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2.2 Equation of State of an Ideal Gas

𝑃𝑉 =
𝑚

𝑀
𝑅𝑇 (2.1)

m: mass of gas

M: molecular weight

R: universal constant

(8.314 × 103
J

kilomole∙K
)

𝑃𝑉 = 𝑛𝑅𝑇 (2.2)

• Since 𝑛 ≡
𝑚

𝑀
is the number of kilomoles of the gas, the equation of state of 

an ideal gas is 
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2.2 Equation of State of an Ideal Gas

• In Equation (2.2) we note that the extensive variable V divided by n, the number 

of kilomoles of the gas, is the specific volume 𝑣.

• Thus the equation of state can be written 𝑷𝒗 = 𝑹𝑻

• The projections of the surface 𝑓 𝑃, 𝑣, 𝑇 = 0 on the 𝑃 − 𝑣 plane, 𝑃 − 𝑇 plane, and 

the 𝑣 − 𝑇 plane are shown in Figure 2.1

Figure 2.1 Diagrams for an ideal gas. (a) the isotherms are equilateral hyperbolae; (b) the isochores

are straight lines; (c) the isobars are also straight lines.
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2.3 Van Der Waals’ Equation for a Real Gas

𝑷 +
𝒂

𝒗𝟐
𝒗 − 𝒃 = 𝑹𝑻 (2.3)

a and b: characteristic constants

• The term 
𝑎

𝑣2
arises from the intermolecular forces due to the overlap of electron 

clouds.

• The constant b takes into account the finite volume occupied by the molecules.

• Multiplication of Equation (2.3) by 𝑣2 yields the equation

𝑃𝑣3 − 𝑃𝑏 + 𝑅𝑇 𝑣2 + 𝑎𝑣 − 𝑎𝑏 = 0 (2.4)
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• Equation (2.4) is a cubic equation in 𝑣 with three roots, only one of which 

needs to be real.

• In Figure 2.2 some isotherms calculated from the van der Waals equation have 

been drawn.

Figure 2.2 Isotherms for 

a Van Der Waals’ gas.

2.3 Van Der Waals’ Equation for a Real Gas
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2.4 𝑷 − 𝒗 − 𝑻 Surfaces for Real Substances

• Figure 2.3 is a schematic diagram of the 𝑃 − 𝑣 − 𝑇 surface for a substance 

that contracts on freezing

Figure 2.3 𝑃 − 𝑣 − 𝑇 surface for a substance that contracts on freezing
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2.4 𝑷 − 𝒗 − 𝑻 Surfaces for Real Substances

• Notice the regions(solid, liquid, gas or vapor) in which the substance can 

exist in a single phase only. 

• Elsewhere two phases can exist simultaneously in equilibrium, and along 

the so-called triple line, all three phases can coexist.

Figure 2.4 𝑃 − 𝑇 diagrams for (a) a substance that contracts on freezing; and 

(b) a substances that expands on freezing

CP: Critical point

TP: Triple point
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2.5 Expansivity and Compressibility

• Suppose that the equation of state of a given substance is written in the form

𝑣 = 𝑣 𝑇, 𝑃 (2.5)

• Taking the differential, we obtain

𝑑𝑣 = (
𝜕𝑣

𝜕𝑇
)𝑝𝑑𝑇 + (

𝜕𝑣

𝜕𝑃
)𝑇𝑑𝑃 (2.6)

𝛽 ≡
1

𝑣
(
𝜕𝑣

𝜕𝑇
)𝑃 (2.7)

• The expansivity, or coefficient of volume expansion, is given by

• This is the fractional change of volume resulting from a change in 

temperature, at constant pressure.



9/15  

2.5 Expansivity and Compressibility

• Similarly, the isothermal compressibility is defined as

𝑘 ≡ −
1

𝑣
(
𝜕𝑣

𝜕𝑃
)𝑇 (2.8)

• This is the fractional change in volume as the pressure changes, with 

the temperature held constant.

