
Ethereum

Many slides are from Campbell Harbey@Duke et al.

Some materials from Preethi Kasireddy@TruStory
1

Roadmap by Ethereum Foundation

2 Source: Draglet

• Cryptography (similar to Bitcoin)

• Data structure/Algorithm in Computer Science

o Patricia tree, Recursive length prefix, Bloom filter,...

• Blockchain

o Accounts (Two types) and Wallets

o Transactions

• Smart Contracts

o Solidity

 Language Used for Smart Contract Development

Important primitives

3

Hash Functions

• Bitcoin (BTC) uses SHA-256

• Ethereum uses Keccak-256

o Similar to SHA-3 (variant)

o Used for all hashing in Ethereum

o Different from SHA-1 & SHA-2

4

Digital Signatures (Digital Proof)

• Same use-case/cryptographic method (ECDSA) as BTC
• Private key 256 bits

• Public key 512 bits

• Signer uses private key to generate a signed message

• Signed message can be verified using the signer’s public
key

• Hashes are signed in Ethereum, not the data itself

5

Ethereum Blockchain

Key differences
• Blocks keep track of balances – not “unspent transaction outputs

(UTXOs)” like BTC

• Merkle Patricia Tree (aka Trie)

• Will transition from PoW to PoS

6

Source: Beige paper, Micah Dameron

Blockchain

Fully Distributed Database like BTC

Advantages:

• Highly Secure

• Transparent

• Immutable

Disadvantages:

• Scaling

• Performance
7

Block size?

Ethereum Blockchain

• All blocks visible like BTC

• However, blocks have a different structure than BTC

• Blocks faster than BTC and reward is different
• Every 10~15 seconds

• Difficulty field in block header

• 5 -> 3 -> 2 ETH main reward

• Miners can make a bit more by including uncle blocks (1/32 of

an ETH each) up to maximum of two

• Miners also get TX fee as gas

8

• Executable code

• Turing Complete

 More precisely, Quasi-Turing complete (gas-limited)

• Function like an external account

 Hold funds

 Can interact with other accounts and smart contracts

 Contain code

• Can be called through transactions (TXs)

Smart Contracts

9

2 kinds of accounts
● Each account has a state & a 20byte address

● Externally owned account (EOA)

○ Public/private key pair, no code associated

○ Send messages to other EOA or CoA

● Contract account (CoA)

○ Associated code

○ No private key

○ Can’t initiate TXs

○ respond to incoming TXs

10

Not TX, just

value transfer

Example: EoA
Private Key: 0x2dcef1bfb03d6a950f91c573616cdd778d9581690db1cc43141f7cca06fd08ee

• Ethereum Private keys are 66 character strings (with 0x appended). Case is irrelevant. Same

derivation through ECDSA as BTC.

Address: 0xA6fA5e50da698F6E4128994a4c1ED345E98Df50

• Ethereum Private keys map to addresses directly. Simply the last 40 characters of the Keccak-

256 hash of the public key. Address is 42 characters total (append 0x to front)

• Beware! No checksum

11

Source: CodeTract@Medium.com

Account state

● Nonce: # of TXs sent from this address, # of contracts

created by this address

○ Prevents replay attack

● Balance

● storageRoot: hash of the root node of a Merkle

Patricia tree of “data of the contract”

● codeHash: hash of EVM code

 12

Different from PoW nonce

World state

13

● Aka system state

● Mapping between an account

address and its state

● State trie is illustrated

○ E.g. code and data of a

contract is stored

gas
● Every operation that occurs as a result of a transaction incurs a fee

○ Prevents DoS attack

● Gas is the unit used to measure the fees required for a particular operation

● Gas price is the amount of Ether you are willing to spend on every unit of gas

● The product of gas price and gas limit represents the maximum amount of Wei that

the sender is willing to pay for executing a transaction

● out of gas?

14

• Halting problem (infinite loop) – reason for Gas

• Problem: Cannot tell whether or not a program will run

infinitely from compiled code

• Solution: charge fee per computational step to limit infinite

loops and stop flawed code from executing

• Every transaction needs to specify an estimate of the

amount of gas it will spend

• Essentially a measure of how much one is willing to

spend on a transaction, even if buggy

Gas

15

• Gas Price: current market price of a unit of Gas (in Wei)

 Check gas price here: https://ethgasstation.info/

 Is always set before a transaction by user

• Gas Limit: maximum amount of Gas user is willing to

spend

• Helps to regulate load on network

• Gas Cost (used when sending transactions) is calculated

by gasLimit*gasPrice.

 All blocks have a Gas Limit (maximum Gas each block can use)

Gas Cost

16

https://ethgasstation.info/

• A request to modify the state of the blockchain

 Can run code (contracts) which change global state

o Contrasts with balance updates only in BTC

• Signed by originating account

• Types:

 Send value from one account to another account

 Create smart contract

 Execute smart contract code

Transactions

17

TX can transfer Ether: an illustration

18

Source: Paul@edureka

transactions
● 2 types: Message calls and contract creations

● Each TX has these components

○ Nonce: # of TXs sent by the sender

○ gasPrice, gasLimit

○ to

○ Value: amount of Ether to send

○ Signature (of the sender): v,r,s

○ Data

■ contract bytecode if contract creation TX

● also called init

■ function selector and arguments if contract call TX

19

TX examples

20

From address is derived from the

public key, which is calculated
from signature (v, r, s)

