Physical Chemistry for Energy Engineering (18th: 2018/11/21)

Takuji Oda

Associate Professor, Department of Nuclear Engineering Seoul National University

*The class follows the text book: D.A. McQuarrie, J.D. Simon, "Physical Chemistry: A Molecular Approach", University Science Books (1997).

Course schedule (as of Nov. 5)

	29-Oct	No lecture
	31-Oct	
14	5-Nov	2. Phase equilibrium-1
15	7-Nov	2. Phase equilibrium-2
16	12-Nov	3. Chemical equilibrium-1
17	14-Nov	Answers of homework-2
18	19-Nov	Exam-02 (2 hour)
19	21-Nov	3. Chemical equilibrium-2
20	26-Nov	3. Chemical equilibrium-3
21	28-Nov	3. Chemical equilibrium-4
22	3-Dec	3. Chemical kinetics-1
23	5-Dec	3. Chemical kinetics-2
24	10-Dec	3. Chemical kinetics-3
25	12-Dec	Answers of homework-3
26	17-Dec	Exam-03 (2 hour)

Contents of today

<Last class>

2.3. Phase equilibrium-1: a typical case (1 component)

- 2.3.2. Freezing mechanism
- 2.3.x. Phase rule

<Today's class>

3.1. Chemical equilibrium for gases

3.1. Chemical equilibrium for gases - \$26: Introduction -

- ✓ Thermodynamics enables us to predict the equilibrium pressures or concentrations of reaction mixtures.
- ✓ In this chapter, we will derive a relation between the standard Gibbs energy change and the equilibrium constant for a chemical reaction.
- ✓ We will also learn how to predict the direction in which a chemical reaction will proceed if we start with arbitrary concentrations (thus, not equilibrium) of reactants and products.
- ✓ Although we need to utilize some equations specialized for gases, an important point is that chemical equilibrium (at const.-T const.-P condition) is governed by Gibbs energy as the same with phase equilibrium.
 - ✓ The equilibrium state is a state of the lowest Gibbs energy for chemical equilibrium, as the same with phase equilibrium (at const.-T const.-P)

Consider a general gas phase reaction, described by a balanced equation. $\nu_A A(g) + \nu_B B(g) \rightleftharpoons \nu_Y Y(g) + \nu_Z Z(g)$

The amount of species *i* is n_i [mol]. The Gibbs energy for this multi-component system is a function of T, P, n_A , n_B , n_Y and n_Z , then the total differential is:

$$dG = \left(\frac{\partial G}{\partial T}\right)_{P,n_A,n_B,n_Y,n_Z} dT + \left(\frac{\partial G}{\partial P}\right)_{T,n_A,n_B,n_Y,n_Z} dP + \left(\frac{\partial G}{\partial n_A}\right)_{T,P,n_B,n_Y,n_Z} dn_A + \left(\frac{\partial G}{\partial n_B}\right)_{T,P,n_A,n_Y,n_Z} dn_B + \left(\frac{\partial G}{\partial n_Y}\right)_{T,P,n_A,n_B,n_Z} dn_Y + \left(\frac{\partial G}{\partial n_Z}\right)_{T,P,n_A,n_B,n_Y} dn_Z$$

Then, it can be re-written as:

$$dG = -SdT + VdP + \mu_A dn_A + \mu_B dn_B + \mu_Y dn_Y + \mu_Z dn_Z$$
$$\mu_A = \left(\frac{\partial G}{\partial n_A}\right)_{T,P,n_B,n_Y,n_Z}, etc$$

If the reaction takes place in const.-T const.-P condition,

 $dG = \mu_A dn_A + \mu_B dn_B + \mu_Y dn_Y + \mu_Z dn_Z$ (constant T and P) *This "const.-P" is about total pressure (not partial pressure).

Consider a general gas phase reaction, described by a balanced equation. $\nu_A A(g) + \nu_B B(g) \rightleftharpoons \nu_Y Y(g) + \nu_Z Z(g)$

We define a quantity ξ , called as the "extent of reaction". Here n_{i0} is the initial number of moles for species i, then :

 $n_A = n_{A0} - \nu_A \xi$ $n_B = n_{B0} - \nu_B \xi$ (reactants) $n_Y = n_{Y0} + \nu_Y \xi$ $n_Z = n_{Z0} + \nu_Z \xi$ (products)

In this case, ξ has units of moles. Then, the variations of n_i is:

$dn_A = -\nu_A d\xi$	$dn_B = -\nu_B d\xi$	(reactants)
$dn_Y = \nu_Y d\xi$	$dn_Z = v_Z d\xi$	(products)

*Note that the unit for $d\xi$ is [mol].

which means that as the reaction (left to right) proceeds, the reactants decrease and the products increase according to the stoichiometry.

