Physical Chemistry for Energy Engineering (24th: 2018/12/10)

Takuji Oda

Associate Professor, Department of Nuclear Engineering Seoul National University

*The class follows the text book: D.A. McQuarrie, J.D. Simon, "Physical Chemistry: A Molecular Approach", University Science Books (1997).

5. Chemistry in reprocessing of spent nuclear fuels -composition of fuels before and after the use-

5. Chemistry in reprocessing of spent nuclear fuels -composition of fuels before and after the use-

Table 1

Transuranium elements and fission products (kg) in 1 ton (heavy metal) of spent light water reactor fuel with different initial composition and burnup

	TRU	UO₂ 35 GWd/tM	UO₂ 55 GWd/tM	MOX 50 GWd/tM
	Initial fissile content	3.25% ²³⁵ U	4.7% ²³⁵ U	4.2% Pu
	Pu	9.95	11.60	43.56
	Np	0.56	0.90	0.23
Minor actinides	Am	0.15	0.30	2.98
actimides	Cm	0.05	0.13	1.75
	Fission products	35.95	56.37	50.33

Calculations performed using the webKorigen application available at the Nucleonica web portal (http://www.nucleonica.net)

5. Chemistry in reprocessing of spent nuclear fuels -composition of fuels before and after the use-

Table 2

Characteristics of ²³⁵U and the main transuranium isotopes

Nuclide	T _{1/2} y	Main decay mode	Spontaneous fission rate (s ⁻¹ g ⁻¹)	Specific activity (Bqg ^{–1})	γ Dose rate (mSv h ^{−1} g ^{−1})	Specific power (Wg ⁻¹)
²³⁵ U	$7.04 imes 10^8$	α	1.6×10^{-6}	$8.0 imes 10^4$	1.3×10^{-3}	6.0×10^{-8}
²³⁷ Np	2.1 × 10 ⁶	α	5.1 × 10 ⁻⁵	2.61×10^{7}	-	-
²³⁸ Pu	87.7	α	1.18 × 10 ³	6.33 × 10 ¹¹	-	0.567
²³⁹ Pu	24100	α	1.0×10^{-2}	2.3×10^9	1.5×10^{-2}	1.93 × 10 ⁻³
²⁴⁰ Pu	6564	α	479	8.4 × 10 ¹⁰	-	7.06 × 10 ⁻³
²⁴¹ Pu	14.3	β-	9.19×10^{-4}	3.82×10^{12}	-	3.28×10^{-3}
²⁴² Pu	3.75×10^{5}	α	805	1.46 × 10 ⁸	-	-
²⁴¹ Am	432.7	α	0.505	1.27 × 10 ¹¹	312	0.114
^{242m} Am	140	α	62	3.87×10^{11}	12	4.49×10^{-3}
²⁴³ Am	7370	α	0.27	7.33 × 10 ⁹	44	6.43 × 10 ⁻³
²⁴² Cm	0.45	α	7.47×10^{6}	1.23×10^{14}	-	122
²⁴⁴ Cm	18.1	α	4.0×10^{6}	3.0×10^{12}	4.9	2.83

5. Chemistry in reprocessing of spent nuclear fuels -why reprocessing is attractive?-

(a) The radiotoxic inventory of the U, Pu, and MA in spent nuclear fuel as a function of storage time.

5. Chemistry in reprocessing of spent nuclear fuels -why reprocessing is attractive?-

(b) The radiotoxic inventory of spent fuel as a function of storage time separated into the contributions of the actinides and the fission products

5. Chemistry in reprocessing of spent nuclear fuels -Partitioning/reprocessing goals -

- ✓ The main radionuclides targeted for separation for partitioning-transmutation (P&T) and partitioning-conditioning (P&C) are the actinides neptunium, americium and curium (Np, Am, Cm; along with U & Pu), and the fission products iodine-129, technetium-99, caesium-135 and strontium-90.
 - ✓ Removal of the latter two significantly reduces <u>the heat load</u> of residual conditioned wastes. Of course. any chemical process will not separate different isotopes of any particular element.
- Conceptually reprocessing can take several courses, separating certain elements from the remainder, which becomes high-level waste. Reprocessing options include:
 - ✓ Separate U, Pu, (as today; PUREX, Plutonium Uranium Redox EXtraction).
 - ✓ Separate U, Pu+U (small amount of U).
 - ✓ Separate U, Pu, minor actinides^f.
 - ✓ Separate U, Pu+Np, Am+Cm.
 - ✓ Separate U+Pu all together.
 - ✓ Separate U, Pu+actinides, certain fission products.

