Integral Equation for Neutron Transport

Shim, Hyung Jin

Nuclear Engineering Department, Seoul National University

Reference

 George I. Bell, Samuel Glasstone, "Nuclear Reactor Theory," Van Nostrand Reinhold Company, NY (1970).

Boltzmann Transport Equation

- An integral equation equivalent to the integro-differential Boltzmann transport equation will be derived.
- The BTE serves to precisely describe particle balance in which the rate of accumulation of particles is equal to the difference between their rates of production and removal.

$$\frac{1}{v} \frac{\partial \Phi(\mathbf{r}, E, \mathbf{\Omega}, t)}{\partial t} + \mathbf{\Omega} \cdot \nabla \Phi(\mathbf{r}, E, \mathbf{\Omega}, t) + \Sigma_t(\mathbf{r}, E, \mathbf{\Omega}, t) \Phi(\mathbf{r}, E, \mathbf{\Omega}, t) = S(\mathbf{r}, E, \mathbf{\Omega}, t); \qquad (1)$$

$$S(\mathbf{r}, E, \mathbf{\Omega}, t) = S_s(\mathbf{r}, E, \mathbf{\Omega}, t) + S_F(\mathbf{r}, E, \mathbf{\Omega}, t) + Q(\mathbf{r}, E, \mathbf{\Omega}, t),$$

$$S_s(\mathbf{r}, E, \mathbf{\Omega}, t) = \int_{E'} dE' \int_{4\pi} d\mathbf{\Omega}' \Sigma_s(\mathbf{r}, E' \to E, \mathbf{\Omega}' \to \mathbf{\Omega}, t) \Phi(\mathbf{r}, E', \mathbf{\Omega}', t),$$

$$S_F(\mathbf{r}, E, \mathbf{\Omega}, t) = \int_{4\pi} d\mathbf{\Omega}' \int_{E'} dE' \chi(\mathbf{r}, E' \to E) v_f(E) \Sigma_f(\mathbf{r}, E', \mathbf{\Omega}' \to \mathbf{\Omega}, t) \Phi(\mathbf{r}, E', \mathbf{\Omega}', t)$$

- In deriving the transport equation it was necessary to consider the neutron angular density in the immediate (space-time) vicinity only of the point under consideration, whereas the whole range of energies and angles had to be included in the transport equation for the angular density <u>at a particular energy and angle</u>.
- Hence, the formulation is local, involving derivatives, in space and time, but it is extended, involving integrals, in energy and angle.

Method of Characteristics

- By a standard procedure known as the method of characteristics, the neutron transport equation which is a linear first order partial differential-integral equation can be converted into an integral equation.
- The first two derivative terms on the LHS of Eq. (1) may be written, in a cartesian coordinate system, as

$$\left(\frac{1}{v}\frac{\partial}{\partial t} + \Omega_x \frac{\partial}{\partial x} + \Omega_y \frac{\partial}{\partial y} + \Omega_z \frac{\partial}{\partial z}\right) \Phi$$

and the upper terms can be regarded as the total derivative of Φ with respect to s at fixed values of Ω and E:

$$\frac{d\Phi}{ds} = \left(\frac{1}{v}\frac{\partial}{\partial t} + \Omega_x \frac{\partial}{\partial x} + \Omega_y \frac{\partial}{\partial y} + \Omega_z \frac{\partial}{\partial z}\right)\Phi \qquad (2)$$

• Note that $d\Phi/ds$ can be expressed as

$$\frac{d\Phi}{ds} = \frac{\partial\Phi}{\partial t} \cdot \frac{dt}{ds} + \frac{\partial\Phi}{\partial x} \cdot \frac{dx}{ds} + \frac{\partial\Phi}{\partial y} \cdot \frac{dy}{ds} + \frac{\partial\Phi}{\partial z} \cdot \frac{dz}{ds}$$
(3)

SNU Monte Carlo Lab.

