Chapter 2

Condensation and Other Type Polymerization

- Three categories of Polymerization process
 - 1. condensation, 2. addition, and 3. ring opening polymerization.
 - → Generally due to different monomer structure
- Two categories of Polymerization mechanism
 - 1. Step
 - 2. Chain polymerization (addition + ring opening). Generally due to different <u>mechanistic path way</u>

Step versus Chain

1.Step: Monomer + Monomer → Dimer Dimer + Monomer → Trimer Dimer + Dimer → Tetramer Chain: Chain growth takes places only at the end of a few initiated chains

2. Step: a disappearance of monomer at an early stage Chain: the monomer concentration decreases steadily

3. Step: Molecular weight rises steadily Chain: High Polymer is formed rapidly from each initiated monomer

Types of Condensation Reaction

• The formation of polyester and polyamide; The elimination of water or ROH or HCI **Mechanism of Condensation Polymerization**

Addition – elimination reaction

Stabilized by catalysts such as *metal cations, protonic, or Lewis acid*

Requirement for High molecular weight;

Exact 1:1 ratio of the two functional groups (see ch. 11)

Scrambling reaction

Ring Formation versus Polymerization

• Details in chap 10

Linear Polyesters

Polyesters

고분자필름 사이에는 공기가 통과할 정도의 구멍이 존재한다.

Branched and Crosslinked Polyesters

Polycarbonate

Bubbling phosgene gas into a solution of bisphenol A in pyridine at 25 – 30 °C

phosgene is a toxic gas

Use trichloromethyl chloroorthoformate; It decompse into two phosgenes in the reaction

자동차 램프로 유리대신 고분자를 사용하는 이유

Polyanhydride

Unstable to moisture; drug delievery

고분자를 이용한 약물 전달 체계

Polyamides; nylon

Four Major synthetic procedures; 1. Melt polymerization, 2. Dehydration-condensation of aminoacid, 3. The reaction between diacid chloride and a diamine, 4. Ring opening polymerization (Chap. 6)

1. Melt Polymerization

1:1 salt is prepared first, then heated to 195 °C then 215 °C, finally 275 °C. (MP of Nylon 66 is 267 °C)

Nylon 66 means 6 carbons at diamine and 6 carbons at diacid

2. Polymerization of amino acid

11-aminoundecanoic acid ($H_2N-(CH_2)_{10}$ -COOH) at 220 °C under vacuum or by a stream of inert gas to produce Nylon 10

or

Preparation of polypeptide using dicyclohexylcarbodiimide as a dehydrating agent

3. Interfacial Polymerization

Aromatic Polyamide; aramide

para-phenylene diamine + terephthaloyl chloride
(Interfacial polymerization)
= kevlar

Bullet proof vests, helmets, tire-cord for airplane

Aramid fiber

Light weight High strength High modulus Heat resistance

Polyimide

Non-soluble, high thermal & chemical stability

aromatic diamine + aromatic dianhydride \rightarrow poly amic acid \rightarrow polyimide

Machined device, electric device, coating for electronic devices (LCD)

Macromolecular Chemistry and Physics Fourded by Hermann Staudinger

WILEY-VCH

Enhanced, Perpendicular Liquid-Crystal Alignment on Rubbed Films of a Coumarin-Containing Polystyrene (p 1853-1861) Hyo Kang, Ki-Sun Kwon, Daeseung Kang, Jong-Chan Lee Published Online: 21 Aug 2007 DOI: 10.1002/macp.200700270 Abstract | References | Full Text: HTML, PDF (Size: 198K)

액정 디스플레이 부품 (Backlight)

PET: 빛을 산란시켜 균일한 빛 발산시키며 외부 염과 scratch 방지

PC, PMMA,PET: 확산시료에서 방출된 빛을 모 아 휘도를 향상

PET, PC/PMMA: 빛 을 산란시켜 균일한 빛 발산

PMMA: 램프의 선광, 면광화 함

PET/AI: 램프광을 액정 cell 방향으로 집중시켜 빛을 손실을 방지

POLYCALBONATE:램프, 도광판, 각종 시트류를 고정시킴

Polybenzimidazoles

Fuel Cell membrane, vests for fire fighters and spacemen

연료전지의 모식도

Fuel Cells are electrochemical devices that convert a fuel's energy directly to electrical energy.

Polybenzoxazoles and Polybenzthiazoles

Polyquinoxalines

Aromatic ladder polymer

Phenol-formaldehyde polymers

Low temperature mixing of phenol and form aldehyde produces methylphenols, prepolymer

Heating to 105 °C produces cylco-linear or branched polymer; low MW, moldable

Higher temp (>105 °C) produces thermosets

Urea-formaldehyde polymers

Melamine-formaldehyde polymers

Polyacetal

Long chain diols are normally used to prevent the formation of cycles

Polyethers by aromatic Substitution

Polyethers by Oxidative Coupling Reactions

Diels-Alder Addition Polymers

Polyurethanes

Elastmer (for spandex or foam), coating (painting), adehesives.

X-linking is always possible

