Ethereum

Many slides are from Campbell Harbey@Duke et al.
Some materials from Preethi Kasireddy@TruStory

Roadmap by Ethereum Foundation

history
Old Frontier
Chain (Dead)

< ” ’ ‘® Ethereum

Erontier Classic (still alive...)

‘ ’ ’ ‘ ’ Old Homestead

Block @ Hoirestaad Chain (Dead)

I
%81% ’ ’ | ’ ‘® Old Byzantium

Homestead, Chain (Will die hopefully)

hra resetafter | uggeg W

2016

Byzantium

uly gy e

2016 Constantinople

October

2017 gy

February Serenity
2019

VY ethereum 020

Source: Draglet

Important primitives

Cryptography (similar to Bitcoin)
Data structure/Algorithm in Computer Science
o Patricia tree, Recursive length prefix, Bloom filter,...

Blockchain

o Accounts(Two types) and Wallets
o Transactions

Smart Contracts — i @

o Solidity

® Language Used for Smart Contract Development

Hash Functions

« Bitcoin (BTC) uses SHA-256

 Ethereum uses Keccak-256
o Similar to SHA-3 (variant)

o Used for all hashing in Ethereum
o Different from SHA-1 & SHA-2

Digital Signatures (Digital Proof)

Same use-case/cryptographic method (ECDSA) as BTC
* Private key 256 bits
e Public key 512 bits

Signer uses private key to generate a signhed message

Signed message can be verified using the signer’s public
key

Hashes are signed in Ethereum, not the data itself

Ethereum Blockchain

Key differences

* Blocks keep track of balances — not “unspent transaction outputs
(UTXOs)” like BTC

 Merkle Patricia Tree (aka Trie)

 Will transition from PoW to PoS

\c
| @ ©
7/ 8/ a62 \f\o
® o
a2c? a2b6 Hilf H*.,5
@ o
497F 4ac05

Source: Beige paper, Micah Dameron

Blockchain

Fully Distributed Database like BTC

Advantages:
* Highly Secure plock Transactions BLOCK IN PROGRESS

* Transparent

e |mmutable

i
Il

[Tk

Disadvantages:

* Scaling

Block size?

e Performance

Ethereum Blockchain

e All blocks visible like BTC
e However, blocks have a different structure than BTC

* Blocks faster than BTC and reward is different
* Every 10™~15 seconds
* Difficulty field in block header
e 5->3->2ETH main reward
* Miners can make a bit more by including uncle blocks (1/32 of
an ETH each) up to maximum of two
 Miners also get TX fee as gas

Smart Contracts

 Executable code
* Turing Complete

= More precisely, Quasi-Turing complete (gas-limited)
 Function like an external account

= Hold funds
= Can interact with other accounts and smart contracts

= Contain code

 Can be called through transactions (TXs)

2 kinds of accounts

@ Eachaccount has a state & a 20byte address

e Externally owned account (EOA)

o Public/private key pair, no code associated

o Send messages to other EOA or CoA

e Contract account (CoA)
o Associated code
o No private key
o Can’tinitiate TXs

o respond to incoming TXs

Externally
owned
account

Externally owned

account

o=

Transaction set in
motion by an externally
owned account

l

Transaction

Externally
owned
account

Y

_| Contract

» Transaction

Contract
account

<code>
<code>
<code>

Fired in response to the
transaction set in

motion by externally

owned account

/

Internal

Account

Externally
owned
account

Transaction

Not TX, just
value transfer

Contract
Account

10

Example: EoA

Private Key: 0x2dceflbfb03d6a950f91c573616cdd778d9581690db1cc43141f7cca06fd08ee
 Ethereum Private keys are 66 character strings (with Ox appended). Case is irrelevant. Same
derivation through ECDSA as BTC.