Using these equations:

 $dG = \mu_A dn_A + \mu_B dn_B + \mu_Y dn_Y + \mu_Z dn_Z$ = $(-\nu_A \mu_A - \nu_B \mu_B + \nu_Y \mu_Y + \nu_Z \mu_Z) d\xi$

(constant T and P)

Consider a general gas phase reaction, described by a balanced equation. $\nu_A A(g) + \nu_B B(g) \rightleftharpoons \nu_Y Y(g) + \nu_Z Z(g)$

$$G = (-\nu_A \mu_A - \nu_B \mu_B + \nu_Y \mu_Y + \nu_Z \mu_Z)d\xi$$

$$\frac{\partial G}{\partial \zeta} = \nu_Y \mu_Y + \nu_Z \mu_Z - \nu_A \mu_A - \nu_B \mu_B$$

Here, we define $\left(\frac{\partial G}{\partial \xi}\right)_{T,P} = \Delta_r G$, which is the change in Gibbs energy when the extent of reaction changes by one mole, and its unit is $[J \text{ mol}^{-1}]$.

Assuming each species behaves as ideal gas, as the pressure dependence of chemical potential is written as $\mu_i(T, P) = \mu^{\circ}_i(T) + RT \ln(P_i/P^{\circ})$, then:

$$\Delta_r G = \Delta_r G^\circ + RT \ln Q$$
$$Q = \frac{(P_Y/P^\circ)^{\nu_Y} (P_Z/P^\circ)^{\nu_Z}}{(P_A/P^\circ)^{\nu_A} (P_B/P^\circ)^{\nu_B}}$$

 P° is the pressure of standard state (1 bar) and P_A is the partial pressure of species A.

(constant T and P)

$$\Delta_r G^\circ = \nu_Y \mu^\circ_Y(T) + \nu_Z \mu^\circ_Z(T) - \nu_A \mu^\circ_A(T) - \nu_B \mu^\circ_B(T)$$

Consider a general gas phase reaction, described by a balanced equation. $\nu_A A(g) + \nu_B B(g) \rightleftharpoons \nu_Y Y(g) + \nu_Z Z(g)$

 $\Delta_r G = \Delta_r G^\circ + RT \ln Q \qquad (\text{ideal gas, constant T and P})$ $\Delta_r G^\circ = \nu_Y \mu^\circ_Y (T) + \nu_Z \mu^\circ_Z (T) \qquad Q = \frac{(P_Y / P^\circ)^{\nu_Y} (P_Z / P^\circ)^{\nu_Z}}{(P_A / P^\circ)^{\nu_A} (P_B / P^\circ)^{\nu_B}}$

Here, the quantity $\Delta_r G^\circ$ is the change in standard Gibbs energy for the reaction between unmixed reactants to form unmixed products. All species in their standard states at T and P° . Note that $P^\circ = 1$ bar.

When the reaction system is equilibrium, the Gibbs energy must be the minimum with respect to any change from the equilibrium state, thus $\left(\frac{\partial G}{\partial \xi}\right)_{T,P} = \Delta_r G = \Delta_r G^\circ + RT \ln Q_{eq} = 0 \text{ at an equilibrium state. Thus:}$ $\Delta_r G^\circ = -RT \ln \left(\frac{P_Y^{\nu_Y} P_Z^{\nu_Z}}{P_A^{\nu_A} P_B^{\nu_B}}\right)_{eq} = -RT \ln K_P(T)$

Consider a general gas phase reaction, described by a balanced equation. $\nu_A A(g) + \nu_B B(g) \rightleftharpoons \nu_Y Y(g) + \nu_Z Z(g)$

 $\Delta_r G^\circ = -RT \ln K_P(T)$

$$\begin{split} &\Delta_{r}G^{\circ} = \nu_{Y}\mu^{\circ}{}_{Y}(T) + \nu_{Z}\mu^{\circ}{}_{Z}(T) - \nu_{A}\mu^{\circ}{}_{A}(T) - \nu_{B}\mu^{\circ}{}_{B}(T) \\ &K_{P}(T) = Q_{eq} = \left[\frac{(P_{Y}/P^{\circ})^{\nu_{Y}}(P_{Z}/P^{\circ})^{\nu_{Z}}}{(P_{A}/P^{\circ})^{\nu_{A}}(P_{B}/P^{\circ})^{\nu_{B}}}\right]_{eq} = \left(\frac{P_{Y}^{\nu_{Y}}P_{Z}^{\nu_{Z}}}{P_{A}^{\nu_{A}}P_{B}^{\nu_{B}}} \times P^{\circ(\nu_{A}+\nu_{B}-\nu_{B}-\nu_{B})}\right)_{eq} \\ &P^{\circ} = 1 \ bar \end{split}$$

*the subscript *eq* emphasizes that the partial pressures are in an equilibrium.