5. Chemistry in reprocessing of spent nuclear fuels -Preparation needed for PUREX process-

Figure 4: A PWR fuel assembly

*http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Conversion-Enrichment-and-Fabrication/Fuel-Fabrication/

5. Chemistry in reprocessing of spent nuclear fuels -PUREX: Fuel Dissolution-

- ✓ Preparation for dissolution
 - Cladding is opened to permit subsequent dissolution of oxide by mechanical shearing or sawing for steel or zircaloy.
 - Off-gases from decladding contain up to 10% of Kr and Xe in the fuel and some of the ¹⁴CO₂, ³H, and other volatile fission products.
- ✓ Fuel dissolution:

 \checkmark

- Fuel and cladding are reacted with hot nitric acid to convert U, Pu, and fission products into chemical states most favorable for their subsequent separation (+6 for U and +4 for Pu).
- The acidity of dissolver solution is adjusted to pH of around 2.5 and Pu is brought into its most extractable valence of 4, by controlled addition of N_2O_4 .

 $\begin{array}{l} 3{\rm UO}_2 + 8{\rm HNO}_3 \text{ -> } 3{\rm UO}_2({\rm NO}_3)_2 + 2{\rm NO} + 4{\rm H}_2{\rm O} \ ({\rm dominant} \ {\rm at} \ {\rm acid} \ {\rm concentration} < 10{\rm M}) \\ {\rm UO}_2 + 4{\rm HNO}_3 \text{ -> } {\rm UO}_2({\rm NO}_3)_2 + 2{\rm NO}_2 + 2{\rm H}_2{\rm O} \ ({\rm dominant} \ {\rm at} \ {\rm higher} \ {\rm concentration}) \\ {\rm Pu}^{({\rm VI})}{\rm O}_2^{\ 2^+} + {\rm N}_2{\rm O}_4 + 2{\rm H}^+ \text{ -> } {\rm Pu}^{4+} + 2{\rm HNO}_3 \\ 4{\rm Pu}^{3+} + {\rm N}_2{\rm O}_4 + 4{\rm H}^+ \text{ -> } 4{\rm Pu}^{4+} + 2{\rm NO} + 2{\rm H}_2{\rm O} \end{array}$

5. Chemistry in reprocessing of spent nuclear fuels -PUREX: Fuel Dissolution-

5. Chemistry in reprocessing of spent nuclear fuels -PUREX: extraction of Pu and U with TBP-

- ✓ An organic solvent composed of 30% tributyl phosphate (TBP) in a hydrocarbon solvent (e.g. C₁₂H₂₆) is used to extract the uranium as UO₂(NO₃)₂·2TBP complexes, and plutonium as Pu(NO₃)₄·2TBP, from other fission products, which remain in the aqueous phase.
 - ✓ The transuranium elements americium and curium also remain in the aqueous phase.
- ✓ TBP is also radiation resistant which is an important consideration in the processing of spent fuel or HLW.

*http://www.wikiwand.com/en/Tributyl_phosphate

5. Chemistry in reprocessing of spent nuclear fuels -PUREX: extraction of Pu and U with TBP-

The nature of the organic soluble uranium complex has been the subject of some research. A series of complexes of uranium with nitrate and trialkyl phosphates and phosphine oxides have been characterized.

HNO₃ (aq) + TBP (org) ⇔ HNO₃ • TBP (org) UO₂(NO₃)₂(aq) + 2TBP (org) ⇔ UO₂(NO₃)₂ • 2TBP (org) Pu(NO₃)₄ (aq) + 2TBP (org) ⇔ Pu(NO₃)₄ • 2TBP (org)

*http://www.wikiwand.com/en/Tributyl_phosphate

5. Chemistry in reprocessing of spent nuclear fuels -PUREX: extraction of Pu and U with TBP-

5. Chemistry in reprocessing of spent nuclear fuels -distribution coefficient, distribution ratio, decontamination factor-

$$UO_2(NO_3)_2(aq) + 2TBP (org) \Leftrightarrow UO_2(NO_3)_2 \cdot 2TBP (org)$$

$$UO_2^{2+}(aq) + 2NO_3^{-}(aq) + 2TBP_{(org)} \Leftrightarrow UO_2(NO_3)_2 \cdot 2TBP_{(org)}$$

distribution coefficient (KD, which is equilibrium constant), distribution ratio (DR), decontamination factor (DF)

