Chapter 6. Wind-Generated waves

6.1 Waves at Sea

local wind wave (short-crested) + swell (long-crested)

fully developed sea: unlimited fetch and duration of wind; wind energy input is
balanced by energy dissipation due to wave breaking.

growing sea: limited fetch and duration of wind (most cases in nature)



6.2 Wind-Wave Generation and Decay
e Phillips (1957): initial stage

Turbulent wind energy is transferred to water by pressure fluctuation.
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H(t) <t (linear growth of waves)
e Miles (1957): developing stage

After some waves are developed, eddies are formed at troughs.
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Assume that wave growth = sum of linear + exponential growth, and find coefficients
using field dat



e Hasselmann (1962)

wave interactions — energy transfer to lower frequencies
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Figure 6.2. 'Wave spectra growth.

Growth of wind waves depends on
1) fetch length, F
2) wind speed, W
3) duration of wind, t,
4) fetch width, B
5) water depth, d
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Figure 6.1. Idealized wave growth and decay for a constant wind velocity.

If t, >F/C,, fetch-limited, H,T = f(W,F)

If t, =x,/C, <F/C,,duration-limited, H,T = f(W,t,)

6.3 Wave Record Analysis for Height and Period

Zero-crossing method:
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H_ = average of the highest n% of the wave heights
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intext  more common expression

e.g. Hy

H, = H, (significant wave height)

Wave height distribution

Find probability density function, p(H), by plotting histogram of wave height:
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jow p(H)dH =1 for probability density function



Longuet-Higgins: p(H) is given by a Rayleigh distribution
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Fig. 6.5: line a — exceedance prob.[HH > HH J
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Note: P inthe y-axisof Fig.6.5mustbe 1-P

line b — average of the highest n% waves
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where T, = significant wave period from zero-crossing method

T, = peak period from spectral analysis.



6.4 Wave Spectral Characteristics

Irregular waves = superposition of many sinusoidal waves of different frequency,
amplitude, phase, and direction

Using directional spectrum analysis, we obtain directional spectrum, S(f,8).

Assuming single wave direction, we obtain frequency spectrum, S(f).
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For a sinusoidal wave, energy per unit surface area or energy density is

E==pgH?2

|~

Since pg = constant, we can write

S(f,e)dfd9=f+sz%z; H=H(f,0)
S(f)df:”df%z; H = H(f)
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where T. = length of wave measurement. Considering the potential energy due to
waves,



Since E, = Ex, the total energy density is
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where the over-bar of 7> denotes time-average. Note that 7 is the variance of 7.

The definition of variance is Var(x) = E[(x — y)z]. In our case, the mean, u is zero.

For a discretely sampled 7,
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where N = number of samplesin T..

Recalling

From Eq. (6.8)
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where m, = zeroth moment of spectrum. The nth moment is given by

m, :jo fS(f)df

Since E = pgn?, n° =m,.Also, since E:’log—ng, H,=4/m, =H

In deep water, H, =H_,.As kd decreases, H, >H,, (seeFig.6.7)

6.5 Wave Spectral Models

General form of frequency spectrum: S(f)= f—A;eB’ v

where A,B = empirical constants

Bretschneider spectrum

S(T) = ﬂe—o.msa Ty

Using S(f)=S(T)T? and T =1/f,

S(f) _ 3. 44T H e—o.675(T/f)4
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Bretschneider-Mitsuyasu spectrum (applicable to finite depth)

S(f)=0.205H 2T, (T, ) exp|- 0.75(T, )|

Pierson-Moskowitz spectrum (for fully developed seas)

S(f)= oy’ o -074(g /246"

(2x)* f°
where o =8.1x10"° and W =wind speed at 19.5 m above SWL = (1.05 ~1.1)W,,

JONSWAP spectrum (growing seas in deep water)

Based on data of JOint North Sea WAve Project

where y = peak enhancement factor (typical value = 3.3), and

0.07 for f < fp
O =
0.09 forf > fp



JONSWAP spectrum with y =1.0 = Pierson-Moskowitz spectrum
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TMA spectrum (includes effect of finite water depth)

Stua =S, @(f,d)

where @(f,d) = Kitaigordskii shape function for finite depth effect:

0.5} for o, <1
®(f,d)=41-052-w, ) for 1<w, <2
1 for w, >2

where @, = 2af (d/g)"'?
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Figure 6.9. Correction factor for TMA spectrum.