- ✓ $K_P(T)$ is called as *equilibrium constant*. Be sure that $K_P(T)$ has no unit.
- As seen in the definition, this constant is defined after the target equation is given.
 - ✓ For example, if the ν_A in the equation is changed (even keeping the same meaning of reaction, like $2\nu_A A(g) + 2\nu_B B(g) \rightleftharpoons 2\nu_Y Y(g) + 2\nu_Z Z(g)$), $K_P(T)$ value is changed.

3.1. Chemical equilibrium for gases $-\mu_j(T, P) = \mu_j^{\circ}(T) + RT \ln(P_j/P^{\circ})$ for an ideal gas -

$$\mu_j(T,P) = \mu^\circ_j(T) + RT \ln(P_j/P^\circ)$$

For an ideal gas:

$$PV = nRT$$

 $U = nC_VT + constant. = nC_VT + nU_0$ then $dU = nC_VdT$

For a path keeping some thermal equilibrium states (i.e. reversible process):

$$dU = TdS - PdV$$

$$dS = \frac{dU}{T} + \frac{PdV}{T} = nC_V \frac{dT}{T} + nR \frac{dV}{V}$$

$$S(T,V) = \int nC_V \frac{dT}{T} + \int nR \frac{dV}{V} = nS_0 + nC_V \ln T + nR \ln V$$

 $G(T,V) = U + PV - TS = nC_VT + nU_0 + nRT - T\{nS_0 + nC_V \ln T + nR \ln V\}$

3.1. Chemical equilibrium for gases - $\mu_j(T, P) = \mu_j^{\circ}(T) + RT \ln(P_j/P^{\circ})$ for an ideal gas -

$$\mu_j(T,P) = \mu^\circ_j(T) + RT \ln(P_j/P^\circ)$$

 $G(T,V) = U + PV - TS = nC_V T + nU_0 + nRT - T\{nS_0 + nC_V \ln T + nR \ln V\}$

$$G(T,P) - G(T,P_0) = -T\{nR\ln V\} + T\{nR\ln V_0\} = T_1\left\{nR\ln\frac{V_0}{V}\right\}$$

$$P_1 V_1 = P_2 V_2$$

$$G(T, P) - G(T, P_0) = T_1 \left\{ nR \ln \frac{V_0}{V} \right\} = T_1 \left\{ nR \ln \frac{P}{P_0} \right\}$$

$$\mu = \left(\frac{\partial G}{\partial n}\right)_{P,T}$$

 $\mu(T,P) = \mu(T,P^{\circ}) + RT \ln \frac{P}{P^{\circ}} = \mu^{\circ}(T) + RT \ln \frac{P}{P^{\circ}}$ Here $P^{\circ} = 1$ bar for the standard chemical potential.

(Example-1a) For reaction "3 $H_2(g) + N_2(g) \rightleftharpoons 2 NH_3(g)$ ", the equilibrium pressures are given as P_{H2} , P_{N2} , and P_{NH3} .

$$K_{P,}(T) = \left(\frac{P_{NH_3}^2}{P_{H_2}^3} P_{N_2} \right)_{eq}$$

*Be sure that these pressures are pressures at equilibrium, as in the definition of equilibrium constant.

(Example-1b) For reaction "3/2 $H_2(g) + \frac{1}{2} N_2(g) \rightleftharpoons NH_3(g)$ ", the equilibrium pressures are given as P_{H2} , P_{N2} , and P_{NH3} .

$$K_P(T) = \left(\frac{P_{NH_3}}{P_{H_2}^{3/2}} P_{N_2}^{1/2} \right)_{eq} \neq K_P(T) \text{ of example} - 1a$$

Although the reactions themselves are identical, the equilibrium constants are not the same, because the equilibrium constant depends on the expression of chemical reaction equation.

3.1. Chemical equilibrium for gases - \$26-2: An equilibrium constant is a function of temperature only -

Consider a general gas phase reaction, described by a balanced equation. $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$

The equilibrium-constant expression for this reaction is:

$$K_{P,}(T) = \begin{pmatrix} P_{PCl_3} P_{Cl_2} / \\ P_{PCl_5} \end{pmatrix}_{eq}$$

Suppose we have 1 mol of PCl_5 (g) and no PCl_3 or Cl_2 at the beginning. When the reaction occurs to an extent ξ ,

$$PCl_5$$
:1 mol \rightarrow (1- ξ) mol PCl_3 :0 mol \rightarrow ξ mol, Cl_2 :0 mol \rightarrow ξ molTotal:1 mol \rightarrow (1+ ξ) mol

If ξ_{eq} is the extent of reaction at equilibrium, then the partial pressures are:

$$P_{PCl_3} = P_{Cl_2} = (\xi_{eq}P)/(1+\xi_{eq}), \quad P_{PCl_5} = ((1-\xi_{eq})P)/(1+\xi_{eq})$$

