The effect of current on insulating ceramic materials during SPS

2018. 03. 19.

Ryu Jonghun

1. Effect of electric current on the microstructure and mechanical properties of hard-to-sinter materials with high melting point

Recycled kerf loss sludge SiC and Domestic production Si₃N₄ Sintering properties

3. Effect of electric current on the microstructure and mechanical properties of hard-to-sinter materials with high melting point

PART 1.

EFFECT OF ELECTRIC CURRENT ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF HARD-TO-SINTER MATERIALS WITH HIGH MELTING POINT

Background

The needs for structural ceramics

- ✓ Devices or parts for severe environment such as high T / strong mechanical load
- ✓ Materials with good properties especially mechanical properties
- ✓ Applications: bearing, automotive, aerospace, robot and etc.

aerospace.basf.com/

국내외 구조세라믹산업 현황 및 기술동향, (2010)

Materia		Advantages	Applications		
Ovida	SiO2	Low cost, Easy to process	Tube, Boat		
Oxide	AI2O3	High T/Wear/Corrosion resistance	Focus Ring		
	SiC	High T/Wear/Corrosion resistance Thermal shock resistance	Automotive engine parts, bearing		
Non oxide	AIN	High thermal conductivity	Heater Susceptor		
	Si3N4	Good wear-resistance at high T Thermal shock resistance	Wear-resistance material		

Background

5	2015	2014	2013	2012	2011	2010	2009	2008	2007	구분
4	39,301	34,804	30,829	27,315	24,207	21,457	18,969	16,771	14,830	ትደ
3	26,552	23,804	21,341	19,133	17,154	15,379	13,731	12,260	10,946	생산
2	10,035	8,864	7,830	6,917	6,110	5,398	4,768	4,212	3,721	수출
. 1	22,784	19,864	17,318	15,099	13,163	11,476	10,006	8,723	7,605	수입

Domestic market of structural ceramics

✓ Sustained growth, but raw materials/materials all imported

*출처: 신산업총연 특별기획보고서 (2006, 일본) Ceramic industry (2005)

- ✓ Technical competitiveness↓ (US, Japan)
 - -> Develop competitive process technique of structural ceramics

기관명	주요 내용
한국세라믹기술원	• 고열전도도, 고저항 질화알루미늄 소결기술 개발 * http://www.kicet.re.kr
KIST	 초고순도 탄화규소 원료개발 초고순도 반응소결 탄화규소 소결기술 개발 * http://www.kist.re.kr
재료연구소	 반응소결 질화규소 소결기술 개발 탄화규소의 저온 소결기술 개발 * http://www.kims.re.kr
KAIST	• 세라믹 소결의 치밀화 이론 분석 • 세라믹 소결의 비정상 입자성장 * http://www.kaist.ac.kr
SKC 솔믹스, 이노세라	• 대형 반응소결 탄화규소체 개발 * http://www.solmics.co.kr, www.inocera.co.kr
삼성전기	 나노 BaTiO₃를 이용한 극소형 고용량 MLCC 소결기술 개발 * http://www.samsungsem.co.kr

기관명	주요 내용
AIST	• 고열전도도 반응소결 질화규소 소결기술 개발 * http://unit.aist.go.jp/amri/
Yokohama National Univ.	• 질화규소계 세라믹스의 소결 및 역화특성 연구 • 질화규소 볼 베어링 소재의 내구성 연구 * http://www.ynu.ac.jp
Kyocera	• 비산화물계 대형 소결품 개발 * http://global.kyocera.com/prdct/fc/
Sumitomo	• 스프크 플라즈마 소결법의 개발 및 관련장비 개발 * http://www.shi.co.jp/sps/
Covalent Materials	 대형 반응소결 탄화규소체 개발 http://www.covalent.co.jp
NGK	• 질화알루미늄계 고열전도 세라믹 소재 개발 • 다공성 DPF 소재 개발 * http://www.ngk.co.jp
기관명	주요 내용
Oak-ridge National Lab.	• 질화규소 계면의 원자구조 및 기계적 물성 • 질화규소 터빈 블레이드의 실장시험 * http://www.oml.gov/
Ceradyne	• 비산화물계 방탄판의 개발 • 고온가압소결법의 연속공정개발 * http://www.ceradyne.com/
NASA	 ZrB₂계 초고은 세라믹스 개발 고온 세라믹 복합체 연구 http://www.nasa.gov/centers/glenn/

0

Leading research institutes

page 5

소재기술백서, (2011)

Material selection

- Silicon carbide (SiC)
 - Market conditions and application

SiC 소결체 및 분말에 관한 조사 (2013)

-> Widely used from high-strength to high-temperature semiconductor materials

- ➢ Silicon nitride (Si₃N₄)
 - ✓ Market conditions

Worldwide market of silicon nitride

In	le M	MT ; Metric ton			
	Japan	Germany	Others	Total	
2010	16 MT	5 MT	4 MT	25 MT	
2011	16 MT	10 MT	4 MT	30 MT	

수출입무역통계 (shippersgate.kita.net)

- Production volume of major companies
 - UBE (Japan) : 600 MT/year , Denka (Japan) : 100 MT/year
 - H.C Starck (Germany) : 100 MT/year
 - Others : Accumet Materials, Alzchem (US), EnoMaterial (China)

-> No domestic production company !!

