Physical Chemistry for Energy Engineering (3<sup>rd</sup>: 2018/09/10)

Takuji Oda

# Assistant Professor, Department of Nuclear Engineering Seoul National University

\*The class follows the text book: D.A. McQuarrie, J.D. Simon, "Physical Chemistry: A Molecular Approach", University Science Books (1997).

# **Course schedule (tentative)**

| Lecture # | Date   | Contents                                                         |
|-----------|--------|------------------------------------------------------------------|
| 1         | 3-Sep  | Introduction                                                     |
| 2         | 5-Sep  | 1. Thermodynamics: Basic concepts of thermodynamics              |
| 3         | 10-Sep | 1. Thermodynamics: The first law of thermodynamics               |
| 4         | 12-Sep | 1. Thermodynamics: Thermodynamic process and cycle               |
| 5         | 17-Sep | 1. Thermodynamics: The second and third laws of thermodynamics-1 |
| 6         | 19-Sep | 1. Thermodynamics: The second and third laws of thermodynamics-2 |
|           | 24-Sep | No lecture (holiday)                                             |
|           | 26-Sep | No lecture (holiday)                                             |
| 7         | 1-Oct  | 1. Equation of state of gas                                      |
|           | 3-Oct  | No lecture (holiday)                                             |
| 8         | 8-Oct  | Answer of homework-1                                             |
| 9         | 10-Oct | Exam-01 (2 hour)                                                 |
| 10        | 15-Oct | 2. Introduction to equilibrium theory                            |
| 11        | 17-Oct | 2. Free energy-1                                                 |
| 12        | 22-Oct | 2. Free energy-2                                                 |
| 13        | 24-Oct | 2. Calculation of thermodynamic quantities                       |
|           | 29-Oct | No lecture                                                       |
|           | 31-Oct |                                                                  |

# **Contents of today**

#### <Last class>

- 1.1.1. Basics of thermodynamics
- 1.1.2. The first law of thermodynamics

## <Today's class>

- **1.1.2.** The first law of thermodynamics
- 1.2.1. Thermodynamic process
- 1.2.2. Thermodynamic cycle

# **Review of the last class** -quasi-static/reversible/irreversible process>

- < Definition of quasi-static process (in this course, we use definition (1)!) >
  - Very (infinitesimally) slow process so that we consider the system is always at 1) some equilibrium state.
  - Very (infinitesimally) slow process and the process takes place with adhering 2) the system to some equilibrium state and keeping concerned thermodynamic quantities of the system and the surroundings equal.
    - >> for this definition, "quasi-static" is equivalent with "reversible"
    - >> In this course, this is the definition of reversible process.



- Any process is rev. or irrev.
- Any rev. process is quasi-static.
- Some irrev. process is quasi-static.
- Rev. process = quasi-static process.
- No irrev. process is quasi-static.

### Review

#### - two energy transfer ways: heat & work -

- ✓ Heat (q) is a way of energy transfer that occurs due to a difference in temperature b/w two systems (or b/w the system and the surroundings).
- Work (w) is a way of energy transfer that occurs due to an un-balance in force/pressure b/w two systems (or b/w the system and the surroundings).
   \*The unit of g and w is the same with the unit of energy (a.g. [1])

\*The unit of q and w is the same with the unit of energy (e.g. [J]).

#### <How energy transfer as "heat" occurs ?>



- ✓ If the temperature of a system is different from that of the surroundings, some energy can be transferred b/w the system and the surroundings.
- Energy is always transferred from a higher-temperature side to a lower-temperature side.
  - ▶ If  $T_{external} > T_{system}$ , q > 0. It means system energy is increased.
  - > If  $T_{system} > T_{external}$ , q < 0. It means system energy is decreased.
  - > If  $T_{system} = T_{external}$ , q = 0. It means no energy transfer as heat.

## 1.1.2. The First Law of Thermodynamics (\$19.1)

- A typical work in thermodynamics: Pressure-Volume work-

#### <How energy transfer as "work" occurs?>





*M*: the mass of the weight [kg] *g*: the gravitational acceleration (9.8 [m/s<sup>s</sup>]) *h*: the change in the height [m] *A*: the area of the bottom plane of piston [m<sup>2</sup>]  $P_{external}$ : the pressure of the surroundings \*the surroundings is "piston + weight"

w = -Fs = -(Mg)h as in classical mechanics (s is displacement) =  $-\frac{Mg}{A} \times Ah$ =  $-P_{external}\Delta V$  as "Ah" corresponds to volume change ( $\Delta V$ )

as "Ah" corresponds to volume change ( $\Delta V$ ) \*Regarding the unit: [N/m<sup>2</sup>] [m<sup>2</sup> m] = [Pa] [m<sup>3</sup>]

# (exercise)



*M*: the mass of the weight [kg] g: the gravitational acceleration (9.8 [m/s<sup>s</sup>]) *h*: the change in the height [m] A: the area of the bottom plane of piston [m<sup>2</sup>]  $P_{external}$ : the pressure of the surroundings

Let's apply : M = 10 kg, h = 0.10 m,  $A = 1.0 \text{ m}^2$ 

(1) How much work did the system make to the surroundings?

$$-w = -(-P_{external}\Delta V)$$

$$P_{external} = \frac{Mg}{A} = \frac{10 \times 9.8}{1.0} = 98 \text{ [Pa]}$$

$$\Delta V = Ah = 1.0 \times 0.10 = 0.10 \text{ [m^3]}$$

$$-w = -(-P_{external}\Delta V) = 98 \times 0.10 = 9.8 \text{ [J]}$$

(2) How much energy did the surroundings obtain by lifting up the weigh?

 $\checkmark$  By this, the potential energy of surroundings (piston + weight) is increased as:  $\Delta U_{surroundings} = Mgh = 10 \times 9.8 \times 0.10 = 9.8 \text{ [J]}$ 

So, in this process, the energy loss of the system is equal to the energy gain of the surroundings, as energy conservation in classical mechanics.

# **1.1.2. The First Law of Thermodynamics**

- (Appendix) kinds of "work"-

✓ In thermodynamics, the most common work is "pressure-volume work".

 $w = -P_{external}\Delta V$ 



- $\checkmark$  In addition to it, we have several other forms of work.
  - ✓ Mechanical forms
    - ► P-V work:  $w = -Fs = -(Mg)h = -\frac{Mg}{A} \times Ah = -P_{external}\Delta V$
    - Shaft work:  $w = -Fs = 2\pi nT$ 
      - \* *T* is the torque and *n* is the number of revolutions.

• Spring work: 
$$w = -Fs = \frac{1}{2}kx^2 - \frac{1}{2}kx_0^2$$

\* k is the spring constant.

- ✓ Non-mechanical forms
  - $\blacktriangleright$  Electrical work: e.g.  $w = \frac{q_1 q_2}{4\pi\varepsilon_0} \frac{1}{r}$
  - Magnetic work
  - Gravitational work

### 1.1.2. The First Law of Thermodynamics (\$19.1) - how to calculate Pressure-Volume work-



 $w = -P_{external}\Delta V$ 

*M*: the mass of the weight [kg] *g*: the gravitational acceleration (9.8 [m/s<sup>s</sup>]) *h*: the change in the height [m] *A*: the area of the bottom plane of piston [m<sup>2</sup>]  $P_{external}$ : the pressure of the surroundings

- ✓ If we only consider "a piston with a weight", the pressure  $(P_{external} = \frac{Mg}{A})$  is always constant.
- ✓ If we consider some gasses or mechanical devices as the surroundings, the pressure can be changed ( $P_{external}(V)$ ). Then, we need an integral as:

$$w = -\int_{V_{system-initial}}^{V_{system-final}} P_{external} \, dV = -\int_{V_{ini}}^{V_{fin}} P_{ext} \, dV$$