• The negative sign is used since the volume always decreases with 

increasing pressure (at constant temperature)

• For an ideal gas, 𝑣 = 𝑅𝑇/𝑃

𝛽 =
1

𝑣

𝑅

𝑃
=

1

𝑇
(2.9)

𝑘 = −
1

𝑣
−

𝑅𝑇

𝑃2
=

1

𝑃
(2.10)
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2.7 Specific heat

• Specific heat: the amount of heat required to change a unit mass of a substance    

by one degree in temperature

𝐶𝑃, 𝐶𝑉 → The properties we can measure

𝑢 = 𝑢 𝑇, 𝑣 (2.11)

𝑑𝑢 =
𝜕𝑢

𝜕𝑇
)𝑣𝑑𝑇 +

𝜕𝑢

𝜕𝑣
)𝑇𝑑𝑣 (2.12)

𝛿𝑄 = ∆𝑈 + 𝛿𝑊
= ∆𝑈 + 𝑃𝑑𝑣

𝐶𝑣

If there is no volume change 

(constant v)

= ∆𝑈 (2.13)



11/15  

2.7 Specific heat

𝑇1→𝑇2 𝑇1→𝑇2

V constant V constant

Q = 𝑖2𝑅

Easier to measure heat

and internal energy in 

difference

𝐶𝑣 =
𝜕𝑢

𝜕𝑇
)𝑣 =

𝜕𝑄

𝜕𝑇
)𝑣 𝐶𝑣 can be measured
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2.7 Specific heat

ℎ ≡ 𝑢 + 𝑝𝑣

= ℎ(𝑇, 𝑃) (2.14)

𝑑ℎ =
𝜕ℎ

𝜕𝑇
)𝑃𝑑𝑇 +

𝑑ℎ

𝑑𝑝
)𝑇𝑑𝑃 (2.15)

𝐶𝑃

𝛿𝑄)𝐼𝑑𝑒𝑎 = 𝑇𝑑𝑠 = 𝑑𝑢 + 𝑃𝑑𝑣

= 𝑑ℎ − 𝑣𝑑𝑃 (2.16)

If there is no pressure change 

(constant P)
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2.7 Specific heat

𝑇1→𝑇2

Constant pressure

Amount of heat added = ∆ℎ

𝐶𝑃 ≡
𝜕ℎ

𝜕𝑇
)𝑃 =

𝜕𝑄

𝜕𝑇
)𝑃 𝐶𝑃 can be measured
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2.8 Maxwell equation

𝑑𝑢 = 𝑇𝑑𝑠 − 𝑃𝑑𝑣 (2.17)

𝑢 = 𝑢(𝑠, 𝑣) (2.18)

𝑑𝑢 =
𝜕𝑢

𝜕𝑠
)𝑣𝑑𝑠 +

𝜕𝑢

𝜕𝑣
)𝑠𝑑𝑣 (2.19)

T −𝑃

𝜕2𝑈

𝜕𝑣𝜕𝑠
= (

𝜕𝑇

𝜕𝑣
)𝑠 =

𝜕2𝑈

𝜕𝑠𝜕𝑣
= −(

𝜕𝑃

𝜕𝑠
)𝑣

𝜕𝑇

𝜕𝑣
)𝑠 = −

𝜕𝑝

𝜕𝑠
)𝑣 (2.20)
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2.8 Maxwell equation

𝐽 =
𝜕(𝑃, 𝑣)

𝜕(𝑇, 𝑠)
= 1

P

Wnet

v

T

s

Wnet

Jacobian

𝑑𝑥𝑑𝑦 = 𝑟𝑑𝑟𝑑𝜃

𝑥 = 𝑟𝑐𝑜𝑠𝜃

𝑦 = 𝑟𝑠𝑖𝑛𝜃

𝜕(𝑇, 𝑠)

𝜕(𝑣, 𝑠)
=
𝜕(𝑃, 𝑣)

𝜕(𝑣, 𝑠)
= −

𝜕 𝑃, 𝑣

𝜕 𝑠, 𝑣
= −

𝜕𝑃

𝜕𝑠
)𝑣

𝐽 =
𝜕(𝑥, 𝑦)

𝜕(𝑟, 𝜃)
= 𝑑𝑒𝑡

𝜕𝑥

𝜕𝑟

𝜕𝑥

𝜕𝜃
𝜕𝑦

𝜕𝑟

𝜕𝑦

𝜕𝜃

=
𝑐𝑜𝑠𝜃 −𝑟𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑟𝑐𝑜𝑠𝜃

= 𝑟(𝑐𝑜𝑠2 𝜃 + 𝑠𝑖𝑛2 𝜃) = 𝑟𝐽 =
𝜕(𝑥, 𝑦)

𝜕(𝑟, 𝜃)
= 𝑑𝑒𝑡

𝜕𝑥

𝜕𝑟

𝜕𝑥

𝜕𝜃
𝜕𝑦

𝜕𝑟

𝜕𝑦

𝜕𝜃

=
𝑐𝑜𝑠𝜃 −𝑟𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑟𝑐𝑜𝑠𝜃

= 𝑟(𝑐𝑜𝑠2 𝜃 + 𝑠𝑖𝑛2 𝜃) = 𝑟


