Soil Dynamics

week # 6

Wave propagation in an Elastic Medium

Longitudinal Vibration of Rods
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E = C?| (refer to ‘ University Physics’ by Sears & Zemansky, pp. 302, pp.115)

- Impulse-momentum principle
The vector impulse of the resultant force on a particle, in any time interval, is equal

in magnitude and direction to the vector change in momentum of the particle.

- Calculation of longitudinal wave velocity of rod
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X Remarks

- When a wave travel in a material substance, it travels in one direction with a certain
velocity (C,), while every particle of the substance oscillates about its equilibrium
position( i.e., it vibrates)

- Wave velocities depend upon the elastic properties of the substance through which

it travels
f
P P
[ B : Bulk modulus, C, :wave velocity of the liquid confined in a tube ]

- Particle velocity(v) depends on the intensity of stress or strain induced, while C,

is only a function of the material properties.

From Eq. @ of page 2/13

o =E.¢ =E-—
Cr

-C
- V= XE - - i.e., stress dependent

- When compressive stress applied, both C. & v are in the same direction

(*-compressive o, — Positive ), and for tensile stress, opposite direction.
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Solution of Wave Equation

ot? OX?

d’Alembert’s Solution

- by the chain rule (if vis a function possessing a second derivative)

of (x—ct)

p =—cf '(x—ct), w=f'(x—0t)

X
d° f (x—ct) . o*f(x—ct) .,
T:sz (x—ct), T:f (x—ct)

- thus, u= f(x—ct) satisfies Eq. @

more generally,

u=f(x—ct)+g(x+ct) ..®@

Eq. @ is a complete solution of Eq. @, i.e., any solution of @ can be expressed
in the form @

Ex. Suppose that the initial displacement of the string(rod, or anything satisfying Eq.
@) at any point X is given by ¢(x), and that the initial velocity by &(x), then (i.e.,
IC given)

u(x,0) =g(x) =[f(x—ct)+g(x+ct)]_, = f(x)+ag(x) ..®

aa—l: =6(x) =[-cf '(x—ct) +cg(x +ct)]_, =—-cf'(x)+cg'(x) ..®
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Dividing Eq. @ by c, and then integrating w. r. t. X

—f(x)+9g(x) :%Jx'e(x)dx

Combining this with Eq. ®, [ and introducing dummy variable, s]

F(0) = 2100~ [ 06881, 900 = 1900+ [ A($)ds]

Now, u=u(x,t)= f(x—ct)+g(x+ct)

| p(x=ct) 177 g(x+ct) 1
o j H(s)ds}{—z o j 0(s)ds

:¢(x—ct)+¢(x+ct)+_ I 0(s)ds
2 2C

Seperation of Variables

[ for the undamped torsionally vibrating shaft of finite length ]
0’0 _,0°0

2 =a 2
ot OX

- Assume that 8(x,t) = X (X)T (t)

then,

2 2 o0

0 _yor, TO_y3

OX ot

L xToaxe

N Izazx—zu(constant)
T
. " u

- T=uT and X"=—X

a
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- Consider real values of U
u>0, u=0, u<oO

If u>0, (wecanwrite) u=A1°
T=AT - T=Ae"+Be”
12
X":_ZX N X :Celxla + De—ﬂx/a
a
- O(x,t) = X (X)T (t) = (Ce™* + De **)(Ae™ + Be™)
(However, this cannot describe the vibrating system because it is not periodic.)
If u=0

T=0 > T=At+B
X"=0 > X =Cx+D

S O(x,t) = X ()T (t) = (Cx+ D)(At + B)

(This Eq. is not periodic either.)

If u<0,we can write U=-1°

T =-2T - T =AcosAt+ Bsin At

2
X"=—i2X - X =Ccos£x+ Dsinix
a a a

- 9(x,t):X(x)T(t)=(Ccos§x+ Dsin%x)(AcoslHBsinlt) Eq. ©®

2
* Periodic : repeating itself every time t Increases by 7”

period =2—7T frequency = i
A7 27

A : circular(natural) frequency
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Soil Dynamics
- Now, find values of A and the constants A,B,C,D from B.C and/or |.C

These are 3 cases ;
@ Both ends fixed
®@ Both ends free

® One end fixed, one end free
@ Bothends fixed [ #(0,t) =8(l,t) =0forallt]

6(0,t) = 0 = C(Acos At + Bsin At)

If A=B =0, satisfied, but leads to trivial solution
[ - 6(x,t)=0at all times ]

- Let C=0, thenfromEq. ®
o(x,t) = Dsinix(Acos/IH Bsinit) ...®
a
0(1,t) =0 = Dsin 2 1(Acos it + Bsin At)
a

A=0,B=0 (setalready)