- ➢ Silicon nitride (Si₃N₄)
 - ✓ Applications

Experimentals

Experimentals

Results

- Sintering $T \uparrow \rightarrow$ porosity $\downarrow \rightarrow$ Density \uparrow
- SPS ; low T densification by current/heat effects
 - short time -> grain growth↓
- page 11 Hardness(SPS) >> Hardness(CS)

Results

- Sintering T ↑ → porosity ↓ → Density ↑
- No current effect : microstructure evolution, mechanical properties

Discussion

- Silicon carbide
 - Properties depend on sintering conditions
 - -> temperature / time

-> paper published

Ceramics International

The effects of B_4C addition on the microstructure and mechanical properties of SiC prepared using powders recovered from kerf loss sludge

Jun-Young Cho a, Tae-ho An a, Sang-gu Ji a, Youngseok Kim b, Hyunick Shin b, Sarah Wonjung Kim c, Sung-Hwan Bae d, Miyoung Kim a, Chan Park a, e & 🖾

Silicon nitride

- Properties depend on sintering conditions
 - -> temperature / time
- ✓ HPed properties are relative higher than SPSed

PART 2.

RECYCLED KERF LOSS SLUDGE SIC AND DOMESTIC PRODUCTION SI3N4 SINTERING PROPERTIES

page 14

Intro

Recycled kerf loss sludge SiC and Domestic production Si3N4 Sintering properties

Recycling technique

Cutting wire ; SiC abrasive

Composition	SiC (%)	Recycled SiC (%)		
SiC (%)	99	99.2		
Free-SiO2 (%)	0.75	0.51		
Free-Si (%)	0.05	0.21		
Free-C (%)	0.20	< 0.01		
Fe (ppm)	50	303		
Al (ppm)	250	28		
Ni (ppm)	<10	25		
V (ppm)	70	19		
Na (ppm)	<100	23		
Ca (ppm)	20	79		
Ti (ppm)	200	50		
Mg (ppm)	<100	10		
K (ppm)	20	15		

page 16

Production technique of silicon nitride

	Carbothermal reduction	Method	Quality	Purity	Cost	Productivity	Company
	: 3SiO2 + 6C + 2N2 → Si3N4 +6CO (1300~	Carbothermal	Х	Х	0	0	
	Vapor phase reaction	Vapor phase reaction	0	0	\triangle	X	
	: 3SiCl4 + 16NH3 → Si3N4 + 12NH4Cl (130	0~1500 ^{rect} nitridation	\bigtriangleup	\triangle	0	0	DENKA H.C.Starck
	Direct niridation	Imide decomposition	0	0	X	0	UBE
	: 3Si + 2N2 → Si3N4 (1300~1500°C)	LT vapor- phase reaction	0	0	\triangle	0	
\succ	Imide decomposition	_					-

- Step 1: SiCl4 + 6NH3 \rightarrow Si(NH)2 + 4NH4Cl (-50~0°C, in solvent)
- Step 2: Solvent removal
- Step 3: $3Si(NH)2 \rightarrow amorphous-Si3N4 + 2NH3 (1000 \circ C)$
- Step 4: Si3N4 → crystal-Si3N4 (1300~1500 °C)

Low-temperature vapor-phase reaction

- Step 1: SiCl₄ + 6NH₃ \rightarrow Si(NH)₂ + 4NH₄Cl (25 °C) - Step 3 3Si(NH)₂ \rightarrow amorphous-Si₃N₄ + 2NH₃ (1000 °C)

- Step 4: $Si_3N_4 \rightarrow crystal-Si_3N_4$ (1300~1500 °C)

PART 3.

EFFECT OF ELECTRIC CURRENT ON SILICON NITRIDE CERAMIC ON SINTERING

Background

SPS(Spark plasma sintering) Apparatus and Features

- ♦ Apparatus
 - Mechanical press
 - Electrical energy supply
 - Electrodes
 - Container (mold/die)
 - Material (powder form)
- ♦ Features
 - Fast heating rate
 - Low sintering temperature
 - Short holding time

SPS Advantages and Application

- •Full densification with limited, or even inhibited grain growth
- Prevent undesirable phase transformations/reaction in the initial materials
- Every materials can sinter (metal/ceramic/composite)

Background \geq

Possible mold set-up on conductivity of ceramic materials

Conductive ceramic materials

- Conducting/insulating mold can be used
- Conducting mold -> general SPS
- Insulating mold -> SPS with high current density
- Insulating materials
 - Only conducting mold can be used

Effect of the current on ceramic sintering

J. Am. Ceram. Soc. 74 [6] 1217-25 (1991)

Background

✓ Comparison HP vs SPS

Effect of SPS on densification and mechanical properties of SiC

Materials: SiC + 5wt% AI_2O_3 + 2wt% Y_2O_3

Conditions: 1800°C, 30Mpa and 5min

Journal of the Ceramic Society of Japan 103 [7] 1995

-> The results suggest that the inside temperature of the sintered bodies during SPS was higher

than the measured temperature

Purpose

- To investigate the effect of current on sintering
- Experimental set-up
 - Thermal effect In-situ temperature measurement
 - Electrical effect Microstructure analysis

-> Comparison SPS and HP process (existence of electric current)

Experimental details

✓ In-situ temperature measurement

✓ Thermocouple

Results

The actual temperature in power during SPS

- Point 1 can measure temperature above 800°C
- Point 2 temperature is higher thank Point 1 in all range
- -> Pyrometer and thermocouple temperature calibration should be done at same position

page 24

Electrical effect of SPS

- The actual temperature in power during SPS
 - * Temperature of SPS and HP should be same

In progress...

Addtional

- Si₃N₄ sintering using SPS
 - ✓ Temperature range: 1400-1600°C (with full density)
 - ✓ Actual temperature: 1600~1850°C (melting T: 1900°C) -> HP conditions

maximum

- Same temperature conditions will be secured
- > Other conditions also will be same (pressure, time and etc.)

Additional

Electrical property of Si₃N₄ ceramic / Etching

✓ Data: resistance of Si3N4 on temperature

page 28