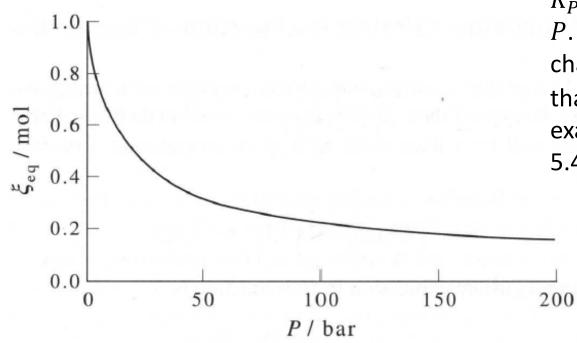
where P is the total pressure. Then, the equilibrium constant is:

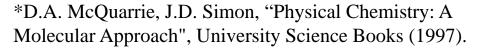
$$K_{P,}(T) = \left(\frac{\xi_{eq}^2}{1 - \xi_{eq}^2}\right)P$$

3.1. Chemical equilibrium for gases - \$26-2: An equilibrium constant is a function of temperature only -

Consider a general gas phase reaction, described by a balanced equation. $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$

$$K_P(T) = \left(\frac{\xi_{eq}^2}{1 - \xi_{eq}^2}\right)P$$





 PCl_5 : $1 \mod \rightarrow (1-\xi) \mod$ PCl_3 , Cl_2 : $0 \mod \rightarrow \xi \mod$ Total: $1 \mod \rightarrow (1+\xi) \mod$

 $K_P(T)$ only depends on T, but not P. So, if P (total pressure) is changed, ξ_{eq} must be changed so that $K_P(T)$ is kept constant. For example, $K_P(T)$ of this reaction is 5.4 (*no unit*) at 200°C.

*If gases interact each other, $K_P(T)$ also depends on P. However, in practice, we can assume that gases behave like ideal gasses.

3.1. Chemical equilibrium for gases - \$26-2: An equilibrium constant is a function of temperature only -

Consider a general gas phase reaction, described by a balanced equation. $\nu_A A(g) + \nu_B B(g) \rightleftharpoons \nu_Y Y(g) + \nu_Z Z(g)$

So far, we express the equilibrium constant regarding pressure. We can also express the equilibrium constant in terms of concentrations, etc, by using the ideal-gas relation "P = cRT", where c = n/V is the concentration:

$$\Delta_{r}G^{\circ} = -RT\ln K_{P}(T)$$

$$K_{P}(T) = Q_{eq} = \left[\frac{(P_{Y}/P^{\circ})^{\nu_{Y}}(P_{Z}/P^{\circ})^{\nu_{Z}}}{(P_{A}/P^{\circ})^{\nu_{A}}(P_{B}/P^{\circ})^{\nu_{B}}}\right]_{eq} = \left[\frac{C_{Y}^{\nu_{Y}}C_{Z}^{\nu_{Z}}}{C_{A}^{\nu_{A}}C_{B}^{\nu_{B}}}\right]_{eq} \left(\frac{RT}{P^{\circ}}\right)^{\nu_{Y}+\nu_{Z}-\nu_{A}-\nu_{B}}$$

Here, we consider some standard concentration c° (like P°), often taken to be "1 mol L^{-1} ". Then:

$$K_{P}(T) = K_{C}(T) \left(\frac{c^{\circ}RT}{P^{\circ}}\right)^{\nu_{Y} + \nu_{Z} - \nu_{A} - \nu_{B}}$$
$$K_{C}(T) = \left[\frac{(c_{Y}/c^{\circ})^{\nu_{Y}} (c_{Z}/c^{\circ})^{\nu_{Z}}}{(c_{A}/c^{\circ})^{\nu_{A}} (c_{B}/c^{\circ})^{\nu_{B}}}\right]_{eq}$$

*As the same with K_P , K_C has also no unit.

3.1. Chemical equilibrium for gases - \$26-2: An equilibrium constant is a function of temperature only -

(Example-2) For reaction "NH₃(g) \Rightarrow 3/2 H₂(g) +1/2 N₂(g)", $K_P(T) = 1.36 \times 10^{-3}$ at 298.15 K. Determine the corresponding $K_C(T)$.

$$K_{P}(T) = K_{C}(T) \left(\frac{c^{\circ}RT}{P^{\circ}}\right)^{3/2+1/2-1} = K_{C}(T) \left(\frac{c^{\circ}RT}{P^{\circ}}\right)^{1}$$
$$K_{C}(T) = K_{P}(T) \left(\frac{c^{\circ}RT}{P^{\circ}}\right)^{-1}$$
$$= 1.36 \times 10^{-3} \times \left[\frac{(1 \ mol \ L^{-1}) \times (0.0831 \ L \ bar \ mol^{-1}K^{-1}) \times (298.15 \ K)}{1 \ bar}\right]^{-1}$$
$$= 5.49 \times 10^{-5}$$

3.1. Chemical equilibrium for gases - \$26-3: Standard Gibbs energies of formation can be used to calculate equilibrium constants -

As already derived, K_P is related to the difference between the standard chemical potentials of the products and the reactants.

$$\Delta_r G^\circ = \nu_Y \mu^\circ_Y(T) + \nu_Z \mu^\circ_Z(T) - \nu_A \mu^\circ_A(T) - \nu_B \mu^\circ_B(T)$$

 $\Delta_r G^\circ = -RT \ln K_P(T)$

Because a chemical potential is an energy (it is the molar Gibbs energy of a pure substance), we need to define a "zero" value.

