material bodies → Slight 
displacements of bound charges → a volume polarization density


• As frequency of time-varying E-field increases

‣ Inertia of charged particles resist against E-field and prevent from 

being in phase with field change → Frictional damping


• Ohmic loss if materials have sufficient amount of free charges

Physical meaning of complex permittivity

εc = ε − j σ
ω

= ′ε − j ′′ε (including damping and ohmic losses)



Chap. 7 |   Simple conducting, lossy medium (2/2)

Complex permittivity
• due to out-of-phase polarization

Complex permeability

µc = ′µ − j ′′µ
• due to out-of-phase magnetization

Wavenumber in Helmholtz’s equations for a lossy medium

∇2V + k2V = − ρ
ε

∇2A+ k2A = −µJ
k =ω µε kc =ω µεc =ω µ ′ε − j ′′ε( )

(but, for ferromagnetic materials, μ’ is dominant and μ’’ is negligible)

A measure of the power loss

εc =
D
E
e jδ = D

E
cosδ + j sinδ( ) = D

E
cosδ 1+ j tanδ( ) εc = ′ε − j ′′ε = ′ε 1− j ′′ε

′ε
⎛
⎝⎜

⎞
⎠⎟ = ε 1− j σ

ω
⎛
⎝⎜

⎞
⎠⎟

εc = ε − j σ
ω

= ′ε − j ′′ε

tanδ ! ′′ε
′ε
= σ
ωε

Loss tangent If σ >> ωε: Good conductor 
If σ << ωε: Good insulator



Chap. 7 |   Electromagnetic wave vs. frequency

All EM waves in ANY frequency range propagate in a medium 

with the same velocity, u =
1
µε

  c ≅ 3×108 (m/s) in air( )