Address: 0xA6fA5e50da698F6E4128994a4c1ED345E98Df50

 Ethereum Private keys map to addresses directly. Simply the last 40 characters of the Keccak-
256 hash of the public key. Address is 42 characters total (append Ox to front)

° Bewa re | N o Ch eCkSU m BxcBdecOdecOdecfdecfdecfdecfdecfdecfdectdecBdechdecdecfdechdectde

derive with ECDSA

A J

0x4643bb6b393ac20a6175c713175734a72517ce3defT3a3cal0als356f2e967dabid16431441chlackYanabbT937d333829d9da5043 11 f6af38536aa262497027

hash

L

8x0cdd797903d1beedf117b6b253a2893e4h22d707943209a8d0c844df0e3d5557

Source: CodeTract@Medium.com Ethereum address

ACCO u nt State Different from PoW nonce

e Nonce: # of TXs sent from this address, # of contracts
created by this address
- Prevents replay attack
e Balance
o storageRoot: hash of the root node of a Merkle
Patricia tree of “data of the contract”
o codeHash: hash of EVM code

12

World state

e Aka system state
e Mapping between an account
address and its state
e State trie is illustrated
- E.g. code and data of a
contract s stored

VI

PREVHASH STATE_ROOT TIMESTAMP NUMBER PREVHASH STATE_ROOT
/ \ 7 I Y
VAN BT

NONCE

BALANCE

CODEHASH STORAGE_ROOT

/

/

CODE

89125124

2025125

13

gas

Every operation that occurs as a result of a transaction incurs a fee
o Prevents DoS attack
Gas is the unit used to measure the fees required for a particular operation
Gas price is the amount of Ether you are willing to spend on every unit of gas
The product of gas price and gas limit represents the maximum amount of Wei that
the sender is willing to pay for executing a transaction

out of gas? ! :
: ’—. Miner :
1 1
| T |
use gas use gas |
-50 -30
. . End :
L R 4 Receiver
Sender * transaction e o transaction
250 200 170 170
I Remaining
Start gas gas

14

t |

Gas

e Halting problem (infinite loop) — reason for Gas

* Problem: Cannot tell whether or not a program will run
infinitely from compiled code

* Solution: charge fee per computational step to limit infinite
loops and stop flawed code from executing

* Every transaction needs to specify an estimate of the
amount of gas it will spend

e Essentially a measure of how much one is willing to
spend on a transaction, even if buggy

15

Gas Cost

* Gas Price: current market price of a unit of Gas (in Wei)
= Check gas price here: https://ethgasstation.info/

= |s always set before a transaction by user

* Gas Limit: maximum amount of Gas user is willing to
spend

 Helps to regulate load on network

* Gas Cost (used when sending transactions) is calculated
by gasLimit*gasPrice.
= All blocks have a Gas Limit (maximum Gas each block can use),

https://ethgasstation.info/

Transactions

 Arequest to modify the state of the blockchain

= (Canrun code (contracts) which change global state
o Contrasts with balance updates only in BTC

e Signed by originating account
* Types:
= Send value from one account to another account

= (Create smart contract
= Execute smart contract code

17

TX can transfer Ether: an illustration

1. Bob attempts to
Send Alice 1 ETH

2. Bob & Alice's
transaction is
combined with
transactions that
have occurred
since the last block

3. Miners compete 4.The victorious
to validate the miner creates a
block with the new new block and
set of instructions receives a reward
" L

Source: Paul@edureka

5.With the
transaction

validated, Alice
receives 1 ETH

18

transactions

e 2 types: Message calls and contract creations
e Each TX has these components

(@)

@)

O

Nonce: # of TXs sent by the sender
gasPrice, gasLimit

to

Value: amount of Ether to send
Signature (of the sender): v,r,s

Data
m contract bytecode if contract creation TX
e also called init
m function selector and arguments if contract call TX

Transaction

nonce

gasLimit

gasPrice

to

value

data

19

TX €Xam p | €S From Contract deployer, an EOA (20-byte address)
From Fund sender, an EOA (20-byte address) To Empty
To Fund recipient, another EOA (20-byte address) Value Amount, in weis (if required by contract
constructor)
Value Amount, in weis
bata / Input Bytecode, plus any encoded arguments if

Data / Input Empty required by constructor
r_-‘.as Limit Larger enough for an ether transfer transaction Gas Limit Larger enough for contract deployment
Gas Price To be determined by transaction initiator Gas Price To be determined by transaction initiator