As in the same manner with "standard molar enthalpy of formation", we can define "the standard molar Gibbs energy of formation" according to

$$\Delta_r G^\circ = \Delta_r H^\circ - T \Delta_r S^\circ$$

referring to standard molar entropies.

So, for " $\nu_A A(g) + \nu_B B(g) \rightarrow \nu_Y Y(g) + \nu_Z Z(g)$ ", for example, we have $\Delta_r G^\circ = \nu_Y \Delta_f G^\circ[Y] + \nu_Z \Delta_f G^\circ[Z] - \nu_A \Delta_f G^\circ[A] - \nu_B \Delta_f G^\circ[B]$ where $\Delta_f G^\circ[Y]$ is the standard molar Gibbs energy of formation for substance Y.

3.1. Chemical equilibrium for gases - how to calculate $\Delta_f G^\circ$ -

We can find thermodynamic database, usually the one at 298.15 K (but not necessarily and not limited to):

- ✓ $\Delta_f H^\circ$: Standard molar enthalpy (heat) of formation (kJ mol⁻¹)
- ✓ $\Delta_f G^\circ$: Standard molar Gibbs energy of formation (kJ mol⁻¹)
- ✓ S° : Standard molar entropy at 298.15 K in (J mol⁻¹ K⁻¹)
- ✓ C_P: Molar heat capacity at constant pressure (J mol⁻¹ K⁻¹)
 *As definition, the value is for 1 bar.

If the Gibbs energy is not available, you can calculate from enthalpy and entropy. For example, for H₂O(g) formation: " $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ " $\Lambda_{\epsilon}G^{\circ}(T \text{ K})[H_2O(g)]$

$$= \left\{ \Delta_{f} H^{\circ}(T K) [H_{2} O(g)] - \Delta_{f} H^{\circ}(T K) [H_{2}(g)] - \frac{1}{2} \Delta_{f} H^{\circ}(T K) [O_{2}(g)] \right\}$$

$$= \left\{ \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$$

 $-T\left\{S^{\circ}(T K)[H_{2}O(g)] - S^{\circ}(T K)[H_{2}(g)] - \frac{1}{2}S^{\circ}(T K)[O_{2}(g)]\right\}$ By this way, as the same with the standard molar enthalpy of formation, pure elemental substances that appear as the equilibrium phase at the temperature have $\Delta_{f}G^{\circ}(T K) = 0$, and the standard molar Gibbs energies of other chemicals are aligned to them.

3.1. Chemical equilibrium for gases - how to calculate $\Delta_f G^\circ$ -

In addition, at constant pressure condition, temperature dependence of $\Delta_f G^{\circ}(T \text{ K})$ can be evaluated using C_P as:

$$H^{\circ}(T_{2}K) = H^{\circ}(T_{1}K) + \int_{T_{1}}^{T_{2}} C_{P}dT$$
$$S^{\circ}(T_{2}K) = S^{\circ}(T_{1}K) + \int_{T_{1}}^{T_{2}} \frac{C_{P}}{T}dT$$

$$G^{\circ}(T_2K) = H^{\circ}(T_2K) - T_2S^{\circ}(T_2K)$$

where H° , S° and G° are molar enthalpy, molar entropy, and molar Gibbs energy. For evaluation of the standard Gibbs energy of formation, they can be replaced with $\Delta_f H^{\circ}$, S° and $\Delta_f G^{\circ}$.

 C_P is molar heat capacity at constant pressure. If T_2 is enough close to T_1 , C_P can be regarded as a constant in most case.

3.1. Chemical equilibrium for gases - \$26-3: Standard Gibbs energies of formation can be used to calculate equilibrium constants -

(Example-3) Using the standard molar Gibbs energies of formation, calculate $\Delta_r G^\circ$ and K_P at 298.15 K for NH₃(g) \rightleftharpoons 3/2 H₂(g) + 1/2 N₂(g) $\Delta_f G^\circ[NH_3(g)] = -16.637 \ kJ \ mol^{-1}, \Delta_f G^\circ[H_2(g)] = \Delta_f G^\circ[N_2(g)] = 0 \ kJ \ mol^{-1}$

$$\Delta_r G^\circ = (3/2)\Delta_f G^\circ [H_2(g)] + (1/2)\Delta_f G^\circ [N_2(g)] - (1)\Delta_f G^\circ [NH_3(g)]$$

= (3/2)(0) + (1/2)(0) - (1)(-16.637 kJ mol⁻¹) = 16.637 kJ mol⁻¹

$$\ln K_P(T) = -\frac{\Delta_r G^{\circ}}{RT} = -\frac{16.637 \times 10^3 \, J \, mol^{-1}}{(8.31 \, J \, K^{-1} \, mol^{-1})(298.15 \, K)} = -6.60$$

Hence, $K_P(T) = 1.36 \times 10^{-3}$ at 298.15 K.