\* This integral form is more general because if  $P_{ext} = const.$ , this equation gives:  $w = -\int P_{ext} dV = -P_{ext} \int dV = -P_{ext} \Delta V.$ 

#### 1.1.2. The First Law of Thermodynamics (\$19.1)

- how to calculate P-V work-



$$w = -\int_{V_{ini}}^{V_{fin}} P_{ext} \, dV$$

✓ To make this integral,  $P_{ext}$  should be expressed as a function of *V*, like  $P_{ext} = P_{ext}(V)$ .

\*Note this *V* is the system volume, not the volume of the surroundings.



We use external pressure (not system pressure) for work calculation !

# 1.1.2. The First Law of Thermodynamics (\$19.1) - how to calculate P-V work: compression case -

#### Here, we consider compression case.



✓ At state-1, due to the pin,  $P_{sys} = P_{ext}(<\frac{Mg}{A})$ .

 ✓ [Process 1→2] Taking out the pin. Because no change in system volume, no work is brought.

✓ At state-2, because the pin is out,  $P_{sys} < P_{ext}$  (=  $\frac{Mg}{A}$ ).

✓ [Process 2 → 3] Compressing the system.

✓ At state-3, 
$$P_{sys} = P_{ext}(=\frac{Mg}{A})$$
.

# **1.1.2.** The First Law of Thermodynamics

- how to calculate P-V work: comp. b/w expansion & compression-

# <<u>Expansion></u><br/> <pr

P-V work is defined as:  

$$w = -\int_{V_{ini}}^{V_{fin}} P_{ext} \, dV$$
f  $P_{ext} = const$ . like the left figures,

 $w = -P_{ext} \,\Delta V$ 

<<u> Compression></u>



Because pressure cannot take a negative value ( $P_{ext} \ge 0$ )

- ✓ for expansion ( $\Delta V > 0$ ), " $w \le 0$ " is always achieved, which mean the system energy is decreased.
- ✓ for compression ( $\Delta V < 0$ ), " $w \ge 0$ " is always achieved, which mean the system energy is increased.

\*D.A. McQuarrie, J.D. Simon, "Physical Chemistry: A Molecular Approach", University Science Books (1997).

#### 1.1.2. The First Law of Thermodynamics (\$19.1)

- compression with different external pressures-



✓ w<sub>A</sub> < w<sub>B</sub>, as the work depends on P<sub>ext</sub>, not on P<sub>sys</sub>. (P<sub>ext-A</sub> < P<sub>ext-B</sub>)
 ✓ To induce compression, P<sub>ext</sub> > P<sub>sys</sub> is needed. However, if ΔP = P<sub>ext</sub> - P<sub>sys</sub> is too large, more energy (as work) is needed for the compression. Case-A is more effective.

# **1.1.2.** The First Law of Thermodynamics (\$19.1)

- how to make expansion in an effective way?-

#### <How to make compression effectively?>

- ✓ To make a compression process, it is needed to keep the external pressure larger than the system pressure ( $P_{ext} > P_{sys}$ ).
- ✓ If  $P_{ext}$  is decreased close to  $P_{sys}$ , we can imaginarily consider "compression with keeping  $P_{ext} = P_{sys}$ ".
  - ✓ In this condition, this process is quasi-static and reversible.
  - ✓ In this condition, the work needed to give to the system for compression is minimized, thus most effective.



## 1.1.2. The First Law of Thermodynamics (\$19.1) - how to make expansion in an effective way?-

#### <How to make expansion effectively?>

- ✓ To make an expansion process, it is needed to keep the external pressure smaller than the system pressure ( $P_{ext} < P_{sys}$ ).
- ✓ If  $P_{ext}$  is increased close to  $P_{sys}$ , we can imaginarily consider "expression with keeping  $P_{ext} = P_{sys}$ ".
  - ✓ In this condition, this process is quasi-static and reversible.
  - ✓ In this condition, the work extracted from the system by expansion is maximized, thus most effective.





