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Course schedule (tentative)

Lecture #| Date Contents
1 3-Sep|introduction
2 5-Sep|1l. Thermodynamics: Basic concepts of thermodynamics
3 10-Sep[l. Thermodynamics: The first law of thermodynamics
4 12-Sep[l. Thermodynamics: Thermodynamic process and cycle
5 17-Sep[l. Thermodynamics: The second and third laws of thermodynamics-1
6 19-Sep[l. Thermodynamics: The second and third laws of thermodynamics-2
24-Sep No lecture (holiday)
26-Sep No lecture (holiday)
1. Thermodynamics: The second and third laws of thermodynamics-3
7 1-Oct|(1. Equation of state of gas will be covered in future)
3-Oct No lecture (holiday)
8 8-OctAnswer of homework-1
9 10-OctlExam-01 (2 hour)
10 15-Oct|2. Introduction to equilibrium theory
11 17-Oct2. Free energy-1
12 22-0Oct2. Free energy-2
13 24-Oct2. Calculation of thermodynamic quantities
29-Oct No lecture
31-Oct




Contents of today

<Last class>
2.2. Equilibrium theory: free energy
2.2.1. Helmholtz energy
2.2.2. Gibbs energy

<Today'’s class>
2.2. Equilibrium theory: free energy
2.2.2. Gibbs energy
2.2.3. Maxwell relations and some useful formula
2.2.4. How to calculate thermodynamic quantities



Review of the last class, equilibrium theory

Free energy as well as entropy is a good index to predict the equilibrium state
and the direction of reaction.

v For an isolated system

—> Maximize the entropy: S

v For a system of constant T and constant V
- Minimize the Helmholtz (free) energy: A
A=U-TS

v For a system of constant T and constant P

—> Minimize the Gibbs (free) energy: G
G=H-TS=A+PV



2.2.2. Gibbs energy

- examples for how to determine the reaction direction-

(Example-2) A vaporization “H,O (I) — H,O (g)”

v" The molar Gibbs energy of vaporization (Avapé) is:
_AvapG = G[Hzo(g)] - G[HZO_(I)] = AvapH - TAvapS
V' ApgpH = 40.65 k] mol™ and A,4,S = 108.9 ] K~! mol™" at 1 bar (1x10° Pa)
near 373.15 K (1002C). Thus,
Avapé = 40.65 —T x 0.1089 kJ mol™*
» If T =373.15K,
ApapG =+
» If T =363 K (slightly lower than the normal melting point),
ApapG =+
» If T = 383 K (slightly higher than the normal melting point),
ApapG =+



2.2.2. Gibbs energy

- examples for how to determine the reaction direction-

(Example-2) A vaporization “H,O (I) — H,O (g)”

v" The molar Gibbs energy of vaporization (Avapé) is:
AvapG G[HZO(Q)] [HZO(I)] AvapH TAvapS
v AvapH 40.65 kJ mol™! and AvapS = 108.9] K~ mol~1 at 1 bar (1x10° Pa)
near 373.15 K (1002C). Thus,
Avapé = 40.65 —T x 0.1089 kJ mol~?
» IfT =373.15K,
Avapé = 40.65 — 373.15 x 108.9 = 0 k) mol~*!
which means the transfer of 1 mole liquid water to water vapor is a
reversible process at 373.15 K at 1x10° Pa.
» If T = 363 K (slightly lower than the normal melting point),
AvapG 40.65 — 363.15 x 0.1089 = +1.12 k] mol~*

which means the water vaporization is not spontaneous at 363 K at
1x10° Pa.
» If T = 383 K (slightly higher than the normal melting point),
AvapG = 40.65 — 383.15 x 0.1089 = —1.06 k] mol™?

which means the vaporization is spontaneous at 383 K at 1x10° Pa.



2.2.2. Gibbs energy

- examples for how to determine the work to be obtained/required-

(Example-3: a case of "AG < 0“) Combustion of H,
H, (g) + %2 0, (9)— H,O () @298.15 K and 1 bar (1x10° Pa)

v A.G = —237.1 k] mol~! at 298.15 K and 1x10° Pa.

v" Thus, a maximum of -237.1 kJ mol! of usual work (excluding reversible P-V
work) can be obtained from this spontaneous reaction.

v If some energies are irreversibly transferred and thus causing temperature

increase (e.g. friction), we cannot reconvert some of it to “usual work”, due
to the second law.

(Example-4: a case of "AG > 0“) Decomposition of H,O
H,O (I) - H, (g) + %2 O, (g) @298.15 K and 1 bar (1x10° Pa)

v" As the opposite reaction of H, combustion, A,.G = 237.1 k] mol~1 at
298.15 K and 1x10° Pa.

v Thus, it would require at least 237.1 k) mol! of energy to drive this
(nonspontaneous) reaction.

v If some non-reversible processes are involved (certainly involved in

practice), some additional energy to 237.1 kJ mol?! have to be put on the
system.



2.2.2. Gibbs energy

- examples for how to determine the work to be obtained/required-

(Example-3: a case of "AG < 0“) Combustion of H,
H,(g)+%0,(g)> H,0() @298.15K and 1 bar (1x10° Pa)

v A.G = —237.1 k] mol~! at 298.15 K and 1x10° Pa.
v" Thus, a maximum of -237.1 kJ mol?! of usual work (excluding the reversible
P-V work) can be obtained from this spontaneous reaction.

H,O(l) @298+a K, 1 bar
AlG AzG
A.G
H,(9)+ Y2 O, (g) @298 K, 1bar >  H,0O() @298 K, 1 bar

v’ As the Gibbs energy is a state function, A,.G = AG + A,G
v' We cannot take A,-G work from this reaction, because some irreversible
processes should be involved.
v' Combustion explosively occurs in general, which is far away from
reversible process where process should go slowly and the system is
always at some equilibrium state.



2.2.2. Gibbs energy

- examples for how to determine the work to be obtained/required-

(Example-1: a case of "AG < 0“) Combustion of H,
H,(g)+%0,(g)> H,0(l) @298.15K and 1 bar (1x10° Pa)

v A.G = —237.1k] mol~t at 298.15 K and 1x10° Pa.

v' We may take some electrical energy out of the chemical energy by
» [(2) directly to electrical energy] using a fuel cell.
“H, > 2H* + 2e" “(anode) & “2H*+7% 0, + 2e" > H,0 (cathode)
*theoretical efficiency = AG/AH = (AH — TAS)/AH
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2.2.3. Maxwell relations and some useful formulas

- Maxwell relations for Helmholtz energy ($22.2)-

As an example, a “Maxwell relation” for Helmholtz energy (A) is given here.

Differential equation of Helmholtz energy (A = U — TS ) is:
dA = dU —TdS — SdT

Considering a process along a reversible path, the first and second laws are:
dU = 6oy + OWypy, = TdS — PdV

Hence,
dA = —PdV — 5dT

Here, we can compare it with the total differential of A = A(V, T)

04 a—A) dT , then
174

dA = (W)T av + (aT

57), =P (5), =5

Since, the cross derivatives are equal as:

024\ _ [ 9%A then
arov) — \avar) » \N€

), (@),




(Appendix) cross derivatives -

We consider a case of F for “F is a function of x and y, namely F = F(x,y)”

0°F\ 0 (0F 0 [F(x+ Ax,y) — F(x,y)
ayax ~ dy\ox ay Ax

(|F(x + Ax,y + Ay) — F(x,y + Ay)] [F(x+ Ax,y) — F(x,y)])
= — >/Ay
| Ax _ _ Ax 1
;'F(x+Ax,y+Ay) —F(x+ Ax,y)| [F(Cx,y+ Ay) —F(x,y)'\/A
— — s [ Ax
\ Ay I 1 Ay )

B F(x,y + Ay) — F(x,y) OF\ [ 0°F
B ax[ Ay T ox <0y> B <0xay)



2.2.3. Maxwell relations and some useful formulas

- Maxwell relations for Helmholtz energy ($22.2)-

37 ET cross partial derivatives of A (U, H, and G, as well) is

<0P) - (65) This kind of equation, which is obtained by the second
14 T called a Maxwell relation.

Indeed, Maxwell relation give us a useful equations.
For example, here, we assume a constant temperature process, then:

2 (9P
AS = j — 1 dV (constant T)
|41 oT 14
» If we know a P-V-T data, such as the equation of state, this is easily utilized to
determine S.