Consider the thermal decomposition of N_2O_4 (g) at 298.15 K as an example to treat the Gibbs energy of a reaction mixture:

 $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$

Suppose the initial state is " $N_2O_4(g) = 1 \text{ mol} \text{ and } NO_2(g) = 0 \text{ mol}"$ and the reaction brings the system to " $N_2O_4(g) = 1-\xi \text{ mol} \text{ and } NO_2(g) = 2\xi \text{ mol}"$.

$$G(\xi) = (1 - \xi)\bar{G}_{N_2O_4} + 2\xi\bar{G}_{NO_2}$$

= $(1 - \xi)\left\{G^{\circ}_{N_2O_4} + RT\ln\left(\frac{P_{N_2O_4}}{1\ bar}\right)\right\} + 2\xi\left\{G^{\circ}_{NO_2} + RT\ln\left(\frac{P_{NO_2}}{1\ bar}\right)\right\}$

Here we assume the reaction occurs at a constant pressure ($P_{total} = 1 \ bar$). Then, as the molar fraction is $x_{N_2O_4} = \frac{1-\xi}{1+\xi}$ for N_2O_4 and $x_{NO_2} = \frac{2\xi}{1+\xi}$ for NO_2 : $P_{N_2O_4} = x_{N_2O_4}P_{total} = x_{N_2O_4}, P_{NO_2} = x_{NO_2}P_{total} = x_{NO_2}$ $G(\xi) = (1-\xi) \left\{ G^{\circ}_{N_2O_4} + RT \ln \frac{1-\xi}{1+\xi} \right\} + 2\xi \left\{ G^{\circ}_{NO_2} + RT \ln \frac{2\xi}{1+\xi} \right\}$ $= (1-\xi) \left\{ \Delta_f G^{\circ}_{N_2O_4} + RT \ln \frac{1-\xi}{1+\xi} \right\} + 2\xi \left\{ \Delta_f G^{\circ}_{NO_2} + RT \ln \frac{2\xi}{1+\xi} \right\}$

Consider the thermal decomposition of N_2O_4 (g) at 298.15 K and 1 bar as an example to treat the Gibbs energy of a reaction mixture:

 $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$

$$G(\xi) = (1 - \xi) \left\{ \Delta_f G^{\circ}_{N_2 O_4} + RT \ln \frac{1 - \xi}{1 + \xi} \right\} + 2\xi \left\{ \Delta_f G^{\circ}_{N O_2} + RT \ln \frac{2\xi}{1 + \xi} \right\}$$

This equation gives the Gibbs energy of the reaction mixture, G, as a function of the extent of the reaction, ξ . Substituting the values for $\Delta_f G^\circ$:

$$G(\xi) = (1 - \xi) \left\{ 97.8 \ kJ \ mol^{-1} + RT \ln \frac{1 - \xi}{1 + \xi} \right\} + 2\xi \left\{ 51.3 \ kJ \ mol^{-1} + RT \ln \frac{2\xi}{1 + \xi} \right\}$$

Consider the thermal decomposition of N_2O_4 (g) at 298.15 K and 1 bar as an example to treat the Gibbs energy of a reaction mixture:

 $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$

$$G(\xi) = (1 - \xi) \left\{ 97.8 \ kJ \ mol^{-1} + RT \ln \frac{1 - \xi}{1 + \xi} \right\} + 2\xi \left\{ 51.3 \ kJ \ mol^{-1} + RT \ln \frac{2\xi}{1 + \xi} \right\}$$
Recall that $G(\xi)$ should take a minimum with respect to ξ at equilibrium state.
*D.A. McQuarrie, J.D. Simon, "Physical Chemistry: A Molecular Approach", University Science Books (1997).

 ξ / mol

FIGURE 26.2

A plot of the Gibbs energy of the reaction mixture versus the extent of reaction for $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$ at 298.15 K and one bar.

Consider the thermal decomposition of N_2O_4 (g) at 298.15 K and 1 bar as an example to treat the Gibbs energy of a reaction mixture:

 $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$

$$G(\xi) = (1 - \xi) \left\{ 97.8 \ kJ \ mol^{-1} + RT \ln \frac{1 - \xi}{1 + \xi} \right\} + 2\xi \left\{ 51.3 \ kJ \ mol^{-1} + RT \ln \frac{2\xi}{1 + \xi} \right\}$$

 $G(\xi)$ is minimized at $\xi = 0.1892 \text{ mol}$, corresponding to the equilibrium state, thus $\xi = \xi_{eq} = 0.1892 \text{ mol}$.

