Crystallography

Pecharsky 2nd ed. - Chapter 1, 2, 3 Cullity - Chapter 2 Krawitz - Chapter 1, 2 Hammond - Chapter 1, 2, 3, 4, 5, 6 Sherwood & Cooper - Chapter 1, 3 Jenkins & Snyder – Chapter 2

1 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

- ➤ Lattice
- Reciprocal lattice
- Miller indices
- > Interplanar spacing
- 14 Bravais lattices, 7 crystal systems
- 32 Point groups, 230 Space groups
- PDF card
- International tables for crystallography

- <u>Crystal</u> an anisotropic, homogeneous body consisting of a three-dimensional periodic ordering of atoms, ions, or molecules
- <u>Crystal</u> solid chemical substances with a 3-dimensional periodic array of atoms, ions, or molecules
- > This array \rightarrow <u>Crystal Structure</u>
- <u>Crystallography</u> concerned with the laws governing the <u>crystalline state</u> of solid materials with the arrangement of atoms (molecules, ions) in crystals and with their physical and chemical properties, their synthesis and their growth. (Ott)
- Perfect crystal vs. crystals with defects
- Xtallography is a language
- > Nature does not allow some gaps because it is a high energy configuration
- > Nature does not care about symmetry
- > Symmetry is in our head only, not in crystal.
- > Nature has only one principle --- energy should be minimized
- 3 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Lattice type P, I, F, C, R

Lattice type P, I, F, C, R

Crystal Structure

- \succ Lattice \rightarrow Crystal
 - ✓ lattice points occupied by atoms, ions, or molecules
 - ✓ lattice points- all identical, collection of objects - must be identical
 - > rectangular unit cell projected on a-b plane
 - basis molecule ABC
 - > A: 0,0,0
- - B: x₁,y₁ z₁

 $C:x_2,y_2,z_2$

 Crystals; solid chemical substance with a long-range threedimensional periodic array of atoms, ions, or molecules

 \rightarrow This array is called a **crystal structure**

7 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Unit cell

- Various structural units that describe the schematic crystalline structure
- > The simplest structural unit is the unit cell
- The simple cubic lattice becomes the simple cubic crystal structure when an atom is placed on each lattice point

all points in the plane // to b
and c axes which cuts a axis @ ³/₄
not a Miller index

- all points in the plane // to a

and b axes which cuts c axis @ $^{1\!\!/_2}$

9 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Ott page 24

Lattice positions, lattice translation

Lattice translations connect structurally equivalent positions (e.g. the body center) in various unit cells

Shackelford 6th ed. Fig 3.27

Directions

Lattice plane (Miller index)

m, n, ∝	no : no	intercepts	with	axes
---------	---------	------------	------	------

Intercepts @ (mnp)	2	1	3		
Reciprocals	1/2	1	1/3		
Miller indicies	3	6	2		
(362) plane					

- > (hkl) is // to (n*h n*k n*l) \rightarrow (110) // (220) // (330) // (440)
- > Planes are orthogonal if (hkl) (h'k'l') = 0
- Some planes may be equivalent because of symmetry \rightarrow in a cubic crystal, (100) (010) and (001) are equivalent \rightarrow family of planes {100}
- [h00] is // to a-axis, [0k0] // b-axis, [00l] // c-axis

Miller index ; the smallest integral multiples of the reciprocals of the plane intercepts on the axes

Plane (hkl) Family of planes {hkl}

Plans of (a) cubic and (b) orthorhombic unit cells perpendicular to the z-axis, showing the relationships between planes and zone axes of the same numerical indices.

13 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Hammond page 109 Sherwood & Cooper page 72

Lattice plane (Miller indices)

Miller–Bravais indices (*hkil*): $\frac{1}{\infty}$, $\frac{1}{1}$, $\frac{1}{-1}$, $\frac{1}{\infty} \rightarrow (01\overline{1}0)$ Note: h + k = -i

Family of directions & Family of planes

[111] square bracket; line, direction

{100} braces represents all faces of unit cells in the cubic system

(100) round bracket; planes (Parentheses)

[uvw] & (hkl)

[uvw]	a lattice line through the origin and point uvw
direction line	the <u>infinite set of lattice lines</u> which are parallel to it and have the <u>same lattice parameter</u>
(hkl)	the <u>infinite set of parallel planes</u> which are apart from each other by the same distance (d)