From Function executor, an EOA (20-byte address)

To Contract Address (20-byte address) From address is derived from the

— _ . public key, which is calculated
Value Amount, in weis (if needed in contract function) from signature (v, r, s)
Data / Input Function selector, plus any encoded arguments
required by function
Gas Limit Larger enough for contract function execution
Gas Price To be determined by transaction initiator 20

Transfer
Ether

—_—

Create
Contract

—_—

Contract

~ web3j

Source: web3j 4.1.0

>

ethereum

Transaction

—_—

Remote
Call<...>

DA

v

API Core Network

Transaction Signed Transaction Ethereum Ethereum | , . , Ethereum _ .,

r Accept/ Client Client Client
Transaction [To address To address Reject -
To address |Data (EVM bytecode) ; Data (EVM bytecode) Propogate :

| Sign Send
Value |Value (Ether) Value (Ether) Ethereum

1 LI

iNonce Nonce P> Client "

|Gas price Gas price
Contract iGas limit Gas limit S
deploy(param, ...) ECDSA Signature Ethereum Ethereum Ethereum

; Client Client = Client | " "
(Transaction Hash)
Contract | Miner | | Miner | Miner
func(param, ...)
Blockchain
New Block
Wallet
Private key Transaction status] < BlocicHendor
Transaction 1 Mines
O Poll Transaction 2
Transaction > Transaction (our transaction) <€
Receipt Manager

Transaction 3

Transaction n

TXs can Interact

e Contracts interact one another via “messages” or “internal
transactions” to other contracts

E);t;;ﬂ;ily St _| Contract | (contract code
aEcoant 1 "| account | gets executed)

y

Internal
transaction

i

Externall
owned ? Transaction Contract Internal Contract Internal | Contract
Abcount p "| account ™ |transaction account ™ transaction accouat
(contract code (contract code (contract code

gets executed) gets executed) gets executed) 22

log
e Logs track and checkpoint TXs
o A contract provides pointers in logs by defining events
o Alogentry has
- Logger’s account address
- A series of topics that represent events

m E.g.topic fora function Hello(uint256 some-name) is keccak256(‘Hello(uint256))

- Any data associated with events
e Logs are recorded in TX receipts

23

TX execution

e While executing a TX, Ethereum keeps track of substate
o The substate changes for each operation
e Substate has
o Self-destruct set: account to be discarded after execution
o Log series: checkpoints of EVM’s code execution
o Refund balance

Block 180993 Block 180994

[rton Jsmeon]
\\ S
/ \ R \
// ______}\ff "
g 3 /) f__-——-**’f____ffﬂ \}4 selfdestruct
// 2 II"\, _,/ rroe i -fggm Q contract account
P /o ® ® @
Source:BadrBellaj@MChain | \ e e
® o000 - AN
. b state i ‘ .

24

Code Execution

* Every node contains a virtual machine (similar to Java)

= (Called the Ethereum Virtual Machine (EVM)
= Compiles code from high-level language to bytecode
= Executes smart contract code and broadcasts state

* Every full-node on the blockchain processes
every transaction and stores the entire state

25

Virtual ROM

Execution model | =

e EVMis aTuring complete VM
e Bound by gas
e Stack-based

O

O

(immutable)

Program counter Stack Memory (Account) storage
PC

Gas available

e at every operation, EVM checks 585
System state
.. Machine state p World state ¢
Rema|n|ng gaS (volatile) (persistent)
the account owning the code Source: AMBCrypto

©)

@)

(©)

O

Sender of the TX who triggers
Block header

e EVM computes system state and machine state

©)

Machine state: available gas, PC, memory contents, stack contents,... 26

EVM operation

Bytecode (or Opcode)

Volatile memory

Non volatile storage
Operands are in stack to be processed

Opcodes

o

o

(@)

v
«— (_ operations 4—.{
/1
.

EVM code

1
1
i instructions

push/popl/...