Derivation of the Integral Equation

• Then by comparing Eqs. (2) and (3), it is found that

• For an arbitrary time t_0 and position x_0 , y_0 , and z_0 , the solutions of Eq. (4) becomes

$$t = t_{0} + \frac{s}{v},$$

$$x = x_{0} + \Omega_{x}s,$$

$$y = y_{0} + \Omega_{y}s,$$

$$z = z_{0} + \Omega_{z}s$$

$$r = r_{0} + s\Omega$$
(5)

 From Eq. (5), it is found that s means the travel distance along the direction Ω of neutron having energy E.

• Hence, the transport equation (1) can be written as

$$\frac{d}{ds}\Phi(\mathbf{r}_0 + s\mathbf{\Omega}, E, \mathbf{\Omega}, t_0 + \frac{s}{v}) + \Sigma_t \Phi = S(\mathbf{r}_0 + s\mathbf{\Omega}, E, \mathbf{\Omega}, t_0 + \frac{s}{v}) \quad ---- \quad (6)$$

- The <u>r(s)</u> and <u>t(s)</u> curves are called the characteristic curves of the differential equation, and for every r₀ and t₀ at fixed values of Ω and E, there is one curve passing through that point.
- <u>The derivative in Eq. (6) is a derivative along a characteristic curve</u>.
- Eq. (6) is seen to be a linear first-order ordinary differential equation which may be integrated.
- By introducing an integrating factor, Eq. (6) becomes

$$\frac{d}{ds} \left[\Phi(\mathbf{r}_0 + s\mathbf{\Omega}, E, \mathbf{\Omega}, t_0 + \frac{s}{v}) \cdot \exp\left(\int^s \Sigma_t(\mathbf{r}_0 + s'\mathbf{\Omega}, E) ds'\right) \right]$$
$$= \exp\left(\int^s \Sigma_t(\mathbf{r}_0 + s'\mathbf{\Omega}, E) ds'\right) \cdot S(\mathbf{r}_0 + s\mathbf{\Omega}, E, \mathbf{\Omega}, t_0 + \frac{s}{v}) \quad (7)$$

• Now Eq. (7) will be integrated from $s=-\infty$, and as a result the integral terms will include earlier times, to some upper limit *s*. And it is assume that

$$\Phi(\mathbf{r}_0 + s\mathbf{\Omega}, E, \mathbf{\Omega}, t_0 + \frac{s}{v}) \to 0 \text{ as } s \to -\infty$$
(8)

as would be true, for example, if there were no neutrons in the system at times long past.

• Then an integration of Eq. (7) from $s=-\infty$ yields

$$\Phi(\mathbf{r}_{0} + s\mathbf{\Omega}, E, \mathbf{\Omega}, t_{0} + \frac{s}{v}) \cdot \exp\left(\int^{s} \Sigma_{t}(\mathbf{r}_{0} + s'\mathbf{\Omega}, E)ds'\right) - \Phi(\mathbf{r}_{0} + s\mathbf{\Omega}, E, \mathbf{\Omega}, t_{0} + \frac{s}{v}) \cdot \exp\left(\int^{s} \Sigma_{t}(\mathbf{r}_{0} + s'\mathbf{\Omega}, E)ds'\right)\Big|_{s=-\infty}$$

$$= \int_{-\infty}^{s} \exp\left(\int^{s'} \Sigma_{t}(\mathbf{r}_{0} + s''\mathbf{\Omega}, E)ds''\right) \cdot S(\mathbf{r}_{0} + s'\mathbf{\Omega}, E, \mathbf{\Omega}, t_{0} + \frac{s'}{v})ds'$$

$$\Phi(\mathbf{r}_{0} + s\mathbf{\Omega}, E, \mathbf{\Omega}, t_{0} + \frac{s}{v})$$

$$= \exp\left(-\int^{s} \Sigma_{t}(\mathbf{r}_{0} + s'\mathbf{\Omega}, E)ds'\right) \cdot \int_{-\infty}^{s} \exp\left(\int^{s'} \Sigma_{t}(\mathbf{r}_{0} + s''\mathbf{\Omega}, E)ds''\right) \cdot S(\mathbf{r}_{0} + s''\mathbf{\Omega}, E, \mathbf{\Omega}, t_{0} + \frac{s'}{v})ds'$$

$$= \int_{-\infty}^{s} \exp\left(\int^{s}_{s'} -\Sigma_{t}(\mathbf{r}_{0} + s''\mathbf{\Omega}, E)ds''\right) \cdot S(\mathbf{r}_{0} + s'\mathbf{\Omega}, E, \mathbf{\Omega}, t_{0} + \frac{s'}{v})ds'$$
(9)

