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Monte Carlo Reactor Analysis

= George I. Bell, Samuel Glasstone, “Nuclear Reactor Theory,” Van Nostrand
Reinhold Company, NY (1970).
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Monte Carlo Reactor Analysis

= An integral equation equivalent to the integro-differential Boltzmann transport
equation will be derived.

= The BTE serves to precisely describe particle balance in which the rate of
accumulation of particles is equal to the difference between their rates of production

and removal.
1 0D(r, E, Q1)
v ot

S, E,Qt)=8 (r,E,Q,t)+S,.(r,E,Q,t)+0(r,E,Q,1),
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+Q-VO(r,E, Q1)+ 2 (r,E,Q,1)D(r, E,Q,t) = S(r,E,Q,1); oo (1)

S.(r,E,Q,f) = Lﬂ dQy’ fE,dE’ (0 E — EW, (E)X,(r,E,Q — Q,0)0(r,E', Q)

= In deriving the transport equation it was necessary to consider the neutron angular
density in the immediate (space-time) vicinity only of the point under consideration,
whereas the whole range of energies and angles had to be included in the transport
equation for the angular density at a particular energy and angle.

= Hence, the formulation is local, involving derivatives, in space and time, but it is
extended, involving integrals, in energy and angle.
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Monte Carlo Reactor Analysis

= By a standard procedure known as the method of characteristics, the neutron
transport equation which is a linear first order partial differential-integral equation
can be converted into an integral equation.

= The first two derivative terms on the LHS of Eq. (1) may be written, in a cartesian
coordinate system, as

l£+QXE+Q i+QZ2 O
v Ot ox oy Oz

and the upper terms can be regarded as the total derivative of ® with respect to s at

fixed values of Q and £
a0 _(10.50.60,60)y  — )
ds \vot ox "oy Oz

= Note that d®/ds can be expressed as
dd _G(D'dt+8CD.dx+8(I).dy+8CD.dz
ds Ot ds Ox ds Oy ds 0z ds
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Monte Carlo Reactor Analysis

= Then by comparing Egs. (2) and (3), it is found that

dd 0D dt 0D dx 0D dy 0D d
d_CDZ l£+Q E+Q E-FQE(D — . + . X+ . y_|_ . Z
ds \vot “ox oy oz ds Ot ds oOx ds 0Oy ds 0Oz ds
——
ﬁ:l, @:Qxa Q:Q’ %zgz .................... (4)
ds v ds ds Y ds

= For an arbitrary time ¢, and position x,, y,,, and z,, the solutions of Eq. (4) becomes

S
f=t,+=,
v
X=Xy +QxS’\ .................... (5)

Y=Y, +s, rr =1 +5Q

Z=ZO+QZS ]

= From Eq. (5), it is found that s means the travel distance along the direction Q of
neutron having energy E.
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Monte Carlo Reactor Analysis

= Hence, the transport equation (1) can be written as

diq)(ro +SQQE999t0 +£)+21q) = S(l‘o +SQ,E,Q,tO —I-i) .................... (6)
S (% (%

= The r(s) and #s) curves are called the characteristic curves of the differential
equation, and for every r, and ¢, at fixed values of Q and £, there is one curve
passing through that point.

= The derivative in Eq. (6) 1s a derivative along a characteristic curve.

= Eq. (6)1s seen to be a linear first-order ordinary differential equation which may be
integrated.

= By introducing an integrating factor, Eq. (6) becomes

i[d)(ro +SQE, Q1 +2)- exp( | T (x, +S’Q,E)ds')}
ds v

= eXp(J‘SZt (ro -|—S'Q,E)dS,)'S(rO +SQ,E,Q,tO +£) .................... (7)
(V)
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Monte Carlo Reactor Analysis

=  Now Eq. (7) will be integrated from s=-00, and as a result the integral terms will
include earlier times, to some upper limit s. And it is assume that

O(r, +5Q,E, Q1 +2) >0 as s > -0 e 8)
U

as would be true, for example, if there were no neutrons in the system at times long
past.

= Then an integration of Eq. (7) from s=-co yields

q>(r0+sQ,E,Q,t0+5)-exp( [ SZt(r0+s’Q,E)ds’)— D(r, +5Q,E,Q,1, +2).
()

=" exp( [z +s"sz,E)ds”).S(r0 +5'Q,E, Q. 1, +%)ds’
» DO(r, +sQ,E,Q, 1, +%)

= exp(—J-SZ, (r, + S'Q,E)ds')-fm exp(js’Zt(ro + S"Q,E)a’s”)-S(r0 +5'Q E,Q.t, +%)ds'
- exp( [ =, +s"Q,E)ds")-S(r0 +5'Q,E, Q.1 +%’)ds’ -------------------- 9)
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Monte Carlo Reactor Analysis

= Equation (9) can be simplified to some extent by setting

s
r,+sQ=r, {,+—=t
v
as

or,E,Q.0= exp( A +S”Q,E)ds”)-S(r0 +5'Q,E, Q.1 +%)ds’ -------------------- (10.a)

= By changing the sign of the variable as
s=—/
we obtain

o(r,E. Q0= exp( [z +se E)ds”)-S(rO LS'QE, Q1 +%)ds' ~~~~~~~~~~~~~~~~~~~~ (10.b)

= By substituting r, and ¢, as

14
r,=r+/Q, {, =t+—
v
Eq. (10.b) can be expressed as

O(r,E,Q,1) = J:j exp (L_,E—Zt (r+(/+ s”)Q,E)ds”) S+l +5)QE,Q t+

!

{+s

)ds’

____________________ (10.c)
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Monte Carlo Reactor Analysis

= By changing the variable as
(+5s'

O(r,E,Q,¢) = _[__: exp(L'E -2 (r+(+ s")ﬂ,E)ds”) Sr+(L+s)Q E Q. t+ )ds'

T v
(+s" =1
Eq. (10.c) can be written as

o, E2.0 =" exp( [ s+ s”)ﬂ,E)ds”) S(r—1'Q,E, Q1 —%)df’

.................... ( 1 O d)
= By changing the variable as

(+s"==0"
Eq. (10.d) can be written as

O(r, E,Q,0) = exp(j(f -3, (l’—f"ﬂ,E)df")-S(r—E’Q,E,Q,t—%)dB’

O(r,E,Q,t) = I:exp(ﬁ —Zt(r—s”ﬂ,E)ds”)-S(r—s’Q,E,Q,t—%)ds’ ____________________ (10)
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Monte Carlo Reactor Analysis

O(r,E,Q,1) = j: exp(— jo S, (r-s"Q, E)ds”)-S(r—s’Q, E,Q,t—%)ds’ ____________________ (10)

= Equation (10) implies that the flux at r is made up of neutrons which appeared in the
direction Q and energy E at all other possible position I —s'€ , with all positive
values of s’, multiplied by the attenuation factor

exp (—J: Z(r-s"Q, E)ds”)
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Monte Carlo Reactor Analysis

= For the further derivations, Eq. (10) and the S(r,£,€2,f) can be expressed as

O(r,E,Q,t) = JAOOOe_”(S’) -S(r —S,Q,E,Q,l‘—s—)ds'; .................... (11)
()
U(S') = .[: Zt(r —S"Q,E)ds” .................... (12)

S, E,Q,t)=8 (r,E, Q1)+ S.(r,E,Q,1)+O(xr,E,Q,1)
= J'E'dE’ , AT (rLE' > E,Q - Q,0)0(r,E', Q1)
+ Lﬂ dQ’ jE dE'y(v,E' — E) (E)X,(r,E',Q — Q,0)d(r, E',Q',1)

+0(r, E,Q,1)
S(r,E,Q,t)

= JE dE'L dQ'S (r,E")f(r;E', Q' — E,Q)D(r,E',Q', 1)+ O(t, E, Q, 1) - (13)

»

= The transition probability can be expressed by the probability £, for each reaction
type o as

S(LENV(GE,.Q > EQ)=>3% (r,Ef,(hE.Q > EQ) (14)
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Monte Carlo Reactor Analysis

= The collision density can be written, from its definition, as
w(r,E,Q,)=2 (r, E)D(r, E,Q,1)

= Zt(r, E)IOOO e 1. S(l’ —S'Q,E, Q,t—%)ds' .................... (15)

=  We transform Eq. (15) into the three-dimensional form to describe the collision
density in the kernel form:

5(9 Ir_r:| _IJ
r-r’ —r' r—r
o500 =0 0.5 o e

r-r

|l‘—l'
xS, EQt); (16)
r'=r—s'Q, f’Zt—S— .................... (17)
(%

where &x) is the Dirac delta function.
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Monte Carlo Reactor Analysis

= By introducing the free-flight kernel, Eq. (16) can be expressed

w(r,E,Q,t)= '[dr'T(E, Qr' ->r)Sx,E,Q¢t);, (18)
T(E,Q;l”—)r):zt(r’ﬁ;)exp — |r_r,|2t(r_sr;r”E)dS Sl O. l‘—l" 1] (19)
r—r 0 r—r r—r|

