Review

- 1. Key concepts
 - systems, dynamic systems, linear systems,
 - modeling, mathematical model
 - analysis, design, synthesis
- 2. Laplace Transform
 - Laplace Transform review
- 3. Mathematical Model of Dynamic Systems
 - Mechanical Systems
 - Electrical Systems
 - Fluid Systems and Thermal Systems, Hydraulic Servo System

(3. Mathematical Model of Dynamic Systems)

- Newton's laws
- spring, mass, damper, friction
- Energy Method
- Linearization of nonlinear systems
- Kirchhoff's laws
- resistor, inductor, capacitance
- Operational Amplifiers
- Complex Impedance
- DC Servo Motors

- 4. Transfer Function Approach to Modeling Dynamic Systems
 - Closed Loop Transfer Function
 - Transient Response Analysis with MATLAB
 - Step input response, Ramp input, Impulse response
- 5. Mathematical Modeling of Dynamic System in State Space
 - states, state space, state equations
 - matrix exponential
 - state transition matrix
 - solution of state equation
 - state transformation, diagonalization / Jordan Canonical Form

6. Linear System Analysis in Time Domain

- First order systems, time constant
- second order systems, natural frequency, damping ratio
- higher order systems
- characteristic equations, characteristic roots, complex poles
- transient response

7. Frequency Response

- definition: Steady State Frequency Response
- unit step response versus frequency response
- Bode Plot
- Vibration Isolation in Rotating Systems
- Transmissibility
- dynamic vibration absorber
- seismograph/accelerometer

System Control (next semester)

- 1. System control: Key issues in control systems
 - stability
 - performance:
 - Command tracking
 - Disturbance rejection
 - robustness
 - stability robustness
 - performance robustness
 - 2. control system representation
 - transfer function
 - state equations
 - graphical representation: block diagram, signal flow graph
 - 3. Stability
 - equilibrium
 - stability definition
 - stability of LTI systems
 - stability tests

System Control (next semester)

4. Controller design

- feedback control systems (closed-loop control systems)
- Root Locus method: pole placement
- Frequency Response method : lead/lag compensators
- analysys and design Using MATLAB
- control system simulation using MATLAB/SIMULINK
- PID Control
- state space method