Then, the equilibrium constant is:

$$K_P = \frac{P_{NO_2}^2}{P_{N_2O_4}} = \frac{\left[2\xi_{eq}/(1+\xi_{eq})\right]^2}{(1-\xi_{eq})/(1+\xi_{eq})} = 0.148$$

We can also calculate it from $\Delta_r G^\circ$:

$$\ln K_P = -\frac{\Delta_r G^{\circ}}{RT} = -\frac{(2)\Delta_f G^{\circ}[NO_2(g)] - (1)\Delta_f G^{\circ}[N_2O_4(g)]}{(8.31 J K^{-1} mol^{-1})(298.15 K)} = -1.908$$

Hence, $K_P = 0.148$

Consider the thermal decomposition of N_2O_4 (g) at 298.15 K and 1 bar as an example to treat the Gibbs energy of a reaction mixture:

 $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$

$$G(\xi) = (1 - \xi) \left\{ 97.8 \ kJ \ mol^{-1} + RT \ln \frac{1 - \xi}{1 + \xi} \right\} + 2\xi \left\{ 51.3 \ kJ \ mol^{-1} + RT \ln \frac{2\xi}{1 + \xi} \right\}$$

We may also differentiate this equation with respect to ξ in order to find the minimum value where $(\partial G/\partial \xi) = 0$:

$$\left(\frac{\partial G}{\partial \xi}\right)_{T,P} = \Delta_r G^\circ + RT \ln \frac{P_{NO_2}^2}{P_{N_2O_4}}$$

Since
$$\left(\frac{\partial G}{\partial \xi}\right)_{T,P} = 0$$
 at equilibrium,
 $\Delta_r G^\circ = -RT \ln \left(\frac{P_{NO_2}^2}{P_{N_2O_4}}\right)_{eq} = -RT \ln K_P$

Solving $(\partial G/\partial \xi)_{T,P} = 0$ explicitly, $\xi_{eq} = 0.1892 \text{ mol}$ is obtained as well.

So, we confirmed that the equilibrium constant is defined to minimize the Gibbs energy for the reaction system.

3.1. Chemical equilibrium for gases - \$26-5: The ratio of the reaction quotient to the equilibrium constant determines the direction in which a reaction will proceed -

Consider a general reaction:

$$\nu_A A(g) + \nu_B B(g) \rightleftharpoons \nu_Y Y(g) + \nu_Z Z(g)$$

$$\Delta_r G(T) = \Delta_r G^{\circ}(T) + RT \ln\left(\frac{P_Y^{\nu_Y} P_Z^{\nu_Z}}{P_A^{\nu_A} P_B^{\nu_B}}\right)$$

Realize that this equation is a general equation, so pressures are not necessarily the equilibrium pressures, but are arbitrary.

Generally, this equation gives the value of $\Delta_r G$ when "A(g) of $[v_A \mod at P_A \mod ar]$ react with B(g) of $[v_B \mod at P_B \mod ar]$ to produce Y(g) of $[v_Y \mod at P_Y \mod Z(g) \pmod v_Z \mod at P_Z \mod z']$ ".

- 1) If all the partial pressures are equal to 1 bar, $\Delta_r G(T) = \Delta_r G^{\circ}(T)$. In other words, the Gibbs energy change will be equal to the standard Gibbs energy change.
 - ✓ But this may be unrealistic because this is not achieved in some cases if v_i are not equal each other. For example, if "2 moles of A(g) and 1 mole of B(g)" coexist, $P_A \neq P_B$ and thus one of them must be not 1 bar.

* $\Delta_r G^\circ = \nu_Y \mu^\circ_Y(T) + \nu_Z \mu^\circ_Z(T) - \nu_A \mu^\circ_A(T) - \nu_B \mu^\circ_B(T)$

2) If the pressures are the equilibrium pressures, $\Delta_r G(T) = 0$ and then we obtain results that were derived in previous slides.

3.1. Chemical equilibrium for gases - \$26-5: The ratio of the reaction quotient to the equilibrium constant determines the direction in which a reaction will proceed -

Consider a general reaction: $v_A A(g) + v_B B(g) \rightleftharpoons v_Y Y(g) + v_Z Z(g)$

$$\Delta_r G(T) = \Delta_r G^{\circ}(T) + RT \ln\left(\frac{P_Y^{\nu_Y} P_Z^{\nu_Z}}{P_A^{\nu_A} P_B^{\nu_B}}\right)$$

By introducing a quantity called the "reaction quotient" $Q_P = \frac{P_Y P_Z}{P_A P_B^{V_B}}$, and using an equation to correlate $\Delta_r G^\circ$ with K_P , $\Delta_r G^\circ = -RT \ln K_P$, then

$$\Delta_r G(T) = -RT \ln K_P + RT \ln Q_P = RT \ln(Q_P/K_P)$$

Note that this is not for the equilibrium; $\Delta_r G(T) = 0$ at equilibrium. With this equation

With this equation,

- ✓ At equilibrium, $\Delta_r G(T) = 0$ and thus $Q_P = K_P$.
- ✓ If $Q_P < K_P$, then Q_P must increase (because K_P is a constant) as the system proceeds toward equilibrium.
 - This is achieved by increasing the partial pressures of the products and decreasing those of the reactants. Hence, the reaction spontaneously proceeds from left to right.
- ✓ If Q_P > K_P, Q_P decrease as the system proceeds toward equilibrium.
 ➢ In the same though, the reaction is spontaneous from right to left.

