Chapter 4

Ionic and Coordination Polymerization

Coordination polymerization;

Complex formation between the transition metal and π -electrons in the monomer

Stereoregular Polymer

Isotactic Polymer

Syndiotactic Polymer

Atactic Polymer orNo regular sequenceHeterotactic Polymer

Anionic and Coordination Polymerization

Initiators for *ionic* polymerization

Organic radical anion; sodium naphthalate

Water should be excluded

Initiator vs. Catalyst?

- 1. Transfer electron to (or from) monomer
- 2. Initiate monomer polymerization directly (involved in polymer structure)

Monomers for anionic polymerization

Electron withdrawing substituent group

A typical experimental procedure for anionic polymerization

Polymerization under vacuum or a inert atmosphere!

The mechanism for anionic polymerization

1. Initiation

2. Propagation

3. No chain transfer and no chain branching at low temperature

4. Termination; Possible with only termination reagent

Without termination reagent, Living polymers

Living Polymers

The mechanism for anionic polymerization using sodium or sodium naphthalate

1. Initiation

2. Dimerization

Naphthalene is recovered; catalyst

3. propagation

+ Monomer

Copolymerization possible in living polymerization, then block copolymers can be made

Electron withdrawing power vs. copolymerization ability

Ziegler-Natta Catalysts

Ethylene reacts with aluminum alkyls under a high pressure produce organometallic oligomer or polymer with low molecular weight

Addition of ethylene to the mixture of aluminum alkyls and "cocatalysts" of $TiCl_4$ or VCl_4 under at atmospheric pressure and RT produce high molecular weight polymers with stereoregularity

Nobel prize in 1963 !

General features of the reaction

- 1. The *successive* addition of solutions of TiCl₄ and triisobutylaluminum in decahydronaphthalene to decahydronaphthalene under dry N₂ atmosphere, then a black-brown suspended precipitated is formed; preparation of catalysts.
- 2. Heated to 185 °C for 40 min; color changed to deep violate.

1,2 Aging process

- 3. The mixture is cooled and cyclohexan is added, then additional triisobutylaluminum is added; purple-black suspension
- 4. Ethylene gas is bubbled; heat is evolved in this polymerization
- 5. Cooled using ice bath, then poured into isopropanol to yield the polymer precipitated (product)

Stereoregular polymers are obtained

Compositions of the catalysts

Two components

- 1. A transition metal compounds from group 4 (Ti)-10
- 2. An organometallic compound from group 1,2, or 13 (AI) metal.

For example; TiCl₃ or TiCl₄ and aluminum trialkyls

The reduced transition metal having unfilled ligand sites is believed to act as the catalysts

The polymerization mechanism

Possible complex structure

 d_{xy} with π -antibonding

 d_{x2-y2} with π -bonding

Two possible mechanisms1. monometallic2. bimetallic

The monometallic mechanism

Alternating insertion

Insertion at the same site

The bimetallic mechanism

Diene and cycloolefin can be polymerization by Z-N catalysts or π-allyl complexes

Mechanism ?

Ring-Opening Metathesis Polymerization (**ROMP**)

Methathesis reaction

ROMP

Monomers for ROMP from cyclobutenes to cyclooctenes, and higher ring systemes with some ring strains

Catalysts for ROMP WCI₆, WOCI₄, MoO₃, Ruthenium, or Rhenium halides (+) cocatalysts (organometallic compounds)

Possible mechanism for ROMP

Cationic Polymerization

Initiators for cationic polymerization

Lewis acids function as catalysts with cocatalysts such as water

Monomers for cationic polymerization conaining electron-donating groups

Experimental conditions for cationic polymerization

The mechanism of cationic polymerization

1. Initiation

2. Propagation

3. Chain transfer; important at RT (not living system)

4. Termination

loss of proton to X⁻ or very small amount of water

Living carbocationic polymerization

Initiator; tertiary ester with borontrihalide; mechanism is not clear **Reversible termination in living carbocationic polymerization**

X = halide, Y = complexing agent (Lewis acid)

Cationic polymerization of Aldehydes

If only Lewis acid without cocatalyst is used; pseudocyclic propagation