1.1.2. The First Law of Thermodynamics (\$19.1) - how to calculate P-V work in reversible process (quasi-static) -



✓ P-V work is determined as:  

$$w = -\int_{V_{ini}}^{V_{fin}} P_{ext} \, dV$$
✓ If the process is reversible,  $P_{ext} = P_{sys}$ . Then,  

$$w = -\int_{V_{ini}}^{V_{fin}} P_{ext} \, dV = -\int_{V_{ini}}^{V_{fin}} P dV$$
\*we usually write *P* to mean  $P_{sys}$ .

# **Review of the last class** -quasi-static/reversible/irreversible process>

- < Definition of quasi-static process (in this course, we use definition (1)!) >
  - Very (infinitesimally) slow process so that we consider the system is always at 1) some equilibrium state.
  - Very (infinitesimally) slow process and the process takes place with adhering 2) the system to some equilibrium state and keeping concerned thermodynamic quantities of the system and the surroundings equal.
    - >> for this definition, "quasi-static" is equivalent with "reversible"
    - >> In this course, this is the definition of reversible process.



- Any process is rev. or irrev.
- Any rev. process is quasi-static.
- Some irrev. process is quasi-static.
- Rev. process = quasi-static process.
- No irrev. process is quasi-static.

# Quiz



✓ If the process is reversible,  $P_{ext} = P$  is achieved. (*P* means  $P_{sys}$ ). Then, the P-V work is defined as:

$$w = -\int_{V_{ini}}^{V_{fin}} PdV$$
(for reference)

(for reversible processes)

[Q01] If *P* behaves as  $P = 2.0 \times V^{-2}$  in SI units, how much is the minimum work required to compress the system from 3.0 m<sup>3</sup> to 2.0 m<sup>3</sup>.

# Quiz



✓ If the process is reversible,  $P_{ext} = P$  is achieved. (*P* means  $P_{sys}$ ). Then, the P-V work is defined as:

$$w = -\int_{V_{ini}}^{V_{fin}} PdV$$
(for re

(for reversible processes)

[Q01] If *P* behaves as  $P = 2.0 \times V^{-2}$  in SI units, how much is the minimum work required to compress the system from 3.0 m<sup>3</sup> to 2.0 m<sup>3</sup>.

The minimum work is achieved for reversible process. Thus  $P_{ext} = P$  and then,

$$w = -\int_{V_{ini}}^{V_{fin}} PdV = -\int_{3.0}^{2.0} (2.0 \times V^{-2})dV = 2.0[V^{-1}]_{3.0}^{2.0} = 0.33 [J]$$

This value corresponds to the energy transferred from the surroundings to the system as work.

**1.1.2. The First Law of Thermodynamics (\$19.2)** - energy is a state function, but work is not a state functions -

- Energy is a state function. Thus, it depends only on the current state, not on the history of the state of the system.
  - ✓ In a process, the energy change depends only on energy difference between the initial state and the final state, not on the path.



 $\Delta U = \int_{state-1}^{state-2} dU = U_2 - U_1$ 

$$\Delta U_{path-1} = \Delta U_{path-2}$$

- ✓ On the other hand, work is not a state function. It means the amount of work depends on the path/process, which is called "path function".
  - ✓ For example, if the external pressure is increased, the work is increased, as we learned.
  - ✓ So, even if the initial and the final state are identical between 2 paths, the work may be different each other. ( $w_{path-1} \neq w_{path-2}$ )

# **1.1.2. The First Law of Thermodynamics (\$19.2)** - energy is a state function, but work is not a state functions -



# (Appendix)

- ✓ If dU = 0 throughout the process, always  $\Delta U = \int dU = 0$ . ✓ However,  $\Delta U = 0$  does not guarantee dU = 0.
- ✓ If  $\delta w = 0$  throughout the process, always  $w = \int \delta w = 0$ . ✓ However, w = 0 does not guarantee  $\delta w = 0$ .

