

Introduction to Materials Science and Engineering

11. 28. 2019 Eun Soo Park

Office: 33-313 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by appointment

Chapter 13: Properties and Applications of Metals

ISSUES TO ADDRESS...

- How are metal alloys classified and what are their common applications?
- What are the microstructure and general characteristics of cast irons?
- What are the distinctive physical and mechanical properties of nonferrous alloys?

Materials Design-for-Properties : "Alloyed Pleasure"

Period	Periodic Table of the Elements																	
	1 (1A) 화학이 지구를 더 푸르게 (VIIIA)																	
1	H 1 Hydrogen 100794 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2																	
	Li 3	Be 4	^a Mass nur stable or	mber of mos best-knowr	t	Symbol	8 C	Atomic number	Atomic we Atomic we	ights are bai ights in pare	sed on carb intheses indi	on-12. icate the	B 5	C 6	N 7	O 8	F 9	Ne 10
2	Lithium 6941	Beryllium 901218	isotope b _{Mass} of	the isotope	of	Atomic	Oxygen 15.9994	Name	most stable	e or best-kr	nown isotope	1 .	Boron 10,81	Carbon 12,011	Nitrogen 14.0067	Oxygen 15,9994	Fluorine 18,99840	Neon 21,1797
	2s ¹	2s ²	longest h	alf-life			2S ² 2P ⁴	Electron arrangement					2s ² 2p ¹	2s ² 2p ²	2s ² 2p ³	2s ² 2p ⁴	2s ² 2p ⁵	2s ² 2p ⁶
	Na 11	Mg 12				Tra	ansition	elemer	nts —				AI 13	Si 14	P 15	S 16	CI 17	Ar 18
3	Sodium 22,98977	Magnesium 24,305	3	4	5	6	7	8	9	10	11	12	26,98154	28,086	30,97376	32,06	35,453	39,948
	3s ¹	3s ²	(B)	(IVB)	(VB)	(VIB)	(VIIB)	F -	(VIIB)	NI	(IB)	(IIB)	3s ² 3p ¹	3s ² 3p ²	3s ² 3p ³	3s ² 3p ⁴	3s ² 3p ⁵	3s ² 3p ⁶
	K 19	Ca 20	SC 21	Titanium	V 23	Cr 24	Manganese	re 26	CO 27 Cobalt	Nickel	Cu 29 Copper	Zinc 30	Gallium	Ge 32 Germanium	AS 33 Arsenic	Selenium	Bromine 35	Krypton 36
4	39.098	40,08	44,9659	47.90	50,9415	51,996	54,9380	55.845	58,9332	58,69	63,546	65,409	69.72	72,61	74,9216	78.96	79,904	83,80
	4s ¹	4s ²	3d ¹ 4s ²	3d ² 4s ²	3d ³ 4s ²	3d ⁵ 4s ¹	3d ⁵ 4s ²	3d ⁶ 4s ²	3d74s2	3d84s2	3d104s1	3d104s2	3d104s24p1	Sn so	Sh st	30 ¹⁰ 45 ² 4p ⁴	30104524p	Xe EA
-	RD 37 Rubidium	Strontium	T 39 Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
5	85,4678	87.62	88,9059	91,22	92.9064	95.94	98,9062 ^b	101.07	102,9055	106,4	107,868	112411	114.82	118,71	121,760	127,60	126,9045	131,293
	551	5s ²	4d15s2	4d25s2	4d4551	4d°5s1	40°552	40'55'	40°55'	Pt 79	40105ST	Ha 80	TI 81	Pb 82	Bi 83	PO 84	At 85	Rn 86
	Cesium	Barium	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
6	132,9054	137,327	138,9055	178,49	180,9479	183,84	186.2	190,2	192.22	195.078	196,9665	200.59	204,3833	207,2	208,9604	(210) ^a	(210) ^a	(222) ^{es}
	6s'	654 Ra	50'6s2	41145d2652	Db 105	SG 100	Bh 107	HS 108	Mt 109	- 110	- 111	41 50 -05-	H. 00 05 0p.	41 00 05 0p	- an an as ab.	4 00 05 00	4 00 00 00	1 00 00 00
_	Francium	Radium	Actinium	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium		-		Meta		Semime	tal	Nonm	etal
7	(223) ²	226,0254b	1227/9	(261) ^P	(262)	(266)	(264)	(269)	(268)	(269)	(272)							