Stack-manipulating opcodes (POP, PUSH, DUP, SWAP)

Stack

stack top

Memory

!

random
access

(Account) storage

|

random
access

Arithmetic/comparison/bitwise opcodes (ADD, SUB, GT, LT, AND, OR)
Environmental opcodes (CALLER, CALLVALUE, NUMBER)
Memory-manipulating opcodes (MLOAD, MSTORE, MSTORES, MSIZE)

Storage-manipulating opcodes (SLOAD, SSTORE)

Program counter related opcodes (JUMP, JUMPI, PC, JUMPDEST)

Halting opcodes (STOP, RETURN, REVERT, INVALID, SELFDESTRUCT)

Source: AMBCrypto

27

Block header

Block structure

parentHash
ommersHash

parentHash nonce timestamp

ommersHash

BEHEfICIa ry- m I ner beneficiary logsBloom difficulty

extraData

stateRoot: from state trie

transactionsRoot: from TX trie number gasLimit gasUsed

mixHash

receiptsRoot
logsBloom: bloom filter stateRoot transactionsRoot
Difficulty

receiptsRoot

Number: count of current block
gasLimit [O 3 0 O O
gasUsed

Timestamp

extraData

Nonce, mixHash: prove the block has done computation

28

Ethereum Blockchain

Uncles/Ommers
* Sometimes valid block solutions don’t make main chain
e Any broadcast block (up to 6 previous blocks back) with
valid PoW and difficulty can be included as an uncle
 Maximum of two can be included per block
* Uncle block transactions are not included — just header
 Aimed to decrease centralization and reward work

29

Ethereum Blockchain

Uncles/Ommers Rewards:
* Uncle headers can be included in main block for 1/32 of

the main block miner’s reward given to said miner
* Miners of uncle blocks receive percent of main reward

according to:
* (U,+(8-B,))* Current_Reward / 8, where U, and B, are

uncle and block numbers respectively.
 Example (1333 +8-1335)*2/8=1.75ETH

30

Ethereum Blockchain

Blocks faster than BTC and reward is different
e Uses Ethash mining algorithm (different from Bitcoin’s)
= alarge, randomly generated dataset (order of GBs)
= Directed acyclic graph (DAG)
= fetch random data from DAG, compute randomly selected
transactions from any block & return the hash
= Memory-hard or memory-bound
= Helps mitigate ASIC and GPU advantages
e Difficulty is adjusted every block (not every two weeks)

31

Ethereum Nodes

 Validate all transactions and new blocks
 OQOperate in a P2P fashion

 Each contains a copy of the entire Blockchain

e Light clients - store only block headers
e verify the proof of work on the block headers
* Ask a full node to download only the "branches" associated with
TXs relevant

32

Ether Denominations

Wei - lowest denomination

= Named after Wei Dai - author of b-money paper (1998), many

core conceptsused in BTC implementation
= 1/1,000,000,000,000,000,000 (quintillion)

Szabo - next denomination Multiplier Narme
Named after Nick Szabo 10° Wei
. 12
- author of Bit-Gold 10~ Szabo
. . . . 107 Finney
Finney — 29 highest denomination 10'® Ether

Named after Hal Finney
- received first Tx from Nakamoto

33
http://www.weidai.com/bmoney.txt

http://www.weidai.com/bmoney.txt
http://www.weidai.com/bmoney.txt

PoW vs. PoS

Ethereum in the process of moving to Proof of Stake

This approach does not require large expenditures on computing
and energy

Miners are now “validators” and post a deposit in an escrow
account

The more escrow you post, the higher the probability you will be

chosen to nominate the next block
If you nominate a block with invalid transactions, you lose your

esCrow

34

PoW vs. PoS

Ethereum in the process of moving to Proof of Stake

 Oneissue with this approach is that those that have the most
ether will be able to get even more

* This leads to centralization eventually

e Onthe other hand, it reduces the chance of a 51% attack and

allows for near instant transaction approvals

= Mining power can be hidden in PoW
= With PoS, we can track who is the winner (traceability)

 The protocolis called Casper and this will be a hard fork

https://blockonomi.com/ethereum-casper/ i

https://blockonomi.com/ethereum-casper/
https://blockonomi.com/ethereum-casper/
https://blockonomi.com/ethereum-casper/
https://blockonomi.com/ethereum-casper/