Equation (9) can be simplified to some extent by setting

$$\mathbf{r}_0 + s\mathbf{\Omega} = \mathbf{r}, \ t_0 + \frac{s}{v} = t$$

as

$$\Phi(\mathbf{r}, E, \mathbf{\Omega}, t) = \int_{-\infty}^{s} \exp\left(\int_{s'}^{s} -\Sigma_{t}(\mathbf{r}_{0} + s''\mathbf{\Omega}, E)ds''\right) \cdot S(\mathbf{r}_{0} + s'\mathbf{\Omega}, E, \mathbf{\Omega}, t_{0} + \frac{s'}{v})ds' - \dots (10.a)$$

By changing the sign of the variable as

$$s = -\ell$$

we obtain

$$\Phi(\mathbf{r}, E, \mathbf{\Omega}, t) = \int_{-\infty}^{-\ell} \exp\left(\int_{s'}^{-\ell} -\Sigma_t(\mathbf{r}_0 + s''\mathbf{\Omega}, E)ds''\right) \cdot S(\mathbf{r}_0 + s'\mathbf{\Omega}, E, \mathbf{\Omega}, t_0 + \frac{s'}{v})ds' - \dots$$
(10.b)

By substituting \mathbf{r}_0 and t_0 as

$$\mathbf{r}_0 = \mathbf{r} + \ell \mathbf{\Omega}, \ t_0 = t + \frac{\ell}{v}$$

Eq. (10.b) can be expressed as

$$\Phi(\mathbf{r}, E, \mathbf{\Omega}, t) = \int_{-\infty}^{-\ell} \exp\left(\int_{s'}^{-\ell} -\Sigma_t (\mathbf{r} + (\ell + s'')\mathbf{\Omega}, E) ds''\right) \cdot S(\mathbf{r} + (\ell + s')\mathbf{\Omega}, E, \mathbf{\Omega}, t + \frac{\ell + s'}{v}) ds'$$

$$(10.c)$$
8 SNU Monte Carlo Lab.

• By changing the variable as

$$\Phi(\mathbf{r}, E, \mathbf{\Omega}, t) = \int_{-\infty}^{-\ell} \exp\left(\int_{s'}^{-\ell} -\Sigma_t (\mathbf{r} + (\ell + s'')\mathbf{\Omega}, E) ds''\right) \cdot S(\mathbf{r} + \underline{(\ell + s')}\mathbf{\Omega}, E, \mathbf{\Omega}, t + \frac{\ell + s'}{v}) ds'$$

$$\ell + s' = -\ell'$$

Eq. (10.c) can be written as

$$\Phi(\mathbf{r}, E, \mathbf{\Omega}, t) = \int_0^\infty \exp\left(\int_{-\ell-\ell'}^{-\ell} -\Sigma_t (\mathbf{r} + (\ell + s'')\mathbf{\Omega}, E) ds''\right) \cdot S(\mathbf{r} - \ell'\mathbf{\Omega}, E, \mathbf{\Omega}, t - \frac{\ell'}{v}) d\ell'$$
(10.d)

By changing the variable as

$$\ell + s'' = -\ell''$$

Eq. (10.d) can be written as

$$\Phi(\mathbf{r}, E, \mathbf{\Omega}, t) = \int_0^\infty \exp\left(\int_0^{\ell'} -\Sigma_t (\mathbf{r} - \ell'' \mathbf{\Omega}, E) d\ell''\right) \cdot S(\mathbf{r} - \ell' \mathbf{\Omega}, E, \mathbf{\Omega}, t - \frac{\ell'}{v}) d\ell'$$
(10.e)

$$\Phi(\mathbf{r}, E, \mathbf{\Omega}, t) = \int_0^\infty \exp\left(\int_0^{s'} -\Sigma_t (\mathbf{r} - s''\mathbf{\Omega}, E) ds''\right) \cdot S(\mathbf{r} - s'\mathbf{\Omega}, E, \mathbf{\Omega}, t - \frac{s'}{v}) ds' \qquad (10)$$