#### 1.1.2. The First Law of Thermodynamics (\$19.2) - heat is also a path function, like work -

 Heat (q), which is a way of energy transfer that occurs due to a difference in temperature between two systems (or the system and its surroundings), is not a state function but a path function, as the same with work.



Is there any constraint in dU,  $\delta w$  and  $\delta q$  ?? >> YES !!

#### **1.1.2. The First Law of Thermodynamics (\$19.3)** - the 1<sup>st</sup> law as energy conservation law for thermodynamics -

<The first law of thermodynamics (energy conservation)>  $dU = \delta q + \delta w (+\delta z) \qquad \Delta U = q + w (+z)$ 

- ✓ The term  $\delta z$  accounts for energy transfer due to matter transfer, which is needed for open system. If the concerned system is isolated or closed, this term is 0 ( $\delta z = 0$ ). (we usually omit this term it in this course).
- ✓ Due to this constraint in heat and work (energy transfers), the energy is conserved, although each can take an arbitrary value.
  - ✓ For example, let's consider three paths having identical initial and final states, and thus  $\Delta U = U_{fin} U_{ini} = 10$  [J]
    - ▶ If  $q_{path-1} = 5 [J]$ , it must be  $w_{path-1} = 5 [J]$ .
    - ▶ If  $q_{path-2} = 10 [J]$ , it must be  $w_{path-2} = 0 [J]$ .
    - ▶ If  $q_{path-3} = -20 [J]$ , it must be  $w_{path-3} = 30 [J]$ .
- ✓ In classical mechanics, the energy conservation is considered only for work. In thermodynamics, heat is additionally involved.

#### 1.1.2. The First Law of Thermodynamics (\$19.3) - description of the 1<sup>st</sup> law -

"The first law of thermodynamics is a version of the law of conservation of energy, adapted for thermodynamic systems. The law of conservation of energy states that the total energy of an isolated system is constant; energy can be transformed from one form to another, but cannot be created or destroyed."

(\*wikipedia)

- $\checkmark$  There exists for every system a property called energy (E).
  - E = internal energy (arising from molecular motion primarily a function of temperature) + kinetic energy (\*\*macroscopic)+ potential energy (\*\*macroscopic) + chemical energy (\*\*which usually contained in internal energy ).

The change in energy of a system is equal to the difference between the heat added to the system and the work done by the system. (\*\* "done to the system" in our definition)

(\*http://web.mit.edu/16.unified/www/FALL/thermodynamics/thermo\_4.htm)

> dU =  $\delta q + \delta w$  (in this course)
> dU =  $\delta q - \delta w$  (in some textbooks)

# Quiz

- ✓ [Q02] " $\delta q$  and  $\delta w$  does not depend on a pathway of the process, but just depend on the initial and the final states of the process." Is this statement correct?
- ✓ [Q03] "dU does not depend on a pathway of the process, but just depend on the initial and the final states of the process." Is this statement correct?

# Quiz

- ✓ [Q02] δq and δw does not depend on a pathway of the process, but just depend on the initial and the final states of the process.
   > No.
- ✓ [Q03] dU does not depend on a pathway of the process, but just depend on the initial and the final states of the process.

>> No. dU depend on a process (path). What does not depend on the pathway is  $\Delta U = U_{fin} - U_{ini}$ , which only depends on the initial and final states.

