Introduction to Nuclear Fusion

Prof. Dr. Yong-Su Na

How to heat up a plasma?

Plasma Heating

Auction (Korea)

- Intrinsic primary heating in tokamaks due to Joulian dissipation generated by currents through resistive plasma: thermalisation of kinetic energies of energetic electrons (accelerated by applied E) via Coulomb collision with plasma ions
- Primary heating due to lower cost than other auxiliary heatings

$$P_{\Omega} = \eta \left\langle j^{2} \right\rangle = 1.0 \times 10^{5} \left(\frac{Z_{eff}}{T^{3/2}} \right) \left[\frac{1}{q_{o}(q_{a} - q_{o}/2)} \right] \left(\frac{B_{\phi}}{R} \right)^{2}$$

- Z_{eff} limited by radiation losses
- High *T* required for enough fusion reactions

 q_0 , q_a limited by instabilities

Magnetic field limited by engineering

→ compact high-field tokamak

$$\tau_{E} = \frac{W}{P_{in} - \frac{\partial W}{\partial t}} \approx \frac{W}{P_{in}} = \frac{3/2(n_{i}T_{i} + n_{e}T_{e})}{P_{in}}$$

$$P_{\Omega} = \eta \langle j^2 \rangle = 1.0 \times 10^5 \left(\frac{Z_{eff}}{T^{3/2}} \right) \left[\frac{1}{q_o(q_a - q_o/2)} \right] \left(\frac{B_{\phi}}{R} \right)^2$$
$$= P_L = 3nT / \tau_E$$

$$T = 2.7 \times 10^8 \left(\frac{Z_{eff} \tau_E}{nq_a q_0}\right)^{\frac{2}{5}} \left(\frac{B_\phi}{R}\right)^{\frac{4}{5}}$$

$$Z_{eff} = 1.5 \qquad q_a q_o = 1.5$$

$$\tau_E = (n/10^{20})a^2/2$$

Alcator scaling

$$T = 0.87 B_{\phi}^{\frac{4}{5}}$$

Average temperatures above ~ 7 keV are necessary before alpha heating is large enough to achieve a significant fusion rate.

$$\tau_{E} = \frac{W}{P_{in} - \frac{\partial W}{\partial t}} \approx \frac{W}{P_{in}} = \frac{3/2(n_{i}T_{i} + n_{e}T_{e})}{P_{in}}$$

$$P_{\Omega} = \eta \langle j^2 \rangle = 1.0 \times 10^5 \left(\frac{Z_{eff}}{T^{3/2}} \right) \left[\frac{1}{q_o(q_a - q_o/2)} \right] \left(\frac{B_{\phi}}{R} \right)^2$$
$$= P_L = 3nT / \tau_E$$

$$T = 2.7 \times 10^8 \left(\frac{Z_{eff} \tau_E}{nq_a q_0}\right)^{\frac{2}{5}} \left(\frac{B_\phi}{R}\right)^{\frac{4}{5}}$$

$$Z_{eff} = 1.5 \qquad q_a q_o = 1.5$$

$$\tau_E = (n/10^{20})a^2/2$$

Alcator scaling

$$T = 0.87 B_{\phi}^{\frac{4}{5}}$$

It seems unlikely that tokamaks that would lead to practical reactors can be heated to thermonuclear temperatures by Ohmic heating!

Neutral Beam Injection (NBI)

259-Car Autobahn pile-up near Braunschweig, largest in German history: (20 July 2009)

- More than 300 ambulances, fire engines and police cars rushed to the scene to tend to the 66 people injured in the crash.
- The crash was blamed on cars aquaplaning on puddles and a low sun hindering drivers.

259-Car Autobahn pile-up near Braunschweig, largest in German history: (20 July 2009)

- More than 300 ambulances, fire engines and police cars rushed to the scene to tend to the 66 people injured in the crash.
- The crash was blamed on cars aquaplaning on puddles and a low sun hindering drivers.

m

Plasma

Neutral beam

Andy Warhol

- Supplemental heating by energy transfer of neutral beam to the plasma through collisions
- Requirements
- Enough energy for deep penetration
- Enough power for desired heating
- Enough repetition rate and pulse length > τ_{E}

Injection of a beam of neutral fuel atoms (H, D, T) at high energies*

1

Ionisation in the plasma

1

Beam particles confined

 \prod

Collisional slowing down

* E_b = 120 keV and 1 MeV for KSTAR and ITER, respectively

Neutraliser

- Charge exchange:
$$\underbrace{D}_{fast}^+ + \underbrace{D}_{2}_{gas}^- \rightarrow \underbrace{D}_{fast}^+ + \underbrace{D}_{2}^+_{slow}^+$$