If D=0 — leads to the trivial case again (- C =0 already)

A Al
S.8iIn—=0,0or —=nx
a a

nza
n

- A =T, n=1,2,3... [rememberthat a :wave velocity ]

- 6 (x,t)= sinﬁx(Aj cosAt+B sinAt)
a

. NzX nrat . nhrat
= sin—(A, cosT+ anmT)
a

n=1 n=1
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- Initial Conditions : 9(x,0) = f(X), % =g(x)

x,0

0(x,0) = f(x) = iﬁhsin@ (from Eq. ® after t=0 substituted)

n=1
2 Nz X
=— de [ Fourier series : Euler coefficients in the half-range sine

A = Jl'f(x)sin
| 3 | expansion of f(x)over (0,1) ]

am,QQ:f}mDZQ}ApmﬂTE+apmﬂﬁﬁﬁfi
ot = | I | |
00 z. nra . NxzX
—| =9(x)=> (——B,)sin—-
ot o = | I
|
nra —%jg(x)sin@dx
0

- —B, =
I

|
or B =ijg(x)sin%dx
nrzas I
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- End Conditions for free end & for fixed end

(linear Eq. — superposition valid)

ciL
l_.i‘

(a)

Tension

Compression ||

v

I

ILInNp»

=20

(d) Free end

a=0
L \a=0

==

X In compression, wave travel & particle velocity

- same direction

In tension — opposite direction

(al

{bl

(d
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CiL

=1
noow
[ I ]

Compression

Compression

1 <—— Fixedend
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Experimental Determination of Dynamic Elastic Moduli

® Travel —time method:

measure the time (t,) for an elastic wave to travel a distance |, along a rod.

Since, C? _E

P

-] o-tfy]]

Shear modulus for a torsional wave

® Resonant — column method:

A column of material is excited either longitudinally or torsionally, and the wave
velocity is determined from the frequency at resonance and from the dimensions of
the specimen.

[ End conditions: free — free or fixed — free ]

- afree —free column,

n n

w:an:ﬂfr ,forn=1 (<— /In:nﬂaj
- C, =21l
S E=p2f 1) =2(2f]1)

g

- afixed - free with a mass at the free end.

X-sedional area= A

c, =2t where, ptan =217 Wi
ﬂ m ’ g Wmass
m [— 27f 1Y L .
X E=p ﬂ“ [ refer to Vibrations of Soils &
] Foundations] by Richart, et. al
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Waves in an Elastic —Half Space

1. Compression wave (Primary wave, P wave, dilatational wave, irrotational wave)

C, = /’HZG (> C.o :\/E] "~ Confined laterally
P P

, 4 & G :Lame’s Constants
_ vE
L+ v)-2v)
E

2(1+v)

-if v=0.5, C, >
In water-saturated soils, C, is a compression wave velocity of water, not

for soil (.- water relatively incompressible )

2. Shear wave (Secondary wave, S wave, distortional wave, equivoluminal wave)

- In water — saturated soils, C, represents the Soil properties only, since water has

no shear strength (i.e. - G=0 )

Thus, in field experiments, shear wave is used in the determination of soil

properties.
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3. Rayleigh wave (R wave)

Ci :referto Fig. 3.10 - practically the same with Cg

The elastic wave which is confined to the neighborhood of the surface of a half

space

S | T T
4 -
‘a%@
> = ey
n
> %"
k=
= 2 P waves T
=
m
>
- S waves
—— e —
R waves
1 1 1 1
0 0.1 0.2 0.3 0.4 0.5

Poisson’s ratio, »

4. Love wave (exists only in layered media)
a horizontally polarized shear wave trapped in a superficial layer and propagated by

multiple total deflection (Ref : Kramer pp. 162 ~ 5.3.2)
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® Remarks
Circular footing
-2 Geometrical _, __os I
- damping law o — By o2
TR EES
Rayleigh wave
N
¥ Vertical Horizontal
component component '
\/
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amplitude
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damping low
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window

Figure 3.13 Distribution of displacement waves from a circular footing on a homogeneous, iso-
tropic, elastic half space. (After Woods, 1 968.)

- The distribution of total input energy ;

R-wave (67%), S-wave (26%), P-wave(7%)

- Geometrical damping : (or Radiation damping)

All of the waves encounter an increasingly larger volume of material as they travel
outward

— the energy density in each wave decrease with distance from the source

— this decrease in energy density (i.e., decrease in displacement amplitude) is
called geometrical damping

- Attenuation of the waves by geometric damping

Body waves (P, S) « %

“Body waves “ on the surface « iz
r

R-wave « 1/t —— i.e., decay the slowest

. R —wave is of primary concern for foundations on or near the surface of earth
(. 67% & 1/r)
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