Directional wave spectra

Frequency spectrum assumes waves with many different frequencies but a single
direction. The real waves consist of many component waves with different frequencies
and directions. Therefore, we need directional wave spectra.

S(f,0) =S(f)G(f:0)

where G(f;8) = directional spreading function, which represents directional
distribution of wave energy. In general, G(f;#) varies with frequency, f:

small f — long-period waves — narrow spreading
large f — short-period waves — wide spreading

We take
jf G(f:0)do =1
so that G(f;6) represents relative magnitude of directional spreading of wave energy.
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Cosine square function:

G(f;0)=G(0) :Ecosze <« independent of f
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Mitsuyasu-type function:

0

G(f;0) :G(s)coszs(gj; G(s) = 27 (s+1)

I'(2s+1)

[ s (F1E,)° for f < f,
| Spe (T F,)7%° for f > f

max

max

S=S at f = fp, and s decreases as ‘f - fp‘ increases.
Swell — larger s, — narrow spreading

Wind wave — smaller s, — wide spreading



6.6 Wave Prediction - SMB Method
)

Sverdrup, Munk, Bretschneider

Consider a box storm:
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Choose the smaller values of (1) and (2). If (1) is smaller, it is fetch-limited condition. If
(2) is smaller, duration-limited condition.

For a typhoon, use Egs. (6.37) and (6.38):

R = radius to maximum wind speed (W)
Ap = p, — p, = strength of typhoon

V. = forward speed of typhoon

a =1 for slow moving typhoon



6.7 Wave Prediction — Spectral Models

S(f)= f—ieB”“ < general form

A,B =empirical constants= f(W,F,t,)

Given W,F,t, = S(f) — H =H,, =4my; my=["S(f)df

B_oat f=1, >find f, - T, — T, =0.95T,
of

SPM: W, F,t, —(wi/o calculation of S(f))— H_,,T, for JONSWAP spectrum

W, =0.7IW %

0.5
o _ 0.0016(\/?/—':2] (6.40)

A A

gT F 0.33
20 _0.286 I (6.41)
WA A

0.66
9 _gggl 9 (6.42)
WA WA
where t," = minimum duration for fetch-limited condition, whereas t, = actual
duration.

If t, >t,", fetch-limited — Use Egs. (6.40), (6.41)

If t, <t,', duration-limited — Calculate F using t,'=t, with Eq. (6.42)

— Use Egs. (6.40), (6.41) with new F .

6.8 Numerical Wave Prediction Models (read text)



6.9 Extreme Wave Analysis
Return period (B4 111H)?

Ex) H, of 50 year return period = significant wave height which can occur once in
every 50 years on the average.

How can we estimate H, of 50 year return period with limited data (e.g. 2 year data)?

Return period analysis using Gumbel distribution

1) H, was measured every hour for 2 years.
2) Select daily maximum H.,.
number of data, N =365x2 =730,

r =time interval in years = 1 0.00274
365

3) Rearrange H, in descending order from H_ (1) to H_ (N).
4) Compute cumulative probability, P(H,) foreach H..

PlK)
‘ PHm) = 1= 372

m

Hs(m)

Hs

5)Plot H, vs —In{~In[P(H,)]} = Find S,y for best fit.

Gumbel distribution: P(H) = exp{_ exp{_(Hﬂ—yﬂ}

H =—-gIn{-In[P(H)]}+»

6) Calculate P(H,)/; by using

T, 0.00274

r
T_:l_P(Hs) - P(HS)T,:SO:]'_T =1-

r r

=0.9999452




7) Calculate H, (T, =50 yr) by

H|r 5o =—AIn{~1n(0.9999452)}+ y

Use similar procedures for other distributions (see Table 6.1)

Encounter probability:

E=1-e"'" « &7zt T ol Abo] 7|7+ T 5¢t
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