14 Bravais Lattice

Lattice	No. of lattice points in unit cell	Coordinates of lattice points in unit cell
Р	1	0,0,0
A	2	$0, 0, 0; 0, \frac{1}{2}, \frac{1}{2}$
В	2	$0, 0, 0; \frac{1}{2}, 0, \frac{1}{2}$
с	2	$0, 0, 0; \frac{1}{2}, \frac{1}{2}, 0$
I	2	$0, 0, 0; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$
R	3	$0, 0, 0; \frac{2}{3}, \frac{1}{3}, \frac{1}{3}; \frac{1}{3}, \frac{2}{3}, \frac{2}{3}$
F	4	$0, 0, 0; \frac{1}{2}, \frac{1}{2}, 0; \frac{1}{2}, 0, \frac{1}{2}; 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$

7 crystal systems, 14 Bravais lattices

Xtal systems	a1, a2, a3, α, β, γ		Bravais lattice	Lattice symbol
	a1 = a2 = a3	a	Simple	Р
Cubic		a a	Body-centered	I
	$\alpha = \beta = \gamma = 90^{\circ}$		Face-centered	F
.	a1 = a2 ≠ a3	C C	Simple	Р
letragonal	$\alpha = \beta = \gamma = 90^{\circ}$		Body-centered	I
Orthorhombic			Simple	Р
	a1 ≠ a2 ≠ a3	C C	Body-centered	I
	$\alpha = \beta = \gamma = 90^{\circ}$	b a	Base-centered	С
		\bigwedge	Face-centered	F
Rhombohedral	$a1 = a2 = a3$, $\alpha = \beta = \gamma$	< 120° , ≠ 90°	Simple	R
Hexagonal	a1 = a2 \neq a3, α = β = 90	D° , γ = 120°	Simple	Р
Monoclinic	a1 \neq a2 \neq a3, $\alpha = \gamma = 90^{\circ} \neq \beta$		Simple	Р
			Base-centered	С
Triclinic	a1 \neq a2 \neq a3, $\alpha \neq \beta \neq \gamma$	\neq 90° $\int_{b}^{c} \frac{1}{a} \frac{c}{c}$	Simple	Р

 $\begin{bmatrix} a1 \neq a2 \neq a3\\ \alpha = \gamma = 90^{\circ} \neq \beta \\ \text{Simple monoclinic} \\ \textbf{P} & \textbf{P} & \textbf{P} & \textbf{P} \\ \textbf{M} & \textbf{M} & \textbf{M} \neq \beta \neq \gamma \neq 90^{\circ} \\ \textbf{P} & \textbf{M} & \textbf{M} & \textbf{M} \end{pmatrix}$ Trigonal (Rhombohedral) lattice $\begin{bmatrix} a1 = a2 = a3\\ \alpha = \beta = \gamma < 120^{\circ}, \neq 90^{\circ} \\ \textbf{Obtained by stretching a cube along one of its axes} \end{bmatrix}$ $\begin{bmatrix} a1 = a2 \neq a3\\ \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ} \\ \textbf{M} & \textbf{M} \\ \textbf{M} \\ \textbf{M} & \textbf{M} \\ \textbf{M} & \textbf{M} \\ \textbf{M} \\ \textbf{M} & \textbf{M} \\ \textbf{M} \\ \textbf{M} & \textbf{M} \\ \textbf{$

octahedral & tetrahedral interstices in cubic closed-packed (CCP) lattice

octahedral & tetrahedral interstices in hexagonal closed-packed (HCP) lattice

23 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

25 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Symmetry Point group Space Group

Symmetry operation & 32 point groups

- ➢ Rotation, 1, 2, 3, 4, 6
- > Mirror plane
- > Center of symmetry (inversion)
- Rotation-inversion, 1bar, 2bar, 3bar,
 4bar, 6bar
- Screw axis; rotation + translation
- ➢ Glide plane; reflection + translation

Crystal system	Point groups	
Triclinic	ī	1
Monoclinic	2/m	m, 2
Orthorhombic	2/m 2/m 2/m (mmm)	mm2, 222
Tetragonal	4/m 2/m 2/m (4/mmm)	42m, 4mm, 422 4∕m, 4, 4
Trigonal	3 2/m (3m)	3m, 32, 3, 3
Hexagonal	6/m 2/m 2/m (6/mmm)	ōm2, 6mm, 622 6/m, δ, 6
Cubic	4/m 3 2/m (m3m)	43m, 432, 2/m3, 23 (m3)