Meaning of the Derived Integral Equation

$$\Phi(\mathbf{r}, E, \mathbf{\Omega}, t) = \int_0^\infty \exp\left(-\int_0^{s'} \Sigma_t(\mathbf{r} - s''\mathbf{\Omega}, E) ds''\right) \cdot S(\mathbf{r} - s'\mathbf{\Omega}, E, \mathbf{\Omega}, t - \frac{s'}{v}) ds'$$
(10)

• Equation (10) implies that the flux at **r** is made up of neutrons which appeared in the direction Ω and energy *E* at all other possible position $\mathbf{r} - s'\Omega$, with all positive values of *s*', multiplied by the attenuation factor

$$\exp\left(-\int_0^{s'} \Sigma_t(\mathbf{r}-s''\mathbf{\Omega},E)ds''\right)$$

Reformulation of Integral Equation

• For the further derivations, Eq. (10) and the $S(\mathbf{r}, E, \mathbf{\Omega}, t)$ can be expressed as

$$\Phi(\mathbf{r}, E, \mathbf{\Omega}, t) = \int_0^\infty e^{-\eta(s')} \cdot S(\mathbf{r} - s'\mathbf{\Omega}, E, \mathbf{\Omega}, t - \frac{s'}{v}) ds'; \qquad (11)$$
$$\eta(s') = \int_0^{s'} \Sigma_t (\mathbf{r} - s''\mathbf{\Omega}, E) ds'' \qquad (12)$$

$$\begin{split} S(\mathbf{r}, E, \mathbf{\Omega}, t) &= S_s(\mathbf{r}, E, \mathbf{\Omega}, t) + S_F(\mathbf{r}, E, \mathbf{\Omega}, t) + Q(\mathbf{r}, E, \mathbf{\Omega}, t) \\ &= \int_{E'} dE' \int_{4\pi} d\mathbf{\Omega}' \Sigma_s(\mathbf{r}, E' \to E, \mathbf{\Omega}' \to \mathbf{\Omega}, t) \Phi(\mathbf{r}, E', \mathbf{\Omega}', t) \\ &+ \int_{4\pi} d\mathbf{\Omega}' \int_{E'} dE' \chi(\mathbf{r}, E' \to E) \nu_f(E) \Sigma_f(\mathbf{r}, E', \mathbf{\Omega}' \to \mathbf{\Omega}, t) \Phi(\mathbf{r}, E', \mathbf{\Omega}', t) \\ &+ Q(\mathbf{r}, E, \mathbf{\Omega}, t) \end{split}$$

• The transition probability can be expressed by the probability f_{α} for each reaction type α as

$$\Sigma_{t}(\mathbf{r}, E') f(\mathbf{r}; E', \mathbf{\Omega}' \to E, \mathbf{\Omega}) = \sum_{\alpha} \Sigma_{\alpha}(\mathbf{r}, E') f_{\alpha}(\mathbf{r}; E', \mathbf{\Omega}' \to E, \mathbf{\Omega}) \quad (14)$$
11 SNU Monte Carlo Lab.

Collision Density Equation

• The collision density can be written, from its definition, as

$$\psi(\mathbf{r}, E, \mathbf{\Omega}, t) \equiv \Sigma_t(\mathbf{r}, E) \Phi(\mathbf{r}, E, \mathbf{\Omega}, t)$$

$$= \Sigma_{t}(\mathbf{r}, E) \int_{0}^{\infty} e^{-\eta(s')} \cdot S(\mathbf{r} - s'\mathbf{\Omega}, E, \mathbf{\Omega}, t - \frac{s'}{v}) ds' \quad (15)$$

v

• We transform Eq. (15) into the three-dimensional form to describe the collision density in the kernel form:

where $\delta(x)$ is the Dirac delta function.

Collision Density Equation (Contd.)