» For an ideal gas, for example,

AS sz 0 (nRT) a r f"z dv . v,
= =n — =nRIn—
v, \OT\| V ) v, V vy

(*constant T)
> If V. is very large, a gas behaves as an ideal gas. So, we can evaluate AS in
1
reference to S'@eak-9as yalue.




2.2.3. Maxwell relations and some useful formulas

- Maxwell relations for Gibbs energy ($22.2)-

Here, we consider the Maxwell relation for Gibbs energy (G).

Differential equation of Gibbs energy (G=U — TS + PV ) is:
dG = dU — TdS — SdT + PdV + VdP

Considering a process along a reversible path, the first and second laws are:
dU = 0qppp + OWppy = TdS — PdV

Hence,
dG = —SdT + VdP

Here, we can compare it with the total derivative of G = G (T, P)

dG = (a—G)P dT + (a—G)T dP , then

; oT aaP
G G
(a—T)P = —5 and (a_P)T =V

Since, the cross derivatives are equal as:
902G 902G
(aTaP) B (aPaT) , then

() ~(),




2.2.3. Maxwell relations and some useful formulas

- Maxwell relations ($22.2)-

v’ Likewise, the four principal thermodynamic energies (U, H, A, G), have natural
independent variables and then Maxwell relations as follows.
v' These differential expression were derived only according to the first & second laws
and considering a reversible path.
v Even for non-equilibrium states and/or for irreversible processes, as far as
thermodynamic quantities are definitely determined at around the concerned
state, these relations are applicable because they are about state functions.

Thermodynamic Differential Corresponding
energy expression Maxwell relations

U dU =TdS — PdV

oT
H dH =TdS + VdP ( =
A dA = —8SdT — PdV (

G dG = —-8dT + VdP

*D.A. McQuiarrie, J.D. Simon, “Physical Chemistry: A Molecular Approach”, University Science Books (1997).



2.2.3. Maxwell relations and some useful formulas

- Maxwell relations for Gibbs energy ($22.2)-

The meaning of “natural independent variables” is given for U as example.

Considering a process along a reversible path, the first and second laws are:
dU = 6qpp + OWypy, = TdS — PdV
Here, the variables of U are S and V.

However, if we wish, we can use T and I/ as the variables of U, for example:
oP
dU = [T (a—T)V - P] dV + C,dT

In comparison,
dU =TdS — PdV

is apparently more simple. Thus we consider S and IV are “natural independent
variables” for U.



2.2.3. Maxwell relations and some useful formulas

- some useful formulas from Maxwell relations ($22.7)-

Similarly, we can derive several useful equations.

(1) A equation which plays a central role in chemical equilibria involving gas-
phase reactions.

P,

G
— | =V then AG =j VdP (constant T)
dP . P,

For 1 mole of an ideal gas (constant T),

_ P2 dp P,
AG=RT] — = RT In—
1

_ P
= G°(T RT 1
G =G°(T) + n(lbar)

Here, G°(T) is called the standard molar Gibbs energy.
It is the Gibbs energy of 1 mole of the ideal gas at a pressure of 1 bar at T K, which
is called “standard state”.

*1 bar = 1x10° Pa



2.2.3. Maxwell relations and some useful formulas

- some useful formulas from Maxwell relations ($22.7)--

Similarly, we can derive several useful equations.

(2) A equation (called Gibbs-Helmholtz equation) which is used to derive an
equation for the temperature dependence of an equilibrium constant.

G H
G=H-TS then —=—--S5
T T
By differentiating partially with respect to T keeping P fixed:

0G/T\ = H 1(0H oS
<—8T ) A f(a?)}, B <0_T>
As Cp(T) = (0H/0T)p = T(3S/3T)p,

oG/T\  H
oT P_ T2

This equation can be directly applied to any process, in which case it is:

<0AG /T) _AH
P

oT



Legendre transformation and application

Legendre transformation is the transformation from f(x) to g(p) as follows:

g*(p)=max{px—f ()|

where x is taken so that {px-f(x)} is maximized.
(*If the maximum does not exist, “max” is replaced with “sup”.)
The inverse transformation is given as

f**(x)=—min{f*(p)-xp|
p
This corresponds to do the transformation twice. For a convex
function, **(x) is equal to f(x).

(Exercise) Do the Legendre transformation for f(x) = ax?, where a > 0. And
then, do the inverse transformation.