	Ce 58	Pr 59	Nd 60	Pm 61	Sm 62	Eu 63	Gd 64	Tb 65	Dy 66	Ho 67	Er 68	Tm 69	Yb 70	Lu 71
Lanthanide series [*] ₆	Cerium 140,116	Praseodymium 140.90765	Neodymium 144,24	Promethium (145 ^p	Samarium 150,4	Europium 151.964	Gadolinium 157,25	Terbium 158,92534	Dysprosium 162,50	Holmium 164,93032	Erbium 167,26	Thulium 168,9342	Ytterbium 173.04	Lutetium 174,97
	4115d16s2	4136s2	4f ⁴ 6s ²	41 ⁵ 6s ²	41 ⁶ 6s ²	4f ⁷ 6s ²	4f ⁷ 5d ¹ 6s ²	4196s ²	4f ¹⁰ 6s ²	4f ¹¹ 6s ²	41126s2	4f136s2	4f ¹⁴ 6s ²	4f145d16s2
	Th 90	Pa 91	U 92	Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	ES 99	Fm 100	Md 101	No 102	Lr 103
Actinide series ** 7	Thorium 232.0381 ^b	Protactinium 231.03588	Uranium 238,02891	Neptunium (237)	Plutonium (244)	Americium (243)	Curium	Berkelium (247)	Californium (251) ^a	Einsteinium (251)	Fermium (257)	Mendelevium (258)	Nobelium (259)	Lawrencium (262)
	6d ² 7s ²	5f26d17s2	5f36d17s2	5f46d17s2	5f ⁶ 7s ²	5f77s2	5f76d17s2	5f ⁹ 7s ²	5f107s2	5f ¹¹ 7s ²	5f127s2	5f137s2	5f ¹⁴ 7s ²	5f146d17s2

Inner transition elements

Design-for-properties (since the Bronze Age!)

Materials Design-for-Properties : "Alloyed Pleasure"

Rising trend of alloy chemical complexity versus time. Note that "IMs" stands for intermetallics or metallic compounds and "HEA" for high-entropy alloy.

Classification of Metal Alloys

Production of Cast Irons

Based on data provided in Tables 13.1(b), 14.4(b), 13.3, and 13.4, Callister & Rethwisch 9e.

Chapter 13 - 8

철강의 생산과정 : Iron making \rightarrow Steelmaking \rightarrow Rolling

철강의 생산과정 : Iron making \rightarrow Steelmaking \rightarrow Rolling

II. Nonferrous Alloys

Based on discussion and data provided in Chapter 13, Callister & Rethwisch 9e.

III. Advanced Engineering Alloys

- a. Superalloys
- **b. Shape memory alloys**
- c. Quasicrytals
- d. Bulk metallic glasses
- e. High entropy alloys

* <u>Development strategy of completely new materials</u>

a. Alloyed pleasures: Multi-metallic cocktails

b. Synthesize metastable phases

Equilibrium conditions \rightarrow Non-equilibrium conditions

: non-equilibrium processing = "energize and quench" a material

TABLE 1.1

Departure from Equilibrium Achieved in Different Nonequilibrium Processing Methods

	Effective Quench Rate	Maximum Departure from Equilibrium (kJ mol ⁻¹)			
Technique	(K s ⁻¹), Ref. [25]	Ref. [28]	Refs. [29,30]		
Solid-state quench	10 ³		16		
Rapid solidification processing	$10^{5}-10^{8}$	2–3	24		
Mechanical alloying	—	30	30		
Mechanical cold work	—	_	1		
Irradiation/ion implantation	1012		30		
Condensation from vapor	1012	_	160		

Still design-for-properties, to enable new technologies

New challenges : Less use, Extend lifetime, Reuse!

Extend lifetime, where possible, **Reuse!**

Materials design for reuse

Damage process is incremental, and often local \rightarrow repair opportunity

Two damage repair options possible:

- The metal autonomously repair damage → *Self-healing*

- Damage is repaired by an external treatment → *Resetting*

Self Healing New paradigm for structural material development

- Transformation kinetics in metals are slow at room temperature!

Commercialized self-healing polymer

Healing agent's movement and reaction occurs even with small energy at room temperature

Self-healing metals Current technical level

Prevention of microcrack propagation via healing agent

For metals, restrictive thermodynamic / kinetic driving force for self-healing at RT!

Self-healing metals vs Resettable alloys

- self-healing: "autonomic closure of micro-cracks"
- resetting: "non-autonomic retrieval of crack-arresting ability"

Different failure mechanisms require different resetting strategies

New challenges : *Resettable alloys*!

Resetting treatment 를 통해 초기 미세구조로 회복 가능한 Resettable alloy!

Urgent need for mission change: Materials design-for-"properties" & "reuse"

Chapter 14: Properties and Applications of Ceramics

ISSUES TO ADDRESS...

- In what ways are **ceramic phase diagrams** different from phase diagrams for metals?
- How are the **mechanical properties of ceramics** measured, and how do they differ from those for metals?
- How do we classify ceramics?
- What are **some applications of ceramics**?

I. Ceramic Phase Diagrams

a. Al_2O_3 - Ca_2O_3 diagram: complete solid solution

Adapted from E. N. Bunting, "Phase Equilibria in the System Cr2O3–Al2O3," Bur. Standards J. Research, 6, 1931, p. 948.

Isomorphous Binary Phase Diagram

- Indicate phases as a function of *T*, *C*, and *P*.
- For this course:
 - binary systems: just 2 components (Cu and Ni).
 - independent variables: T and C (P = 1 atm is almost always used).

Cooling of a Cu-Ni Alloy

• Phase diagram: $T(^{\circ}$ C) (liquid) L: 35 wt%Ni Cu-Ni system. Cu-Ni system * **d** 1300 Consider L: 35 wt% Ni microstuctural α: 46 wt% Ni changes that 32 43 accompany the L: 32 wt% Ni 24 cooling of a × 0 α: 48 wt% Ni 1200 $C_0 = 35$ wt% Ni alloy L: 24 wt% Ni α: 36 wt% Ni α - Cored vs Equilibrium Phases (solid) α: 35 wt% Ni Uniform C_{α} : First α to solidify: 35 wt% Ni 46 wt% Ni ast α to solidify: 1100 35 wt% Ni 35 20 30 40 50 wt% Ni C_0 Adapted from Fig. 11.4, Callister & Rethwisch 9e.

Ceramic Phase Diagrams

b. MgO-Al₂O₃ diagram: Eutectic system

Fig. 14.2, Callister & Rethwisch 9e. [Adapted from B. Hallstedt, "Thermodynamic Assessment of the System MgO–Al₂O₃," J. Am. Ceram. Soc., 75[6], 1502 (1992). Reprinted by permission of the American Ceramic Society.]

MgAl₂O₄ (or MgO-Al₂O₃) Spinel: 중간상 - 고용체

Eutectic Systems

- For alloy of composition $C_0 = C_E$
- Result: Eutectic microstructure (lamellar structure) -- alternating layers (lamellae) of α and β phases.

Micrograph of Pb-Sn eutectic microstructure

Fig. 11.13, *Callister & Rethwisch 9e.* (From *Metals Handbook*, 9th edition, Vol. 9, *Metallography and Microstructures*, 1985. Reproduced by permission of ASM International, Materials Park, OH.)

Ceramic Phase Diagrams c. ZrO₂-CaO diagram: Eutectic system

지르코니아

Adapted from V. S. Stubican and S. P. Ray, "Phase Equilibria and Ordering in the System ZrO2–CaO," J. Am. Ceram. Soc., 60[11–12] 535 (1977). Reprinted by permission of the American Ceramic Society. 30

Ceramic Phase Diagrams

d. SiO₂-Al₂O₃ diagram: 대표적 내화세라믹 재료

Ceramic Phase Diagrams

b. MgO-Al₂O₃ diagram: Eutectic system

Fig. 14.2, Callister & Rethwisch 9e. [Adapted from B. Hallstedt, "Thermodynamic Assessment of the System MgO–Al₂O₃," J. Am. Ceram. Soc., 75[6], 1502 (1992). Reprinted by permission of the American Ceramic Society.]

MgAl₂O₄ (or MgO-Al₂O₃) Spinel: 중간상 - 고용체

II. Mechanical Properties

14.6 세라믹의 취성파괴

Ceramic materials are **more brittle** than metals.

: 재료의 파괴시 에너지 흡수가 거의 없이 **취성파괴**를 일으킴

Why is this so?