Table 8.2. The 32 point groups

27 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

neon.mems.cmu.edu/degraef/pg/pg.html#AGM

Crystal system	Point groups ^a	Characteristic symmetry elements
Cubic	4/m <u>3</u> 2/m 4 <u>3</u> m, 4 <u>3</u> 2, 2/m <u>3</u> , 2 <u>3</u>	ve or a state a transmission This metic ▲ A cither 23 or 5
Hexagonal		• or 🌢
Tetragonal	$\begin{array}{c} \frac{4}{4} / m \ 2 / m \ 2 / m \\ \frac{4}{2} m, \frac{4}{7} m, \frac{4}{4}, \frac{4}{4} \end{array}$	$1 \blacksquare \text{ or } 1 \blacksquare$ $(3 \blacksquare \text{ or } 3 \blacksquare \Rightarrow \text{ cubic})$
Trigonal	<u>3</u> 2/m <u>3</u> m, <u>3</u> 2, <u>3</u> , <u>3</u>	$1 \blacktriangle$ (remember that m normal to 3 gives $\overline{6} \Rightarrow$ hexagonal
Orthorhombic	<u>2/m 2/m 2/m</u> <u>mm2</u> , <u>222</u>	2 and/or m in three orthogonal directions
Monoclinic	<u>2/m</u> <u>m</u> , <u>2</u>	2 and/or m in one direction
Triclinic	erob-figures <mark>1</mark> national state course 1 here figures	Ī or 1 only

Table 8.9. Characteristic symmetry elements of the seven crystal systems

28 CHA ^a Characteric symmetry elements are underlined.

Symmetry directions

Xtal systems	Symmetry directions		ections	
Triclinic	а	b	С	a1 ≠ a2 ≠ a3, α ≠ β ≠ γ ≠ 90°
Monoclionic	а	b	С	a1 \neq a2 \neq a3, $\alpha = \gamma = 90^{\circ} \neq \beta$
Orthorhombic	а	b	С	a1 \neq a2 \neq a3, α = β = γ = 90°
Tetragonal	С	<a>	<110>	a1 = a2 \neq a3, α = β = γ = 90°
Trigonal	С	<a>	-	a1 = a2 = a3, α = β = γ < 120° ≠ 90°
Hexagonal	С	<a>	<210>	a1 = a2 \neq a3, α = β = 90°, γ = 120°
Cubic	<a>	<111>	<110>	a1 = a2 = a3, α = β = γ = 90°

29 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Symmetry operations, Point groups Plane groups, Space groups

- > Symmetry operations
 - ✓ Translation
 - ✓ Rotation, Reflection, Inversion
- Shape of the unit cell, symmetry within the unit cell, translation of the unit cell → define a repeating pattern
- Point groups (32) set of symmetry operations about a point in space (except for translation)
- ➢ Plane groups (17) ← (ten 2-D point groups + five 2-D plane lattices)
- > Space groups (230) \leftarrow (32 point groups + 7 crystal systems)
- Space (plane) lattice; 3(2)-dimensional arrays of points in space that have a basic repeating pattern, a unit cell, that can be translated to fill all space

Space Groups

- 32 point groups symmetry groups of many molecules and of all crystals so long as morphology is considered
- space group symmetry of crystal lattices and crystal structures
 - ✓ 14 Bravais lattice
 - ✓ centered lattices new symmetry operations
 - ✓ reflection + translation
 - ✓ rotation + translation
- ▶ Bravais lattice + point group \rightarrow 230 space groups
 - + screw axis
 - + glide plane

31 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Space Group

- ➢ If translation operations are included with rotation, reflection and inversion → 230 three-dimensional space groups
- > Translation operations
 - ✓ Unit cell translations
 - ✓ Centering operations (Lattices) (*A*, *B*, *C*, *I*, *F*)
 - ✓ Glide planes (reflection + translation) (*a, b, c, n, d*)
 - ✓ Screw axes (rotation + translation) $(2_1, 3_1, 3_2)$
- Hermann-Mauguin symbols (4 positions)
 - ✓ First position is Lattice type (P, A, B, C, I, F or R)
 - ✓ Second, third and fourth positions as with point groups

- > 3-D, 14 possible lattices, 7 different axis systems
- The application and permutation of all symmetry elements to patterns in space give rise to 230 space groups (instead of <u>17 plane groups</u>) distributed among 14 space lattices (instead of <u>5 plane lattices</u>) and 32 point group symmetries (instead of <u>10 plane point group symmetries</u>)
- Point group symmetry & space group symmetry has to be distinguished
- Space group symmetry the way things are packed together and fill space
- Space group translational component = point group

33 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

theta-2theta X-ray diffraction pattern

➤ Laue class → Pecharsy page 40

➤ Laue index → Hammond page 138

35 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses