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How to heat up a plasma?




Plasma Heating

Radio Frequency Heating
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Ohmic heating




Ohmic Heating
SA“|K Electric blanket

/ i

/B
L ¥ ®
« LEMD) >

FETIEA

RIRHD T Nl Auction (Korea)

 Intrinsic primary heating in tokamaks due to Joulian dissipation
generated by currents through resistive plasma:
thermalisation of kinetic energies of energetic electrons
(accelerated by applied E) via Coulomb collision with plasma ions
 Primary heating due to lower cost than other auxiliary heatings
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Ohmic Heating
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- Z.¢ limited by radiation losses
- High T required for enough fusion reactions

|

do. d4 limited by instabilities
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Magnetic field limited by engineering
— compact high-field tokamak
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Average temperatures above — 7 keV are necessary before alpha

heating is large enough to achieve a significant fusion rate. |
—
Weston M. Stacey, “Fusion Plasma Physics” WILEY-VCH (2005)
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It seems unlikely that tokamaks that would lead to practical reactors
can be heated to thermonuclear temperatures by Ohmic heating!

—

Weston M. Stacey, “Fusion Plasma Physics” WILEY-VCH (2005)



Neutral Beam Injection (NBI)




Neutral Beam Injection
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259-Car Autobahn pile-up
near Braunschweig,
largest in German history:
(20 July 2009)

- More than 300 ambulances, fire engines and police cars
rushed to the scene to tend to the 66 people injured in the crash.

- The crash was blamed on cars aquaplaning on puddles and a low g
sun hindering drivers. b a Y
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Neutral Beam Injection



http://en.wikipedia.org/wiki/File:Inelastischer_sto%C3%9F.gif
http://en.wikipedia.org/wiki/File:Inelastischer_sto%C3%9F.gif

Plasma Neutral beam

Andy Warhol

« Supplemental heating by energy transfer of neutral beam
to the plasma through collisions

 Requirements

- Enough energy for deep penetration

- Enough power for desired heating

- Enough repetition rate and pulse length > 1

http://www.nasa.gov/mission_pages/galex/20070815/f.html



Neutral Beam Injection

Injection of a beam of neutral
fuel atoms (H, D, T)
at high energies™*

U

lonisation in the plasma

U

Beam particles confined

U

Collisional slowing down

* E, = 120 keV and 1 MeV for KSTAR and ITER, respectively
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Dirk Hartmann, “Plasma Heating”, IPP Summer School, IPP Garching, September 20, 2001
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Neutral Beam Injection
e Neutraliser
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Neutral Beam Injection

 Energy Deposition in a Plasma

Charge exchange:

. + + +
lon collision: D..+D —>D.,+D" +e
Electron collision: D +e— Df+ast +e+e

Attenuation of a beam of neutral particles in a plasma

beam
ener e
gy Andy Warhol

n: density
o-. Cross section
\ http://www.nasa.gov/mission_pages/galex/20070815/f.html 17 '
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Neutral Beam Injection

 Energy Deposition in a Plasma

Charge exchange:

. + + +
lon collision: D..+D —>D.,+D" +e
Electron collision: D +e— Df+ast +e+e

Attenuation of a beam of neutral particles in a plasma
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Dirk Hartmann, “Plasma Heating”, IPP Summer School, IPP Garching, September 20, 2001




Neutral Beam Injection

 Energy Deposition in a Plasma

Charge exchange:
+D"—>D; . ,+D" +e

lon collision: D fast

fast
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fast

Electron collision: D..+e—> D, . +e+e

fast

Attenuation of a beam of neutral particles in a plasma
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Dirk Hartmann, “Plasma Heating”, IPP Summer School, IPP Garching, September 20, 2001




Neutral Beam Injection

 Energy Deposition in a Plasma

Charge exchange:

. + + +
lon collision: D..+D —>D.,+D" +e
Electron collision: D +e— Df+ast +e+e

Attenuation of a beam of neutral particles in a plasma
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Dirk Hartmann, “Plasma Heating”, IPP Summer School, IPP Garching, September 20, 2001



Neutral Beam Injection

 Energy Deposition in a Plasma

Charge exchange:

. + + +
lon collision: D..+D —>D.,+D" +e
Electron collision: D +e— Df+ast +e+e

Attenuation of a beam of neutral particles in a plasma
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Dirk Hartmann, “Plasma Heating”, IPP Summer School, IPP Garching, September 20, 2001



Neutral Beam Injection

e Generation of a Neutral Fuel Beam
Extraction

: : Neutraliser Vacuum valve
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Dirk Hartmann, “Plasma Heating”, IPP Summer School, IPP Garching, September 20, 2001




Neutral Beam Injection

e lon Source

Vacuum envelope

Source

gas
I

lon
source

B

To vacuum | |

pump <

23




Accelerator Vacuum envelope
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Neutral Beam Injection
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Neutral Beam Injection
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‘Neutral Injection
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Neutral Beam Injection
« JET NBI System

. Full energy
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Neutral Beam Injection
« JET NBI System
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JET with machine and Octant 4 Neutral Injector Box

https://www.euro-fusion.org/eurofusion/europe-participates/czech-republic/



Octant 4 Neutal Injector Box

https://www.euro-fusion.org/eurofusion/europe-participates/czech-republic/
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Neutral Beam Injection
 Injection Angle

Radial (perpendicular, normal) ‘ 5

injection a\

Tangential injection

Radial injection: B

e standard ports
» particle loss
* shine-through

Dirk Hartmann, “Plasma Heating”, IPP Summer School, IPP Garching, September 20, 2001



Neutral Beam Injection

* Injection Angle
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Dirk Hartmann, “Plasma Heating”, IPP Summer School, IPP Garching, September 20, 2001



Neutral Beam Injection
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