- Re-ionisation:
$$\underbrace{D}_{fast} + \underbrace{D_2}_{gas} \rightarrow \underbrace{D}_{fast}^+ + \underbrace{D_2}_{gas} + e^-$$

- Efficiency: (outgoing NB power)/(entering ion beam power)

Energy Deposition in a Plasma

Charge exchange: $D_{fast} + D^+ \rightarrow D_{fast}^+ + D$

Ion collision: $D_{fast} + D^+ \rightarrow D_{fast}^+ + D^+ + e^-$

Electron collision: $D_{fast} + e \rightarrow D_{fast}^+ + e + e$

Attenuation of a beam of neutral particles in a plasma

n: density

 σ : cross section

beam energy

NBI

Andy Warhol

Energy Deposition in a Plasma

Charge exchange:
$$D_{fast} + D^+ \rightarrow D_{fast}^+ + D$$

Ion collision:
$$D_{fast} + D^+ \rightarrow D_{fast}^+ + D^+ + e$$

Electron collision:
$$D_{fast} + e \rightarrow D_{fast}^+ + e + e$$

Attenuation of a beam of neutral particles in a plasma

$$\frac{dN_b(x)}{dx} = -N_b(x)n\sigma_{tot} \quad N_b(x) = N_b(0)\exp(-n\sigma_{tot}x)$$

Ex. beam intensity:
$$I(x) = N_b(x)v_b = I_0 \cdot \exp(-x/\lambda)$$

$$\lambda = \frac{1}{n\sigma_{tot}} \approx 0.4m$$
 Penetration (attenuation) length

$$n = 5 \cdot 10^{20} \, m^{-3}$$
 $E_{b0} = 70 \, keV$ $\sigma_{tot} = 5 \cdot 10^{-20} \, m^2$

In large reactor plasmas, beam cannot reach core!

Energy Deposition in a Plasma

Charge exchange: $D_{fast} + D^+ \rightarrow D_{fast}^+ + D$

Ion collision: $D_{fast} + D^+ \rightarrow D_{fast}^+ + D^+ + e$

Electron collision: $D_{fast} + e \rightarrow D_{fast}^+ + e + e$

Attenuation of a beam of neutral particles in a plasma

General criterion for adequate penetration

$$\lambda \equiv \frac{1}{n\sigma_{tot}Z_{eff}^{\gamma}} = \frac{5.5 \times 10^{17} E_b(keV)}{A(amu)n(m^{-3})Z_{eff}^{\gamma}} \ge a/4$$

$$E_b \ge 4.5 \times 10^{-19} Ana Z_{eff}^{\gamma}$$

Energy Deposition in a Plasma

Charge exchange: $D_{fast} + D^+ \rightarrow D_{fast}^+ + D$

Ion collision: $D_{fast} + D^+ \rightarrow D_{fast}^+ + D^+ + e^-$

Electron collision: $D_{fast} + e \rightarrow D_{fast}^+ + e + e$

Attenuation of a beam of neutral particles in a plasma

Energy Deposition in a Plasma

Charge exchange: $D_{fast} + D^+ \rightarrow D_{fast}^+ + D$

Ion collision: $D_{fast} + D^+ \rightarrow D_{fast}^+ + D^+ + e^-$

Electron collision: $D_{fast} + e \rightarrow D_{fast}^+ + e + e$

Attenuation of a beam of neutral particles in a plasma

Generation of a Neutral Fuel Beam

Ex) W7-AS: V = 50 kV, I = 25 A, power deposited in plasma: 0.4 MW

• Ion Source

Ion Acceleration

JET NBI System

• JET NBI System

JET with machine and Octant 4 Neutral Injector Box

• JET NBI System

Octant 4 Neutal Injector Box

Injection Angle

Radial (perpendicular, normal) injection

Tangential injection

Radial injection:

- standard ports
- particle loss
- shine-through

$$\mathbf{v}_{D,\nabla B} = \pm \frac{1}{2} v_{\perp} r_{L} \frac{\mathbf{B} \times \nabla B}{B^{2}}$$

(

• Injection Angle

Radial (perpendicular, normal) injection

Tangential injection

KSTAR NB shine-through armor

ASDEX Upgrade

JET