$$KD_{U} = \frac{\left[\text{UO}_{2} (\text{NO}_{3})_{2} - 2\text{TBP}_{(\text{org})} \right]}{\left[\text{UO}_{2}^{2+}_{(\text{aq})} \right] \left[\text{NO}_{3}^{-}_{(\text{aq})} \right]^{2} \left[\text{TBP}_{(\text{org})} \right]^{2}}$$
$$DR_{U} = \frac{\left[\text{UO}_{2} (\text{NO}_{3})_{2} - 2\text{TBP}_{(\text{org})} \right]}{\left[\text{UO}_{2}^{2+}_{(\text{aq})} \right]} = KD_{U} \left[\text{NO}_{3}^{-}_{(\text{aq})} \right]^{2} \left[\text{TBP}_{(\text{org})} \right]^{2}$$
$$DF_{U} = \frac{\left(\left[\text{FP}_{\text{feed}} \right] / \left[\text{UO}_{2}^{2+}_{\text{feed}} \right] \right)}{\left(\left[\text{FP}_{\text{product}} \right] / \left[\text{UO}_{2}^{2+}_{\text{product}} \right] \right)}$$

5. Chemistry in reprocessing of spent nuclear fuels -comparison of distribution coefficients (KD_M) -

5. Chemistry in reprocessing of spent nuclear fuels -comparison of distribution coefficients (KD_M) -

1.2.1. Engineering processes for fuel cycles: reprocessing (wet) -PUREX: extraction of Pu and U with TBP-

$$UO_{2}^{2+}(aq) + 2NO_{3}^{-}(aq) + 2TBP_{(o)} \Leftrightarrow UO_{2}(NO_{3})_{2} \cdot 2TBP_{(o)}$$
$$Pu^{4+}(aq) + 4NO_{3}^{-}(aq) + 2TBP_{(o)} \Leftrightarrow Pu(NO_{3})_{4} \cdot 2TBP_{(o)}$$

$$KD_{U} = \frac{\left[UO_{2}(NO_{3})_{2} - 2TBP_{(org)}\right]}{\left[UO_{2}^{2+}_{(aq)}\right]\left[NO_{3}^{-}_{(aq)}\right]^{2}\left[TBP_{(org)}\right]^{2}}$$
$$DR_{U} = \frac{\left[UO_{2}(NO_{3})_{2} - 2TBP_{(org)}\right]}{\left[UO_{2}^{2+}_{(aq)}\right]} = KD_{U}\left[NO_{3}^{-}_{(aq)}\right]^{2}\left[TBP_{(org)}\right]^{2}$$
$$KD_{Pu^{4+}} = \frac{\left[Pu(NO_{3})_{4} - 2TBP_{(org)}\right]}{\left[Pu^{4+}_{(aq)}\right]\left[NO_{3}^{-}_{(aq)}\right]^{4}\left[TBP_{(org)}\right]^{2}} \qquad DR_{Pu} = KD_{Pu}\left[NO_{3}^{-}_{(aq)}\right]^{4}\left[TBP_{(org)}\right]^{2}$$

✓ By increasing the concentration of uncombined TBP in the organic phase and by increasing the concentration of aqueous nitrate ion, the reactions are shifted to the right: e.g. 99 to 99.9% of fission products are separated.

- ✓ Pu (specifically, Pu⁴⁺) is separated from U by reducing Pu to the organicinsoluble, trivalent state (Pu³⁺) with a reductant strong enough to act on plutonium but not so strong as also to reduce U.
 - \checkmark U is left in the extractable hexavalent condition.
- ✓ Reductants used for this purpose include Fe^{2+} , U⁴⁺, or cathodic reaction.

$U^{4+} + 2Pu^{4+} + 2H_2O \longrightarrow UO_2^{2+} + 2Pu^{3+} + 4H^+$

5. Chemistry in reprocessing of spent nuclear fuels -PUREX: purification-

- ✓ Impure Pu nitrate is purified by one or more additional solvent extraction cycles.
 - ✓ Purified Pu nitrate is converted to the preferred product from PuO2 either by evaporation to dryness and calcinations or by precipitation as the oxalate or peroxide and calcinations.
- ✓ Impure uranyl nitrate is purified by one or more additional cycles of solvent extraction.
 - ✓ Purified uranyl nitrate solution is evaporated to dryness and calcined to UO_3 . Nitric acid vapors are condensed and recycled.
- ✓ If the UO₃ product is to be re-enriched, it is converted to UF_6 .
 - ✓ Note that the isotope ratio of U in the spent fuel is around 1% ²³⁵U.
 - According to Areva, about eight fuel assemblies reprocessed can yield one MOX fuel assembly, two-thirds of an enriched uranium fuel assembly, and about three tonnes of depleted uranium (enrichment tails) plus about 150 kg of wastes

*https://notes.engineeringonline.ncsu.edu/courses/ne/NE531/NE531_s09_08.pdf *D.G. Cacuci, "Handbook of Nuclear Engineering", Springer, 2010.