- Consider mechanism of deformation
 - In crystalline, by dislocation motion
 - In highly ionic solids, dislocation motion is difficult
 - <u>few slip systems</u>
 - resistance to motion of ions of like charge (e.g., anions) past one another

대체로 얇은 판에 있어 K,값은 시편 두께에 따라 변한다. 시편의 두께가 균열 크기보다 매우 크면 Kc값은 시편 두께의 영향을 받지 않으며, 이를 평면 변형률(plane strain)상태라고 한다. 이러한 두꺼운 시편에서

Based on data in Table B5,

toughness)

 $K_c = Y \sigma \sqrt{\pi a}$ $(= MPa\sqrt{m})$

* 우측항 값이 K_{lc} 보다 작아도 어떤 환경의 정적 응력하에서 세라믹 재료 파괴

= Static Fatigue or delayed fracture

→대기 중 습기의 영향으로 균열 선단에서 응력부식 파괴가 발생

→정적 피로 강도 표시는 (응력 + 시간)

* 세라믹 재료의 파괴강도 왼쪽과 같은 분포를 나타냄_결함의 존재확률로 설명

단, 압축 응력에서는 결함에 의해 응력 증폭의 효과가 없어 세라믹에서의 강도가 인장에서보다 압축이 10배정도 큼

→ 세라믹의 파괴강도는 표면에 잔류 압축 응력을 부가하여 상당히 증가시킬 수 있음 열 템퍼링 (Thermal tempering)

Figure 14.5 질화규소 재료에서 측정된 파괴강도의 분포 빈도

Figure 17.27 유리판 단면의 상온 잔류응력 분포

: 공기 제트나 기름욕 (oil bath) 내에서 상온까지 냉각 표면과 내부의 냉각 속도가 상이하기 때문에 잔류응력 발생

 Figure 14.6
 취성 세라믹에서 일반적인 네 종류의 하중 인가

 조건에서 인가된 응력 패턴에 따른 생성되는
 균열의 기원 및 형상의 모식도
 37

*세라믹의 파면

b. 파단면 (Fractography)

균열이 전파하는 동안 재료의 미세구조, 응력, 발생된 탄성파 등과 상호작용을 하며 파단면에 특정한 특징을 유발

응력 증가 $\uparrow \rightarrow$ 가속도 $\uparrow \rightarrow r_m \downarrow$

Adapted from J. J. Mecholsky, R. W. Rice, and S. W. Freiman, "Prediction of Fracture Energy and Flaw Size in Glasses from Measurements of Mirror Size," J. Am. Ceram. Soc., 57[10] 440 (1974). Reprinted with permission of The American Ceramic Society, www.ceramics.org. Copyright 1974. All rights reserved.

Fig. 6 Fracture surface around origin. Origin is surrounded with mirror region, which is covered with mist Hackle mark. Failure stress can be estimated using radius of the mirror region.

Mist region Hackle region 200 µm

Origin

Mirror region

: 응력 분포 및 균열의 전파방향에 대한 정보제공

아크형상 Wallner Lines 파단시 생성되는 탄성(음)파와 균열 선단과 상호작용으로 발생

Fig. 10 Fracture surface around origin. Radial Hackle marks, symmetrical Wallner lines with Arrest lines are existed

Fig. 4 Secondary Wallner lines created by crack 39 propagation with bending stress. Cracks run left to right (arrow mark).

14.7 응력-변형률 거동

Flexural Tests – Measurement of Elastic Modulus

- Room T behavior is usually elastic, with brittle failure.
- 3-Point Bend Testing often used.
 - -- tensile tests are difficult for brittle materials.

• Determine elastic modulus according to:

Flexural Tests – Measurement of Flexural Strength

• 3-point bend test to measure room-*T* flexural strength.

• Flexural strength:

$$\sigma_{fs} = \frac{3F_f L}{2bd^2} \quad (\text{rect. cross section})$$
$$F_f L$$

$$\sigma_{fs} = \frac{\Gamma_f L}{\pi R^3} \quad \text{(circ. cross section)}$$

 Typi 	ical values).).	
Material	σ_{fs} (MPa) I	E(GPa)	
Si nitride	250-1000	304	
Si carbide	100-820	345	
Al oxide	275-700	393	
glass (soda-li	ime) 69	69	

Data from Table 14.1, Callister & Rethwisch 9e.

Figure 14.10 알루미나와 유리의 응력 변형률 거동_ 탄성거동 세라믹의 탄성계수 = 70 ~ 500 GPa 범위 금속보다 약간 높음

42

14.8 소성변형기구

Consider mechanism of deformation In crystalline ceramic, by dislocation motion In non-crystalline ceramic, by viscous flow

Viscosity (η): 비정질 재료의 변형에 대한 저항

Figure 14.11 가해진 전단응력에 대한 액체와 유리의 점성유동의 모식도 ⁴³

Glass : undercooled liquid with high viscosity

The higher the structural relaxation, the closer it moves toward a "true" glass.

A solid is a materials whose viscosity exceeds 10^{14.6} centiPoise (10¹² Pa s) cf) liquid ~10⁻² poise 14.9 기타 기계적 고려사항

기공은 (1) 하중이 가해지는 면적을 감소시킴 (2) 응력집중자 역할 P가 파단계수를 지수함수적으로 감소시킴 ex) 10% 기공, 강도 50%이상 감소

Figure 14.12

Figure 14.13

상온에서 알루미나의 탄성 계수에 미치는 기공의 영향 상온에서 알루미나의 굴곡강도에 미치는 기공의 영향45

c. 경도 : 경도가 가장 높은 재료들이 세라믹 재료에 속함

 세라믹 재료는 압입시 쉽게 균열이 발생하여 정확한 경도를 측정하기 어려움 따라서, 균열을 심하게 유발하는 구형 압입자 [로크웰 Rockwell 경도 시험기와 브린넬 Brinell 경도시험기]가 사용되지 않고 피라미드형 압입자인 비커스 Vickers 와 누프 Knoop 법 (취성이 매우 심한 경우)이 주로 사용됨.

Material	Vickers Hardness (GPa)	Knoop Hardness (GPa)	Comments
Diamond (carbon)	130	103	Single crystal, (100) face
Boron carbide (B ₄ C)	44.2		Polycrystalline, sintered
Aluminum oxide (Al ₂ O ₃)	26.5	1 27	Polycrystalline, sintered, 99.7% pure
Silicon carbide (SiC)	25.4	19.8	Polycrystalline, reaction bonded, sintered
Tungsten carbide (WC)	22.1	5	Fused
Silicon nitride (Si ₃ N ₄)	16.0	17.2	Polycrystalline, hot pressed
Zirconia (ZrO ₂) (partially stabilized)	11.7		Polycrystalline, 9 mol% Y ₂ O ₃
Soda-lime glass	6.1		

Table	14.2	Vickers	and Knoop	Hardnesses for Eight Ceramic Materials
-------	------	---------	-----------	--

Creep

Sample deformation at a constant stress (σ) vs. time

Secondary Creep: steady-state i.e., constant slope ($\Delta \varepsilon / \Delta t$).

Tertiary Creep: slope (creep rate) increases with time, i.e. acceleration of rate.

Creep: Temperature Dependence

• Occurs at elevated temperature, $T > 0.4 T_m$ (in K)

d. 세라믹 재료의 크리프는 T_m이 금속보다 상대적으로 커서 좀더 높은 온도에서 발생

III. Classification of Ceramics

Figure 14.14 용도에 따라 분류한 세라믹 재료

a. Glass (유리): SiO₂ (Silicate) + CaO, Na₂O, K₂O 및 Al₂O₃ 등 포함

Figure 14.15 루나 유리의 결정화 반응에 대한 연속냉각 변태곡선

b. 점토 제품: Structural clay products (벽돌, 타일, 하수구 파이프 등)과 Whitewares (백자=도자기, 식기, 접시, 화장실 도기 등)

c. 내화물 (Refractory ceramic):

(1) 가혹한 분위기하 불활성상태 유지, (2) 고온에서 용융되거나 분해되지 않음, (3) 열차폐 가능

_	Composition (wt%)								
Refractory Type	Al_2O_3	SiO ₂	MgO	Cr_2O_3	Fe_2O_3	CaO	TiO ₂	Porosity (%)	
Fireclay	25-45	70–50	0–1		0–1	0–1	1–2	10–25	
High-alumina fireclay	90-50	10-45	0–1		0–1	0–1	1–4	18–25	
Silica	0.2	96.3	0.6			2.2		25	
Periclase	1.0	3.0	90.0	0.3	3.0	2.5		22	
Periclase-chrome ore	9.0	5.0	73.0	8.2	2.0	2.2		21	

Table 14.4 Compositions of Five Common Ceramic Refractory Materials

Source: From W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, *Introduction to Ceramics*, 2nd edition. Copyright © 1976 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.

d. 연마재 (Abrasive ceramic):

상대적으로 연한재료를 마무, 연마, 절삭하는데 사용 인조 또는 천연 다이아몬드 (비쌈), 탄화규소, WC, 산화 알루미늄, 실리카 모래

- Cutting tools:
 - -- for grinding glass, tungsten, carbide, ceramics
 - -- for cutting Si wafers
 - -- for oil drilling
- * manufactured single crystal or polycrystalline diamonds in a metal or resin matrix.
- * polycrystalline diamonds resharpen by microfracturing along cleavage planes.
- Sandpaper 등 코팅된 연마재 혹은 기름과 물에 혼합된 연마재 등

oil drill bits

Single crystal diamonds

polycrystalline diamonds in a resin matrix.

e. 시멘트 (cement): 포틀랜드 시멘트, 석고 (수성), 석회석 (비수성)_ 재료성분 중 일부가 결합제로 작용 → 화학적으로 결합

f. 탄소재료: 탄소의 동질이상체 (다이아몬드, 흑연, 탄소섬유)

	Material						
		Gr					
Property	Diamond	In-Plane	Out-of-Plane	Carbon (Fibers)			
Density (g/cm ³)	3.51	2.	26	1.78–2.15			
Modulus of elasticity (GPa)	700–1200	350	36.5	230-725 ^a			
Strength (MPa)	1050	2500	—	1500-4500 ^a			
Thermal Conductivity (W/m·K)	2000–2500	1960	6.0	11–70 ^a			
Coefficient, Thermal Expansion (10 ⁻⁶ K ⁻¹)	0.11–1.2	-1	+29	$-0.50.6^{a}$ $7-10^{b}$			
Electrical Resistivity (Ω·m)	$10^{11} - 10^{14}$	1.4×10^{-5}	1×10^{-2}	$9.5 \times 10^{-6} - 17 \times 10^{-6}$			

Table 14.5 Properties of Diamond, Graphite, and Carbon (for Fibers)

^aLongitudinal fiber direction.

^bTransverse (radial) fiber direction.

g. Advanced Ceramics:

세라믹의 독특한 전기적, 자기적, 광학정 성질 활용 → 내연기관, 터빈 엔진, 전자패키징, 절단용구 그리고 에너지 변환 저장 및 발전에 사용 (제19, 21, 22장 참고)

Ex. (1) Materials for Automobile Engines

- Advantages:
 - Operate at high temperatures – high efficiencies
 - Low frictional losses
 - Operate without a cooling system
 - Lower weights than current engines

- Disadvantages:
 - Ceramic materials are brittle
 - Difficult to remove internal voids (that weaken structures)
 - Ceramic parts are difficult to form and machine
- Potential candidate materials: Si₃N₄, SiC, & ZrO₂
- Possible engine parts: engine block & piston coatings 54

(2) Ceramics Application: Sensors

- Example: ZrO₂ as an oxygen sensor
- Principle: Increase diffusion rate of oxygen to produce rapid response of sensor signal to change in oxygen concentration
- Approach:
 - Add Ca impurity to ZrO2:
 - -- increases O²⁻ vacancies
 - -- increases O²⁻ diffusion rate
- Operation:
 - -- voltage difference produced when O²⁻ ions diffuse from the external surface through the sensor to the reference gas surface.
 - magnitude of voltage difference
 ∞ partial pressure of oxygen at the external surface

(3) Nanocarbons

- Fullerenes spherical cluster of 60 carbon atoms, C₆₀
 - Like a soccer ball
- Carbon nanotubes sheet of graphite rolled into a tube
 - Ends capped with fullerene hemispheres

Fig. 14.20, Callister & Rethwisch 9e.

Nanocarbons (cont.)

- Graphene single-atomic-layer of graphite
 - composed of hexagonally sp^2 bonded carbon atoms

Fig. 14.22, Callister & Rethwisch 9e.

Summary

- Room-temperature mechanical behavior flexural tests
 - -- linear-elastic; measurement of elastic modulus
 - -- brittle fracture; measurement of flexural modulus
- · Categories of ceramics:
 - -- glasses
 - -- refractories

- -- clay products
- -- cements
- -- advanced ceramics