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Monte Carlo Reactor Analysis

 An integral equation equivalent to the integro-differential Boltzmann transport 
equation will be derived.

 The BTE serves to precisely describe particle balance in which the rate of 
accumulation of particles is equal to the difference between their rates of production 
and removal.

 In deriving the transport equation it was necessary to consider the neutron angular 
density in the immediate (space-time) vicinity only of the point under consideration, 
whereas the whole range of energies and angles had to be included in the transport 
equation for the angular density at a particular energy and angle.

 Hence, the formulation is local, involving derivatives, in space and time, but it is 
extended, involving integrals, in energy and angle.

Boltzmann Transport Equation
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Monte Carlo Reactor Analysis

 By a standard procedure known as the method of characteristics, the neutron 
transport equation which is a linear first order partial differential-integral equation 
can be converted into an integral equation.

 The first two derivative terms on the LHS of Eq. (1) may be written, in a cartesian 
coordinate system, as

and the upper terms can be regarded as the total derivative of  with respect to s at 
fixed values of W and E:

 Note that d/ds can be expressed as

Method of Characteristics
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Monte Carlo Reactor Analysis

 Then by comparing Eqs. (2) and (3), it is found that

 For an arbitrary time t0 and position x0, y0, and z0, the solutions of Eq. (4) becomes

 From Eq. (5), it is found that s means the travel distance along the direction W of 
neutron having energy E. 

Derivation of the Integral Equation
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Monte Carlo Reactor Analysis

 Hence, the transport equation (1) can be written as

 The r(s) and t(s) curves are called the characteristic curves of the differential 
equation, and for every r0 and t0 at fixed values of W and E, there is one curve 
passing through that point.

 The derivative in Eq. (6) is a derivative along a characteristic curve.

 Eq. (6) is seen to be a linear first-order ordinary differential equation which may be 
integrated.

 By introducing an integrating factor, Eq. (6) becomes

Derivation of the Integral Equation (Contd.)
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Monte Carlo Reactor Analysis

 Now Eq. (7) will be integrated from s=-∞, and as a result the integral terms will 
include earlier times, to some upper limit s. And it is assume that 

as would be true, for example, if there were no neutrons in the system at times long 
past.

 Then an integration of Eq. (7) from s=-∞ yields

Derivation of the Integral Equation (Contd.)
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Monte Carlo Reactor Analysis

 Equation (9) can be simplified to some extent by setting

as

 By changing the sign of the variable as

we obtain

 By substituting r0 and t0 as

Eq. (10.b) can be expressed as

Derivation of the Integral Equation (Contd.)
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Monte Carlo Reactor Analysis

 By changing the variable as

Eq. (10.c) can be written as

 By changing the variable as

Eq. (10.d) can be written as

Derivation of the Integral Equation (Contd.)
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Monte Carlo Reactor Analysis

 Equation (10) implies that the flux at r is made up of neutrons which appeared in the 
direction W and energy E at all other possible position              , with all positive 
values of s’, multiplied by the attenuation factor

Meaning of the Derived Integral Equation
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Monte Carlo Reactor Analysis

 For the further derivations, Eq. (10) and the S(r,E,W,t) can be expressed as

 The transition probability can be expressed by the probability fa for each reaction 
type a as

Reformulation of Integral Equation
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Monte Carlo Reactor Analysis

 The collision density can be written, from its definition, as

 We transform Eq. (15) into the three-dimensional form to describe the collision 
density in the kernel form:

where d(x) is the Dirac delta function.

Collision Density Equation
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Monte Carlo Reactor Analysis

 By introducing the free-flight kernel, Eq. (16) can be expressed

 Then the insertion of Eq. (13) into Eq. (18) yields

Collision Density Equation (Contd.)
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Monte Carlo Reactor Analysis

 By introducing the first-collision source defined by

Eq. (20) can be expressed as

 For simplicity, Eq. (23) can be expressed as

where P=(r,E,W,t).

Collision Density Equation (Contd.)
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Monte Carlo Reactor Analysis

Cf. Collision Density Eq. for Eigenvalue Calculations

 The integral equation for the collision density (P) defined by t(r,E)f(P) can be 
written as

Ks is defined by the product of the scattering collision kernel, Cs and the transition 
kernel [B.1] (or the free flight kernel), T:

r is the average number of neutrons produced from a reaction type r and  fr is the 
probability that a collision of type r by a neutron of direction       and energy      will 
produce a neutron in direction interval dW about W with energy in dE about E.

([B.1] I. Lux, L. Koblinger, “Monte Carlo Particle Transport Methods: Neutron and Photon 
Calculations,” CRC Press (1991).)
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Monte Carlo Reactor Analysis

 Consider the solution of Eq. (25) obtained by iteration; thus

Clearly 0 is the first-collision source. 1 means the collision density from the 
second-collision neutrons. Similarly, 2 indicates the contribution of the third-

collision neutrons, and so on. If the series                 converges, it represents a 
solution to Eq. (25).

Series Solution
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Monte Carlo Reactor Analysis

 The solution of Eq. (25) can be expressed by the Neumann series:

 From Eq. (26), we can find that the collision density is the sum of the contribution 
from particles colliding at P first and after a collision or more.

 The Monte Carlo particle transport analysis is based on Eqs. (25) & (26).

 Normalizing the source to unity, Eq. (25) is the probability density for the number 
of collision at P.

Neumann Series Solution
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Monte Carlo Reactor Analysis

 From the Neumann series solution for the integral transport equation, the 
neutron flux can be written as 

Cf. Neumann Series Sol for Eigenvalue Eq.
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