• By introducing the free-flight kernel, Eq. (16) can be expressed

$$\psi(\mathbf{r}, E, \mathbf{\Omega}, t) = \int d\mathbf{r}' T(E, \mathbf{\Omega}; \mathbf{r}' \to \mathbf{r}) S(\mathbf{r}', E, \mathbf{\Omega}, t'); \qquad (18)$$

$$T(E, \mathbf{\Omega}; \mathbf{r}' \to \mathbf{r}) = \frac{\Sigma_t(\mathbf{r}, E)}{|\mathbf{r} - \mathbf{r}'|^2} \exp\left[-\int_0^{|\mathbf{r} - \mathbf{r}'|} \Sigma_t(\mathbf{r} - s\frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|}, E)ds\right] \delta\left(\mathbf{\Omega} \cdot \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|} - 1\right) \quad (19)$$

• Then the insertion of Eq. (13) into Eq. (18) yields

$$\psi(\mathbf{r}, E, \mathbf{\Omega}, t) = \int d\mathbf{r}' T(E, \mathbf{\Omega}; \mathbf{r}' \to \mathbf{r}) \\ \times \left[\int_{E'} dE' \int_{4\pi} d\mathbf{\Omega}' \Sigma_t(\mathbf{r}, E') f(\mathbf{r}; E', \mathbf{\Omega}' \to E, \mathbf{\Omega}) \Phi(\mathbf{r}', E', \mathbf{\Omega}', t') + Q(\mathbf{r}', E, \mathbf{\Omega}, t') \right] \\ = \int d\mathbf{r}' T(E, \mathbf{\Omega}; \mathbf{r}' \to \mathbf{r})$$

$$\times \left[\int_{E'} dE' \int_{4\pi} d\mathbf{\Omega}' C(\mathbf{r}'; E', \mathbf{\Omega}' \to E, \mathbf{\Omega}) \psi(\mathbf{r}', E', \mathbf{\Omega}', t') + Q(\mathbf{r}', E, \mathbf{\Omega}, t') \right];$$

$$C(\mathbf{r}'; E', \mathbf{\Omega}' \to E, \mathbf{\Omega}) = \sum_{\alpha} \frac{\Sigma_{\alpha}(\mathbf{r}'; E', \mathbf{\Omega}')}{\Sigma_t(\mathbf{r}', E')} f_{\alpha}(E', \mathbf{\Omega}' \to E, \mathbf{\Omega}) \quad (21)$$

Collision Density Equation (Contd.)

• By introducing the first-collision source defined by

$$\hat{Q}(\mathbf{r}, E, \mathbf{\Omega}, t) = \int T(E, \mathbf{\Omega}; \mathbf{r}' \to \mathbf{r}) Q(\mathbf{r}', E, \mathbf{\Omega}, t') d\mathbf{r}' \quad ---- (22)$$

Eq. (20) can be expressed as

$$\psi(\mathbf{r}, E, \mathbf{\Omega}, t) = \hat{Q}(\mathbf{r}, E, \mathbf{\Omega}, t) + \int d\mathbf{r}' \int_{E'} dE' \int_{4\pi} d\mathbf{\Omega}' K(\mathbf{r}', E', \mathbf{\Omega}' \to \mathbf{r}, E, \mathbf{\Omega}) \psi(\mathbf{r}', E', \mathbf{\Omega}', t');$$
(23)

$$K(\mathbf{r}', E', \mathbf{\Omega}'; \rightarrow \mathbf{r}, E, \mathbf{\Omega}) = T(E, \mathbf{\Omega}; \mathbf{r}' \rightarrow \mathbf{r}) \cdot C(\mathbf{r}'; E', \mathbf{\Omega}' \rightarrow E, \mathbf{\Omega}) - (24)$$

• For simplicity, Eq. (23) can be expressed as

$$\psi(\mathbf{P}) = \hat{Q}(\mathbf{P}) + \int d\mathbf{P}' K(\mathbf{P}' \to \mathbf{P}) \psi(\mathbf{P}') \qquad (25)$$

where $\mathbf{P}=(\mathbf{r}, E, \mathbf{\Omega}, t)$.