= Then the insertion of Eq. (13) into Eq. (18) yields

w(r,E,Q,t) = Jdr’T(E,Q;r' —T)
x[ [ dE'[ dQs,(r.ENf(rE.Q - E.Q0F E.Q.0)+ Q(r',E,Q,t')}
= Ja’r’T(E,Q;r' —7T)
x| [ dE'[, dCr;ELQ - E,Qu (', B Q1)+ 0, E,2.0) |;

Z /. E! Q!
Cs B > £ = 3 2
a t ’

fa(E'»Q'—)EaQ) .................... (21)
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Monte Carlo Reactor Analysis

= By introducing the first-collision source defined by
O(r. E,Q,1) = [T(E,Qx' > 1), E,Q,t)dr' (22)
Eq. (20) can be expressed as
p(r,E,Q,1) = O(r, E,Q,1)+ [ dr’ jE,dE' L AQXK (' E,Q > 1, E,Qy(r,E, Q.0

K(l",E',Q';_) l’,E,Q) = T(E,ﬂ;r' —> l’)'C(l";E',Q’ N E,Q) .................... (24)

= For simplicity, Eq. (23) can be expressed as
v(P)=O(P)+ [dPK(P' > Py (P) (25)

where P=(r,E,Q,).
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Monte Carlo Reactor Analysis

The integral equation for the collision density y(P) defined by Z(r,E) X P) can be
written as

w(P) = j dr'T(E, Q¥ = 1)S(r',E,Q)+ j dP'K_(P' > P)y(P) — (B.1)

K. 1s defined by the product of the scattering collision kernel, C, and the transition
kernel [B.1] (or the free flight kernel), 7

K (P >P)=T(E,r ->r)-C(;E,Q >EQ);, - (B.2)

C.(rE,Q — E,Q)= Z v, 2, (r ;f; ’,Q)
r#fis. Zt(raE)

Z E r-r _ !
T(E,Q;r’—)l‘): t(r, 2) exp| — | |Z ( R —— r- E)dS r l‘, [ — (B.4)
r—r" 0 ‘r r' ‘r—r‘

fr(E"Q' —)E,Q) .................... (B3)

v, 1s the average number of neutrons produced from a reaction type » and f,1s the
probability that a collision of type by a neutron of direction €' and energy £’ will
produce a neutron in direction interval dQ about Q with energy in dE about E.

([B.1] I. Lux, L. Koblinger, “Monte Carlo Particle Transport Methods: Neutron and Photon
Calculations,” CRC Press (1991).)
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Monte Carlo Reactor Analysis

y(P)=0(P)+[dP'’K(P' > Py (P) (25)

= Consider the solution of Eq. (25) obtained by iteration; thus
v, (P) = O(P)
vi(P) = [ dP'K(P' — P)-y, (P')

y,(P)= [dP'K(P'—> P)-y, ,(P')

Clearly y is the first-collision source. y; means the collision density from the
second-collision neutrons. Similarly, ¥ indicates the contribution of the third-

collision neutrons, and so on. If the seriesz y (P) converges, it represents a
solution to Eq. (25). J=0
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Monte Carlo Reactor Analysis

y(P)=0(P)+[dPK(P' > Py(P)| (25)

= The solution of Eq. (25) can be expressed by the Neumann series:

y(B) =Y [dPK, @ >PO®)| (62)

K,(P'>P)=5(P' -P),
K,(P'>P)=K(P' - P),
K,(P'>P)= j APK®P ->P)KP —>P), (26b)

K,(P'—>P)=[dP - [dP K(P , >P)K(P, , >P, ) K(P —P)
= From Eq. (26), we can find that the collision density 1s the sum of the contribution
from particles colliding at P first and after a collision or more.
= The Monte Carlo particle transport analysis 1s based on Egs. (25) & (26).

= Normalizing the source to unity, Eq. (25) is the probability density for the number
of collision at P.
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Monte Carlo Reactor Analysis

= From the Neumann series solution for the integral transport equation, the
neutron flux can be written as

o(r,E,Q) =

[dE, [aQ K, ,(t',Ey,Q, > 1, E, Q)

derOT(EO,QO;I'O —> r’)S(r()aEO’QO) )

K, ,(v',E,,Q, >r,E,Q)=[dr[dE [dQ,--[dr [dE, [dQ,,
<K (r ,E, ,Q,  =>r,EQ) K (' E,Q —>r,E,Q)

J-1
K@ E,Q >r,E,Q)=T(E,Q;r' >r)C (r;E',Q — E,Q)

2 I_E! Q,
C.(rE Q> EQ)= ) v, r(r,, — )
r# fis. zt(raE)

T(E,Q;r’—)r):zt(r’l?exp - r|Z( LI r —, E)ds |0 r—r, -1
r—r’| 0 r—r |r—r|

f.(E,Q — E Q)
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