5. Chemistry in reprocessing of spent nuclear fuels -PUREX: flow chart-

- Extraction: the initial transfer step whereby the main solute, often together with impurities, is transferred from feed to solvent.
- ✓ Scrubbing: the process of selectively removing contaminating solutes (impurities) from an extract that contains these as well as the main extractable solute by treatment with a new immiscible liquid phase.
- ✓ **Stripping**: The process of removing solute(s) from a loaded solvent or extract.
- ✓ Raffinate: the phase remaining after extraction of some specified solute(s).

5. Chemistry in reprocessing of spent nuclear fuels -PUREX: Mixer settler-

5. Chemistry in reprocessing of spent nuclear fuels -History of reprocessing

- ✓ Reprocessing began during Manhattan project to recover Pu-239.
 - Seaborg first separated microgram quantities of Pu in 1942 using "Bismuth-Phosphate precipitation process"
 - ✓ Process scaled to kilogram quantity production at Hanford in 1944.
- ✓ Solvent extraction processes followed to allow concurrent separation and recovery of both U and Pu.
- ✓ Reprocessing transitioned from defense to commercial use

5. Chemistry in reprocessing of spent nuclear fuels -History of reprocessing: Bismuth Phosphate process-

✓ Pu is co-precipitated as Pu₃(PO₄)₄ by the addition of bismuth nitrate, Bi(NO₃)₃, and sodium phosphate.

*wikipedia

<Advantages of Bismuth phosphate processes>

- ✓ Recovery of >95% of Pu
- ✓ Decontamination factors: 10⁷ for fissile products

$$DF_{Pu} = \frac{\left(\left[\operatorname{FP}_{\operatorname{feed}}\right] / \left[\operatorname{Pu}^{4+}_{\text{feed}}\right]\right)}{\left(\left[\operatorname{FP}_{\operatorname{product}}\right] / \left[\operatorname{Pu}^{4+}_{\text{product}}\right]\right)}$$

<Disadvantages of Bismuth phosphate processes>

- ✓ Batch operations
- ✓ Inability to recover uranium
- ✓ Required numerous cycles and chemicals
 - ✓ Produced large volume of high-level waste

5. Chemistry in reprocessing of spent nuclear fuels -History of reprocessing: REDOX process-

- ✓ First solvent extraction process used in reprocessing
 - ✓ Continuous process
 - Recovers both U and Pu with high yield and high decontamination factors from fission products.
- ✓ Developed at Argonne National Laboratory (ANL).
- ✓ Tested in pilot plant at Oak Ridge National Laboratory (ORNL) in 1948-49.
- ✓ REDOX plant built in Hanford in 1951.

Hanford REDOX -Plant (1951)

5. Chemistry in reprocessing of spent nuclear fuels -History of reprocessing: REDOX process-

- ✓ Hexone (methyl isobutyl ketone) used as the extractant.
 - ✓ Immiscible with water
 - ✓ Used to purify uranium ore concentrates
 - Extracts both uranyl and plutonyl nitrates selectively from fission products
 - ✓ Highly flammable and volatile
- ✓ Plutonium is oxidized to Pu (VI) for highest recovery.
- ✓ U(VI) and Pu(VI) co-extracted, then Pu is reduced to Pu(III) by ferrous sulfamate, Fe(H₂NO₃S)₂, and scrubbed from the solvent.
- ✓ Large amounts of salt reagent (aluminum nitrate), to increase the nitrate concentration in the aqueous phase to obtain a reasonable distribution ratio.

$$DR_{U} = \frac{\left[\text{UO}_{2} (\text{NO}_{3})_{2} - 2\text{TBP}_{(\text{org})} \right]}{\left[\text{UO}_{2}^{2+}_{(\text{aq})} \right]} = KD_{U} \left[\text{NO}_{3}_{(\text{aq})} \right]^{2} \left[\text{TBP}_{(\text{org})} \right]^{2}$$

*https://notes.engineeringonline.ncsu.edu/courses/ne/NE531/NE531_s09_08.pdf *https://en.wikipedia.org/wiki/Nuclear_reprocessing