Legendre transformation and application

g*(p):mex{px—f(x)} f**(x)z—min{g*(p)—xp}

p

(Exercise) Do the Legendre transformation for f(x) = ax?, where a > 0. And
then, do the inverse transformation.

2
*(p)=max/{ px—ax’ px—ax® =—A
97 (P) ’ {p } pX+ A= ax’
= max _a(x_ﬂjZJr p° _ p° We minimize A here.
X 2a 4a| 4a Then, g(p)=—-A
Yy
* % i * _ 5
f**(x)= mgn{g (p)—xp} \
2 B 2 N
p p ; >
O T

https://mathtrain.jp/legendrehenkan



Legendre transformation and application

For a function whose independent variables are x and y, namely ¢(x,y) , ifitis
(total) differentiable,

OX

where UE(%j , VE[%]
oX ), oy )

Now, we want to find an equation that regards u and v are independent variables.
First, to convert the variable x—u, we define ¥ as

é(x,y)= (%J dx+[%] dy = udx + vdy

W = ¢ — XU <«——— This is Legendre transformation

then
dy =d¢g—d(xu)=(udx+vdy)—(xdu+udx)=—xdu +vdy



Legendre transformation and application

d(x,y) :(%j dx+(%j dy = udx + vdy

where UE(%j , VEL%]
OX y 6y X

dy =dg—d(xu)=(udx+vdy)—(xdu+udx)=—xdu +vdy

0 0
Comparing this with dy = (—WJ du J{—l//j dy gives us the following
y u

relations ou oy

]

(Exercise) For ¢(x, y) , convert the variable y—v,




Legendre transformation and application

_(9¢ 99 gy = _( ¢ _[ 2¢
¢(X’y)_(ﬁxjydx+(8y1dy udx +vdy, where u_(ﬁx)y, V_(éij

dy =dg—d(xu)=(udx+vdy)—(xdu+udx) = —xdu +vdy

0 0
Comparing this with dy = (—wj du + [—W) dy gives us the following
relations au J, %y ),

(Exercise) For ¢(x,y) , convert the variable y—v,




Legendre transformation and application

_(9¢ 99 gy = _( ¢ _[ 2¢
¢(X’y)_(ﬁxjydx+(8y1dy udx +vdy, where u_(ﬁx)y, v_(aij

To convert the variable y—v, we define as

A=g—yv
dA=dg—d(yv)=(udx+vdy)—(ydv+vdy)=udx— ydv

Comparing this with 4, _ (fﬁj dx+(5/1j gy  Gives us the following

relations X v

23]




Legendre transformation and application

_(9¢ 99 gy = _( ¢ _[ 2¢
¢(x,y)_(6xjydx+(ay)xdy udx +vdy, where u_(ﬁxjy, v_[aij

Likewise, to have an equation where u and v are independent variables, starting from
Y = ¢ — xu, whose independent variables are x and v,

H=Y =YW
du=dy —d(yv)=(-xdu+vdy)—(ydv+vdy)=—xdu—ydv

Comparing thiswith  du = (6’”) du+(6 j dv  gives us the following
relations au ), N J,

(%)




Legendre transformation and application

In summary,
® (x,y) Y (uy) A (x,v) 1 (u,v)
(=19 +xu) Y =¢ —xu A=¢—yv U=10—yv
(p=A+yv) (Y=u+yv) (A= +xu) U =A—xu
(¢ =y +xutyv) (U =¢ —xu—yv)
(1) d @ =udx+vdy (2) di = —xdu+vdy 3) d A =udx—vydv (4) d t = —xdu—ydv
ELE B E
dx v dy Hx du dy fu dx v dv I du dv Ju

http://www.f-denshi.com/000TokiwaJPN/10kaisk/080ksk.html

(Exercise) Please relate ¢, ...,
assuming ¢=H, x=S,

X, ... with thermodynamic quantities,




Legendre transformation and application

In summary,
@ (x,y) ¥ (uy) A (x,v)  (u,v)
(p=19¢ +xu) Y=¢—xu A=¢—yv U=y —yv
(p=A+yv) (Y=u+yv) (A =pu +xu) ©=A—xu
(¢ =t +xutyv) (U =¢d —xu—yv)
(1) d @ =udx+vdy (2) di = —xdu+vdy 3) d A =udx—vydv (4) d t = —xdu—ydv

dx v dvy fx

—:a :a
X 3u TV ™ !