21

Source: web3j 4.1.0

TXs can interact
● Contracts interact one another via “messages” or “internal

transactions” to other contracts

22

log

● Logs track and checkpoint TXs

● A contract provides pointers in logs by defining events

● A log entry has

○ Logger’s account address

○ A series of topics that represent events
■ E.g. topic for a function Hello(uint256 some-name) is keccak256(‘Hello(uint256)’)

○ Any data associated with events

● Logs are recorded in TX receipts

23

TX execution
● While executing a TX, Ethereum keeps track of substate

○ The substate changes for each operation

● Substate has

○ Self-destruct set: account to be discarded after execution

○ Log series: checkpoints of EVM’s code execution

○ Refund balance

24

Source:Badr Bellaj@MChain

• Every node contains a virtual machine (similar to Java)

 Called the Ethereum Virtual Machine (EVM)

 Compiles code from high-level language to bytecode

 Executes smart contract code and broadcasts state

• Every full-node on the blockchain processes

every transaction and stores the entire state

Code Execution

25

Execution model
● EVM is a Turing complete VM

● Bound by gas

● Stack-based

● at every operation, EVM checks

○ System state

○ Remaining gas

○ the account owning the code

○ Sender of the TX who triggers

○ Block header

○ ...

● EVM computes system state and machine state

○ Machine state: available gas, PC, memory contents, stack contents,... 26

Source: AMBCrypto

EVM operation

27

Source: AMBCrypto

● Bytecode (or Opcode)

● Volatile memory

● Non volatile storage

● Operands are in stack to be processed

● Opcodes

○ Stack-manipulating opcodes (POP, PUSH, DUP, SWAP)

○ Arithmetic/comparison/bitwise opcodes (ADD, SUB, GT, LT, AND, OR)

○ Environmental opcodes (CALLER, CALLVALUE, NUMBER)

○ Memory-manipulating opcodes (MLOAD, MSTORE, MSTORE8, MSIZE)

○ Storage-manipulating opcodes (SLOAD, SSTORE)

○ Program counter related opcodes (JUMP, JUMPI, PC, JUMPDEST)

○ Halting opcodes (STOP, RETURN, REVERT, INVALID, SELFDESTRUCT)

Block structure
• parentHash

• ommersHash

• Beneficiary: miner

• stateRoot: from state trie

• transactionsRoot: from TX trie

• receiptsRoot

• logsBloom: bloom filter

• Difficulty

• Number: count of current block

• gasLimit

• gasUsed

• Timestamp

• extraData

• Nonce, mixHash: prove the block has done computation

28

Ethereum Blockchain

Uncles/Ommers
• Sometimes valid block solutions don’t make main chain

• Any broadcast block (up to 6 previous blocks back) with

valid PoW and difficulty can be included as an uncle

• Maximum of two can be included per block

• Uncle block transactions are not included – just header

• Aimed to decrease centralization and reward work

29

Ethereum Blockchain

Uncles/Ommers Rewards:
• Uncle headers can be included in main block for 1/32 of

the main block miner’s reward given to said miner

• Miners of uncle blocks receive percent of main reward

according to:

• (Un + (8 - Bn)) * Current_Reward / 8, where Un and Bn are

uncle and block numbers respectively.

• Example (1333 + 8 - 1335) * 2/8 = 1.75 ETH

30

Ethereum Blockchain

Blocks faster than BTC and reward is different

• Uses Ethash mining algorithm (different from Bitcoin’s)
 a large, randomly generated dataset (order of GBs)

 Directed acyclic graph (DAG)

 fetch random data from DAG, compute randomly selected

transactions from any block & return the hash

 Memory-hard or memory-bound

 Helps mitigate ASIC and GPU advantages

• Difficulty is adjusted every block (not every two weeks)

31

Ethereum Nodes

• Validate all transactions and new blocks

• Operate in a P2P fashion

• Each contains a copy of the entire Blockchain

• Light clients - store only block headers

• verify the proof of work on the block headers

• Ask a full node to download only the "branches" associated with

TXs relevant

32

Ether Denominations

• Wei - lowest denomination

 Named after Wei Dai - author of b-money paper (1998), many

core concepts used in BTC implementation

 1/1,000,000,000,000,000,000 (quintillion)

• Szabo - next denomination

• Named after Nick Szabo

- author of Bit-Gold

• Finney – 2nd highest denomination

• Named after Hal Finney

- received first Tx from Nakamoto

http://www.weidai.com/bmoney.txt

33

http://www.weidai.com/bmoney.txt
http://www.weidai.com/bmoney.txt

Ethereum in the process of moving to Proof of Stake
• This approach does not require large expenditures on computing

and energy

• Miners are now “validators” and post a deposit in an escrow
account

• The more escrow you post, the higher the probability you will be

chosen to nominate the next block

• If you nominate a block with invalid transactions, you lose your

escrow

PoW vs. PoS

34

Ethereum in the process of moving to Proof of Stake
• One issue with this approach is that those that have the most

ether will be able to get even more

• This leads to centralization eventually

• On the other hand, it reduces the chance of a 51% attack and

allows for near instant transaction approvals
 Mining power can be hidden in PoW

 With PoS, we can track who is the winner (traceability)

• The protocol is called Casper and this will be a hard fork

PoW vs. PoS

https://blockonomi.com/ethereum-casper/
35

https://blockonomi.com/ethereum-casper/
https://blockonomi.com/ethereum-casper/
https://blockonomi.com/ethereum-casper/
https://blockonomi.com/ethereum-casper/