Cf. Collision Density Eq. for Eigenvalue Calculations

The integral equation for the collision density ψ(P) defined by Σ_t(r,E)φ(P) can be written as

$$\psi(\mathbf{P}) = \int d\mathbf{r}' T(E, \mathbf{\Omega}; \mathbf{r}' \to \mathbf{r}) S(\mathbf{r}', E, \mathbf{\Omega}) + \int d\mathbf{P}' K_s(\mathbf{P}' \to \mathbf{P}) \psi(\mathbf{P}') \quad \text{(B.1)}$$

 K_s is defined by the product of the scattering collision kernel, C_s and the transition kernel [B.1] (or the free flight kernel), *T*:

$$K_{s}(\mathbf{P}' \to \mathbf{P}) = T(E, \mathbf{\Omega}; \mathbf{r}' \to \mathbf{r}) \cdot C_{s}(\mathbf{r}'; E', \mathbf{\Omega}' \to E, \mathbf{\Omega}); \qquad (B.2)$$

$$C_{s}(\mathbf{r}'; E', \mathbf{\Omega}' \to E, \mathbf{\Omega}) = \sum_{r \neq fis.} \nu_{r} \frac{\Sigma_{r}(\mathbf{r}'; E', \mathbf{\Omega}')}{\Sigma_{t}(\mathbf{r}', E')} f_{r}(E', \mathbf{\Omega}' \to E, \mathbf{\Omega})$$
(B.3)

$$T(E, \mathbf{\Omega}; \mathbf{r}' \to \mathbf{r}) = \frac{\Sigma_t(\mathbf{r}, E)}{\left|\mathbf{r} - \mathbf{r}'\right|^2} \exp\left[-\int_0^{|\mathbf{r} - \mathbf{r}'|} \Sigma_t(\mathbf{r} - s\frac{\mathbf{r} - \mathbf{r}'}{\left|\mathbf{r} - \mathbf{r}'\right|}, E)ds\right] \delta\left(\mathbf{\Omega} \cdot \frac{\mathbf{r} - \mathbf{r}'}{\left|\mathbf{r} - \mathbf{r}'\right|} - 1\right) \quad (B.4)$$

 v_r is the average number of neutrons produced from a reaction type *r* and f_r is the probability that a collision of type *r* by a neutron of direction Ω' and energy *E'* will produce a neutron in direction interval $d\Omega$ about Ω with energy in *dE* about *E*.

([B.1] I. Lux, L. Koblinger, "Monte Carlo Particle Transport Methods: Neutron and Photon Calculations," CRC Press (1991).)

Series Solution

$$\psi(\mathbf{P}) = \hat{Q}(\mathbf{P}) + \int d\mathbf{P}' K(\mathbf{P}' \to \mathbf{P}) \psi(\mathbf{P}') \qquad \qquad (25)$$

• Consider the solution of Eq. (25) obtained by iteration; thus

$$\psi_0(\mathbf{P}) = \hat{Q}(\mathbf{P})$$

$$\psi_1(\mathbf{P}) = \int d\mathbf{P}' K(\mathbf{P}' \to \mathbf{P}) \cdot \psi_0(\mathbf{P}')$$

$$\vdots \qquad \vdots$$

$$\psi_n(\mathbf{P}) = \int d\mathbf{P}' K(\mathbf{P}' \to \mathbf{P}) \cdot \psi_{n-1}(\mathbf{P}')$$

Clearly ψ_0 is the first-collision source. ψ_1 means the collision density from the second-collision neutrons. Similarly, ψ_2 indicates the contribution of the third-

collision neutrons, and so on. If the series $\sum_{j=0}^{\infty} \psi_j(\mathbf{P})$ converges, it represents a solution to Eq. (25).