3.1. Chemical equilibrium for gases

- \$26-5: The ratio of the reaction quotient to the equilibrium constant determines the direction in which a reaction will proceed -

(Example-4: #26-5) Consider " $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ ". The equilibrium constant $K_P = 10$ at 960 K. Calculate $\Delta_r G$ and check in which direction the reaction will proceed spontaneously for

 $2 SO_2(1.0 \times 10^{-3} bar) + O_2(0.20 bar) \Rightarrow 2 SO_3(1.0 \times 10^{-4} bar)$

$$Q_P = \frac{P_{SO_3}^2}{P_{SO_2}^2 P_{O_2}} = \frac{(1.0 \times 10^{-4})^2}{(1.0 \times 10^{-3})^2 (0.20)} = 5.0 \times 10^{-2}$$

Note that the value for Q_P is unitless because the definition of Q is, for example in a general form, $Q = \frac{(P_Y/P^\circ)^{\nu_Y} (P_Z/P^\circ)^{\nu_Z}}{(P_A/P^\circ)^{\nu_A} (P_B/P^\circ)^{\nu_B}}$ where $P^\circ = 1$ bar.

$$\Delta_r G(T) = RT \ln(Q_P/K_P) = RT \ln(5.0 \times 10^{-2}/10) < 0$$

Hence, due to $\Delta_r G(T) < 0$ (or due to $Q_P < K_P$), the reaction proceed from left to right.

3.1. Chemical equilibrium for gases - \$26-6: The sign of $\Delta_r G$ and not that of $\Delta_r G^{\circ}(T)$ determines the direction of reaction spontaneity -

It should be clearly understood that $\Delta_r G^\circ$ is the value of $\Delta_r G$ when all the reactants and products are unmixed (which mean that they have not reacted) at partial pressures equal to 1 bar. Namely, $\Delta_r G^\circ$ is the standard Gibbs energy changes. (recall that "standard" assumes 1 bar) Hence,

- ✓ If $\Delta_r G^\circ < 0$, then $K_P > 1$, meaning that the reaction will proceed from reactants to products if all species are mixed at 1 bar (for each partial pressure; not total pressure).
- ✓ If $\Delta_r G^\circ > 0$, then $K_P < 1$, thus reaction proceeds from products to reactants in the same condition.
- ✓ So, the sing of $\Delta_r G^\circ$ just indicates the spontaneous reaction direction for the condition of $P_{partial} = 1$ bar (for all species of both reactants and products); not necessarily for all conditions.

3.1. Chemical equilibrium for gases

- \$26-6: The sign of $\Delta_r G$ and not that of $\Delta_r G^{\circ}(T)$ determines the direction of reaction spontaneity -

(Example-5) Consider " $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$ ", for which $\Delta_r G^\circ = 4.729 \text{ kJ} mol^{-1}$ and $K_P = 0.148$ at 298.15 K.

First, make sure that this $\Delta_r G^\circ > 0$ does NOT mean "no N₂O₄ dissociate at 298.15 K when we place some of N₂O₄ in a reaction vessel".

 $\Delta_r G^\circ > 0$ just means that "the chemical potential for N₂O₄ (g) of 1 mol and 1 bar is higher than that of NO₂ (g) of 2 mol and 1 bar by $\Delta_r G^\circ$ in comparison."

For correct interpretation, calculate $\Delta_r G$ to consider pressure dependence as:

$$\Delta_r G = \Delta_r G^\circ + RT \ln Q_P = 4.729 \ kJ \ mol^{-1} + (2.479 \ kJ \ mol^{-1}) \ln \left(\frac{P_{NO_2}^2}{P_{N_2O_4}}\right)$$

If we just "place some of N₂O₄ in a reaction vessel", $\ln(P_{NO_2}^2/P_{N_2O_4})$ has a large negative value, thus $\Delta_r G < 0$. Accordingly, some N₂O₄ dissociate.

The equilibrium state is achieved by the condition $\Delta_r G = 0$ (note $\Delta_r G^\circ$ is a constant while $\Delta_r G$ changes depending on P_{NO_2} and $P_{N_2O_4}$), at which point $Q_P = K_P$. Until this point is achieved, P_{NO_2} increases and $P_{N_2O_4}$ decreases.