# **Contents of today**

#### <Last class>

- 1.1.1. Basics of thermodynamics
- 1.1.2. The first law of thermodynamics

# <Today's class>

- 1.1.2. The first law of thermodynamics
- **1.2.1. Thermodynamic process**
- 1.2.2. Thermodynamic cycle

#### 1.2.1. Thermodynamic process - basics -

- ✓ "process" is an operation to cause a change of the system from one state (initial state) to another state (final state)".
- ✓ A process often accompanies an energy transfer as heat or/and work.
- ✓ During the process, the 1<sup>st</sup> law (and other 2<sup>nd</sup> and 3<sup>rd</sup> laws) should be preserved.

1<sup>st</sup> law:  $dU = \delta q + \delta w$ 



# **1.2.1. Thermodynamic process** - some widely-applied simplifications -

✓ In thermodynamics, we normally consider only P-V work.

$$\delta w = -P_{ext}dV$$
$$w = \int \delta w = -\int P_{ext}dV$$



- ✓ If we consider non P-V work, " $\delta w = -P_{ext}dV + \delta w_{non-PV}$ " \*Hereafter, if not specified, work is only P-V work ( $\delta w_{non-PV} = 0$ )
- ✓ If we consider enter/escape of some matter (e.g. molecules) to/from the system, the 1<sup>st</sup> law should be "d*U* =  $\delta q + \delta w + \delta z$ " where  $\delta z$  represents the energy gain/loss by enter/escape of some matter. \**Hereafter, if not specified, we assume*  $\delta z = 0$

(assuming closed or isolated system)

#### **1.2.1. Thermodynamic process** - expansion and compression to make energy transfer as work -

Here we focus on P-V work:  $\delta w = -P_{ext}dV$  and  $P_{ext} \ge 0$ .





dV < 0 thus  $\int \delta w = w \ge 0$ 

\*The equal sign is achieved when  $P = P_{ext} = 0$ , namely both system and surroundings are vacuums.

#### **1.2.1. Thermodynamic process** - heating and cooling to make energy transfer as heat -

Here we focus on heat.



Expansion & Compression: energy transfer by work

✓ Heat & Cooling: energy transfer by heat



✓ If we also consider non-PV work:  $dU = \delta q + \delta w_{PV} + \delta w_{non-PV} = \delta q + \delta w_{non-PV}$ .

# **1.2.1. Thermodynamic process** - constant-pressure heating/cooling (dP = 0)-

1<sup>st</sup> law:  $dU = \delta q + \delta w$ 

(2) Constant-pressure heating/cooling: dP = 0 (P = const.)



\*In the right graph, if the system is an ideal gas, the volume is linearly change with the temperature, as PV = nRT.

✓ If we further assume the process is reversible, where  $P = P_{ext}$ ,  $T = T_{ext}$ , etc, then:

 $\delta w = -PdV$  thus  $\Delta U = q - P\Delta V$ 

# Quiz

✓ [Q04] A system goes through a reversible constant-volume heating process at 0.020 m<sup>3</sup> from 300 K to 500 K. The system is composed by 1 mole of ideal gas whose energy is defined as  $U = \frac{3}{2}nRT$ . Please determine (1)  $\Delta U$ , (2) w and (3) q in this process.

# Quiz

- ✓ [Q04] A system goes through a reversible constant-volume heating process at 0.020 m<sup>3</sup> from 300 K to 500 K. The system is composed by 1 mole of ideal gas whose energy is defined as  $U = \frac{3}{2}nRT$ . Please determine (1)  $\Delta U$ , (2) w and (3) q in this process.
  - Because constant-volume process (dV = 0),  $\delta w = -PdV = 0$ . Hence,  $w = \int \delta w = 0$ .
    - Using the energy expression of ideal gas,  $\Delta U = \frac{3}{2}nR\Delta T = \frac{3}{2} \times 1 \times 8.31 \times (300 - 500) = 2.5 \times 10^3 \text{ [J]}$ According to 1<sup>st</sup> law, dU =  $\delta q + \delta w = \delta q$ . Thus,  $\Delta U = q$ . Hence,  $\Delta U = q = 2.5 \times 10^3 \text{ [J]}$ , w = 0 [J].