5. Chemistry in reprocessing of spent nuclear fuels -History of reprocessing: PUREX process-

- Tributyl phosphate is stated to be used as the extraction in a hydrocarbon diluent (dodecane or kerosene)
 - ✓ Suggested by Warf in 1949 for the recovery of Ce (IV) from rare earth nitrates.
 - ✓ Developed by Knolls Atomic Power Lab. And tested at Oak Ridge Natinoal Lab. In 1950-52
 - ✓ Used for Pu production plant at Savannah River in 1954 (H-canyon facility still operational in 2008)
 - ✓ Replaced REDOX process at Hanford in 1956.
 - Modified PUREX used in Idaho National Laboratory began in 1953 (first cycle)
- <Advantages of PUREX over REDOX process>
 - ✓ Nitric acid is used as salting and scrubbing agent and can be evaporated, which results in less HLW.
 - \checkmark TBP is less volatile and flammable than hexone.
 - ✓ TBP is more chemically stable in a nitric acid environment.
 - ✓ Consequently, the operating cost is lower.

5. Chemistry in reprocessing of spent nuclear fuels -History of reprocessing: PUREX process-

<Advantages>

- ✓ Continuous operation, high throughput
- ✓ Countercurrent operation, high purity and selectivity
- ✓ Recycle solvent, minimizing waste

<Disadvantages>

- ✓ Solvent degradation due to hydrolysis and radiolysis
- ✓ Requires substantial tankage and reagents
- ✓ Proliferation risk as Pu is isolated.
- ✓ Initial use was for defense purposes, to recover plutonium from spent nuclear fuel
 - ✓ Hanford, Savannah River and Idaho all utilized the PUREX process for the recovery of Pu and/or highly enriched U.
 - ✓ UK, France, China, India (and North Korea) used the PUREX process to recover plutonium for weapons.

5. Chemistry in reprocessing of spent nuclear fuels -History of reprocessing, commercial use in the US-

- West Valley, NY
 - First plant in US to reprocess commercial SNF
 - Operated from 1966 until 1972
 - Capacity of 250-300 MTHM/yr
 - Shutdown due to high retrofit costs associated with changing safety and environmental regulations and construction of larger Barnwell facility
- Morris, IL
 - Construction halted in 1972, never operated
 - Close-coupled unit operations with fluoride volatility polishing step (dry U feed)
- Barnwell, SC
 - 1500 MTHM capacity
 - Construction nearly completed- startup testing was in progress
 - 1977 change in US policy on reprocessing stopped construction
 - Plant never operated with spent nuclear fuel

5. Chemistry in reprocessing of spent nuclear fuels -History of reprocessing, commercial use in other nations-

✓ France

- Magnox plant in Marcoule began operation in 1958 (~400 MT/yr)
- Magnox plant in La Hague began operation in 1967 (~400 MT/yr)
- LWR oxide plant (UP2) began in La Hague in 1976 (800 MT/yr)
- LWR oxide plant (UP3) began in La Hague in 1990 (800 MT/yr)

✓ United Kingdom

- Windscale plant for Magnox fuel began in 1964 (1200-1500 MT/yr)
- THORP LWR oxide plant began in 1994 (~1200 MT/yr)

🗸 Japan

- Tokai-Mura plant began in 1975 (~200 MT/yr)
- Rokkasho plant currently undergoing hot commissioning (800 MT/yr)

✓ Russia

- o Plant RT-1
- Began operation in 1976, 400 MT capacity

5. Chemistry in reprocessing of spent nuclear fuels -Flowsheet for UOX fuel 45 GWd/t 5-year cooled-

- [Raffinate] In chemical separation terminology, raffinate is a product which has had a component or components removed.
- [Sludge] thick, soft, wet mud or a similar viscous mixture of liquid and solid components, especially the product of an industrial or refining process.
- [Hull] the main body of a ship or other vessel, including the bottom, sides, and deck but not the masts, superstructure, rigging, engines, and other fittings.

*"Spent Nuclear Fuel Reprocessing Flowsheet", OECD-NEA, 2012.

5. Chemistry in reprocessing of spent nuclear fuels -Advanced method: additional separation after PUREX-

Figure 17

Strategies for the separation of the minor actinides from high level liquid waste (HLLW)

5. Chemistry in reprocessing of spent nuclear fuels -Advanced method: UREX+, for example-

 The UREX+ process consisted of five solvent extraction processes: (1) UREX (U and Tc removal); (2) CDC-PEG (Cs and Sr removal); (3) NPEX (Pu and Np removal); (4) TRUEX (Am, Cm, and rareearth-fission-product removal), and; (5) Cyanex-301 (separation of Am and Cm from the rare earths).