_3).
. axv

3 A
dv I

X ou - dv u

http://www.f-denshi.com/000TokiwaJPN/10kaisk/080ksk.html

(Exercise) Please relate ¢, ...,
assuming ¢=H, x=S,

X, ... with thermodynamic quantities,

¢o=H, Y=G, A=U, u=F,

x=S, y=P, u=T, v=V




Legendre transformation and application

_(9¢ 99 gy = _( ¢ _[ 2¢
¢(X’y)_(ﬁxjydx+(8y1dy udx +vdy, where u_(ﬁx)y, V_(éij

In summary,

H(S,P) G(T,P) U(s,v) F(T.V)
(H=G+ST) G=H-—ST U=H—PV F=G—PV
(H=U+PV) (G=F+PV) (U=F+ST) F=U—ST

F=H—ST—PV
dH=TdS+VdP dG=—SdT+VdP dU=TdS—PdV dF =—SdT—PdV
B | Hs | N | Kels P | GAt | e | EAE “fhauy . _Heu ot o2 E
e AR B R s A

http://www.f-denshi.com/000TokiwaJPN/10kaisk/080ksk.html

The relations in the last row become the Maxwell relations by
using the fact “the cross derivatives are equal to each other”,
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2.2.4. How to calculate thermodynamic quantities

- standard state -

v" We have a database of thermodynamic quantities. Because such quantities
depend on conditions (temperature, pressure, etc), we use a specific condition,
so-called “standard state”.

v’ For extensive quantities, molar quantity (quantity per mole) is used.
v e.g. S where the bar stands for molar quantity and ° for the standard state.

v' The standard state for each phase is defined as follows:
v’ for a gas is the equivalent hypothetical ideal gas
v’ for a liquid is the pure liquid substance
v’ for a solid is the pure crystalline substance

at 1 bar at the temperature of interest.

TABLE 21.3

Standard molar entropies (S ) for the noble gases, the gaseous halogens, and the hydrogen
halides at 298.15 K.

Noble gas § /J-K™'-mol™' Halogen § /J-K™'mol™' Hydrogen halide §'/J-K"~m+::1'J

He(g) 126.2 F,(g) 202.8 HF(g) 173.8
Ne(g) 146.3 Cl,(2) 223.1 HCl(g) 186.9
Ar(g) 154.8 Br, (g) 245.5 HBr(g) 198.7
Kr(g) 164.1 L(g) 260.7 Hl(g) 206.6
Xe(g) 169.7

*D.A. McQuiarrie, J.D. Simon, “Physical Chemistry: A Molecular Approach”, University Science Books (1997).



2.2.4. How to calculate thermodynamic quantities

- entropy calculation and “hypothetical ideal gas” ($22-6) -

Using a equation based on the Maxwell relation for G, we can calculate the entropy

at the temperature of interest.

The entropy change due to the
temperature change of the
substance is given as

Ty Co(TAT'
ASzj p( )
. T

1

(constant P)

*D.A. McQuiarrie, J.D. Simon, “Physical
Chemistry: A Molecular Approach",
University Science Books (1997).

TABLE 21.1

The standard molar entropy of nitrogen at 298.15 K.

Process ETJ/]-K_l*mUi_l
0to 10.00 K 2.05
10.00 to 35.61 K 25.79
Transition 6.43
35.61to 63.15 K 23.41
Fusion 11.2
63.15t0 77.36 K 11.46
Vaporization 72.0
77.36 K to 298.15 K 39.25
Correction for nonideality 0.02
Total 191.6




(Appendix) Phase diagram of nitrogen

' I ' I
NITROGEN

100r supercritical state
4 © 10}
g = 4k critical
= @ point
2 a 01 solid
,E go'm_state
0o
0.001F gas
0.0001F

2200 100

-100 O'CJ
T Temperature [°C]
Temperature - K

https://www.researchgate.net/publication/3
https://commons.wikimedia.org/wiki/File: 15888614 Selected_aspects_of manufact
Phase_diagram_of_nitrogen_(1975).png uring_and_strength_evaluation_of porous
_composites _based on_numerical simulat
lons/figures?lo=1
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