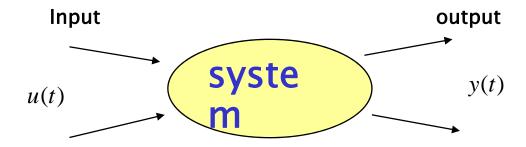
Chapter 1. Introduction

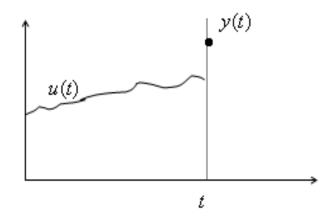

Key Concepts

 System: A combination of components acting together to perform a specific objective.

• A component : Single functioning unit of a system

A system is not limited to physical component. It includes abstract dynamic phenomena such as economics, transportation, populating, biology, etc.

System, Input and Output

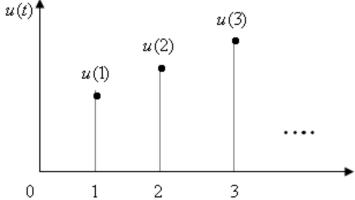

Output depends on inputs!

Dynamic Systems, System Dynamics

• Dynamic systems

y(t) depends on $\{u(\tau)|\tau \le t\}$ (depends on past input)

- Static systems
 - y(t) depends on u(t)


Static System vs. Dynamic System

Ex) Interest and Balance of a saving account

1% monthly interest

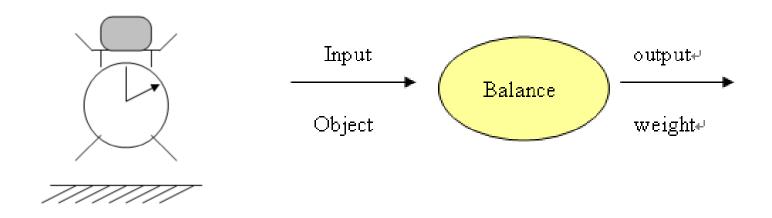
u(t): monthly payment

y(t): balance

$$y(1) = u(1)$$

$$y(2) = u(1) \times 1.01 + u(2)$$

$$y(3) = y(2) \times 1.01 + u(3) = \{u(1) \times 1.01 + u(2)\} \times 1.01 + u(3)$$


$$\vdots$$

 $y(k) = y(k-1) \times 1.01 + u(k)$

=> Dynamic System

Static System vs. Dynamic System

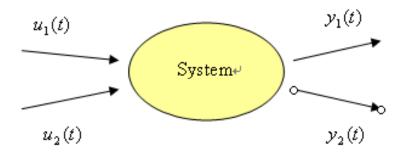
Ex) Balance

=> Static System

Static System vs. Dynamic System

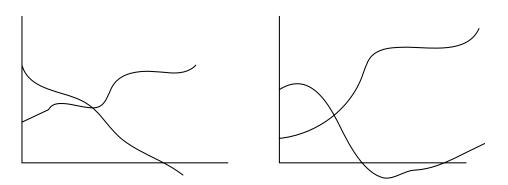
• Static systems: algebraic equations

$$y(t) = f(u(t))$$


• Dynamic systems : differential equations or difference equations

$$y(k) = f(y(k-1), u(k-1), k)$$

$$\frac{dy}{dt} = f(y, u, t)$$


Linear vs. Nonlinear

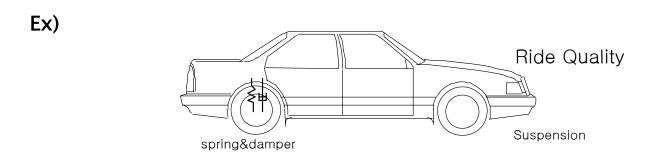
Linear systems : linear superposition principle

Linear system

$$u(t) = \alpha_1 u_1(t) + \alpha_2 u_2(t) \qquad \longrightarrow \qquad y(t) = \alpha_1 y_1(t) + \alpha_2 y_2(t)$$

Mathematical Modeling

- Mathematical model (of Dynamic systems)
 - -Differential equations obtained by applying natural laws to the systems.
 - -Differential equations that describe the dynamic behavior of the system.
- · Modeling methods;
 - 1. Analytic: physical laws \Rightarrow mathematical models
 - 2. Experimental: Experimental results.
 - ⇒ Input-output relationships. (mathematical models)
- Compromise in modeling process;


"Simplicity versus Accuracy"

Mathematical Modeling Procedure

- 1. Draw a schematic diagram of the system and define variables.
- 2. (Physical laws) Write dynamic equations to obtain a mathematical model
- 3. (validation) <u>Compare</u> the solution of the equations of the model <u>with</u> <u>experimental result.</u>
- 4. Modification of the model to obtain a satisfactory agreement <u>between</u> <u>prediction and experimental results.</u>
 - · Linear Dynamic Systems ⇒ linear D.E
 - Nonlinear Dynamic Systems ⇒ Nonlinear D.E

Analysis and Design

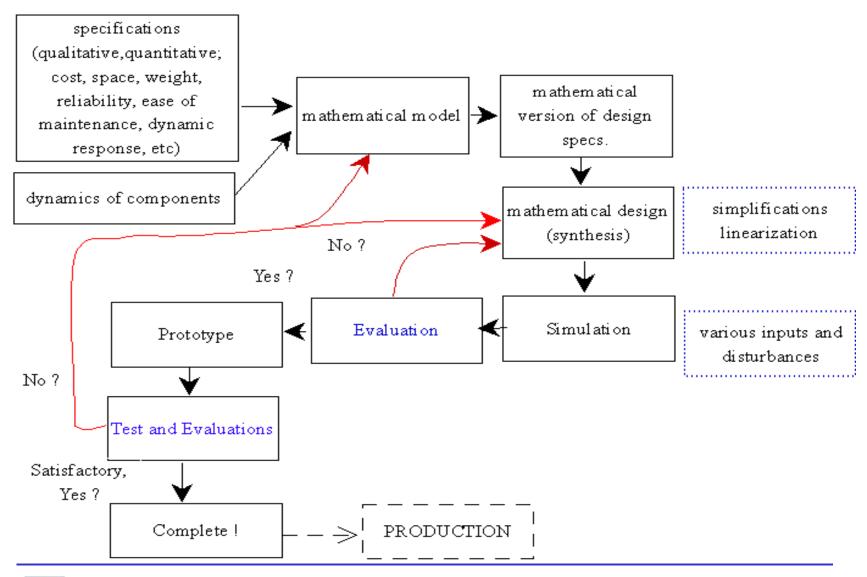
- Analysis: the investigation of the performance of a system whose mathematical model is known.
 - 1. Derive mathematical model.
 - 2. Parameter variations a number of solutions.
 - 3. Interprets and applies the result to the basic task.
- Design : (system design)
 - -the process of finding a system that accomplishes a given task.

Synthesis

(we mean) The use of an explicit procedure to find a system

that will perform in a specific way

- 1) system characteristics
- 2) use various mathematical techniques
- completely *mathematical* from the start to the end of the design procedure


Design of dynamic systems

- · Theoretically, synthesis of linear system is possible
 - Can systematically determine the components necessary to realize the system's objective
- · Practically, no synthesis methods are applicable
 - Constraints
 - Nonlinearities
 - Uncertainties

Design procedures

- 1. Trial-and-error procedures
- 2. Model-based (analysis and design) procedure

Model-based design procedure