Neumann Series Solution

$$\psi(\mathbf{P}) = \hat{Q}(\mathbf{P}) + \int d\mathbf{P}' K(\mathbf{P}' \to \mathbf{P}) \psi(\mathbf{P}')$$
(25)

• The solution of Eq. (25) can be expressed by the Neumann series:

$$K_{0}(\mathbf{P}' \to \mathbf{P}) = \delta(\mathbf{P}' - \mathbf{P}),$$

$$K_{1}(\mathbf{P}' \to \mathbf{P}) = K(\mathbf{P}' \to \mathbf{P}),$$

$$K_{2}(\mathbf{P}' \to \mathbf{P}) = \int d\mathbf{P}_{1}K(\mathbf{P}_{1} \to \mathbf{P})K(\mathbf{P}' \to \mathbf{P}_{1}),$$

$$\vdots$$

$$K_{j}(\mathbf{P}' \to \mathbf{P}) = \int d\mathbf{P}_{1} \cdots \int d\mathbf{P}_{j-1}K(\mathbf{P}_{j-1} \to \mathbf{P})K(\mathbf{P}_{j-2} \to \mathbf{P}_{j-1}) \cdots K(\mathbf{P}' \to \mathbf{P}_{1})$$
(26b)

- From Eq. (26), we can find that the collision density is the sum of the contribution from particles colliding at **P** first and after a collision or more.
- The Monte Carlo particle transport analysis is based on Eqs. (25) & (26).
- Normalizing the source to unity, Eq. (25) is the probability density for the number of collision at P.

Cf. Neumann Series Sol for Eigenvalue Eq.

• From the Neumann series solution for the integral transport equation, the neutron flux can be written as

$$\phi(\mathbf{r}, E, \mathbf{\Omega}) = \frac{1}{\Sigma_t(\mathbf{r}, E)} \sum_{j=0}^{\infty} \int d\mathbf{r}' \int dE_0 \int d\mathbf{\Omega}_0 K_{s,j}(\mathbf{r}', E_0, \mathbf{\Omega}_0 \to \mathbf{r}, E, \mathbf{\Omega}) \\ \times \int d\mathbf{r}_0 T(E_0, \mathbf{\Omega}_0; \mathbf{r}_0 \to \mathbf{r}') S(\mathbf{r}_0, E_0, \mathbf{\Omega}_0),$$

$$K_{s,j}(\mathbf{r}', E_0, \mathbf{\Omega}_0 \to \mathbf{r}, E, \mathbf{\Omega}) = \int d\mathbf{r}_1 \int dE_1 \int d\mathbf{\Omega}_1 \cdots \int d\mathbf{r}_{j-1} \int dE_{j-1} \int d\mathbf{\Omega}_{j-1}$$
$$\times K_s(\mathbf{r}_{j-1}, E_{j-1}, \mathbf{\Omega}_{j-1} \to \mathbf{r}, E, \mathbf{\Omega}) \cdots K_s(\mathbf{r}', E_0, \mathbf{\Omega}_0 \to \mathbf{r}_1, E_1, \mathbf{\Omega}_1)$$

 $K_{s}(\mathbf{r}', E', \mathbf{\Omega}' \to \mathbf{r}, E, \mathbf{\Omega}) = T(E', \mathbf{\Omega}'; \mathbf{r}' \to \mathbf{r})C_{s}(\mathbf{r}; E', \mathbf{\Omega}' \to E, \mathbf{\Omega})$

$$C_{s}(\mathbf{r}'; E', \mathbf{\Omega}' \to E, \mathbf{\Omega}) = \sum_{r \neq fis.} v_{r} \frac{\Sigma_{r}(\mathbf{r}'; E', \mathbf{\Omega}')}{\Sigma_{t}(\mathbf{r}', E')} f_{r}(E', \mathbf{\Omega}' \to E, \mathbf{\Omega})$$
$$T(E, \mathbf{\Omega}; \mathbf{r}' \to \mathbf{r}) = \frac{\Sigma_{t}(\mathbf{r}, E)}{\left|\mathbf{r} - \mathbf{r}'\right|^{2}} \exp\left[-\int_{0}^{|\mathbf{r} - \mathbf{r}'|} \Sigma_{t}(\mathbf{r} - s\frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|}, E) ds\right] \delta\left(\mathbf{\Omega} \cdot \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|} - 1\right)$$

SNU Monte Carlo Lab.