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Effect of element with positive enthalpy of mixing
among constituent elements

atomic scale heterogeneity Phase separating metallic glasses
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Enhancement of plasticity in BMGs Unique properties



Homeworks8:

Summary (page 265 — page 360)
Chapter 6_Physical Properties & Chapter 7_Corrosion Behavior

density, thermal expansion,
diffusion, electrical resistivity

specific heat, viscosity

You should submit your summary until 13 June. ©



8 Mechanical Behavior

Deformation behavior: crystalline VS. amorphous
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> “Incrementally breaking bonds”

> Has relatively low strength, performs work hardening Amorphous metal do not have slip system
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a) High strength of Bulk Metallic Glasses
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High fracture strength over 5 GPa in Fe-based BMGs

A.L Greer, E. Ma, MRS Bulletin, 2007, 32: 612.
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2) Large elastic strain limit of BMGs

Elastic Strain Limit

i — =

J

Al alloy

4

[ as % of Original Shape ]

Stress-Strain Curve

Ti alloy Stainles

}
S

500 |~

A

BMG

Strain, €

2000
1 ©
~ O
2 1500
1 o)
(7))
7))
© 1000
N
BMG

(Liquidmetal®)

0 0.5 % 2.0 %



* BMGs with high strength & high elastic limit
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: Metallic Glasses Offer a Unique Combination of High Strength and High Elastic Limit



Drawback of BMGs as a Structural Materials

pPCo.




Engineering Stress (GPa)

Limited plasticity by shear softening and shear band

> Microscopically brittle fracture
Death of a material for structural applications

3.0
25 Amorphous metal
- limited plasticity (0~2%o)
- catastrophic failure
Conventional metal
- low strength
1 1 v 1 " 1 v 1 v 1
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Engineering Strain (%)



8.2 Deformation Behavior

Deformation behavior
of Metallic glass

8.2.2 | Homogeneous 8.2.1 | Inhomogeneous
Deformation Deformation

high temp. (>0.7T,) and in the SCLR/ ¢ Low temp. (<0.5T,)/ high stress

high strain rate e Localized shear band/ 45° to the
Viscous flow — significant plasticity loading axis

: achieve net-shape forming capability ¢ Strain softening: deformed at lower

Newtonian (high temp. & low stress) VS nON- stress and hlgher rate
Newtonian (high temp. & applied stress) :

associated with the precipitation of nanocrystals
Homogeneous deformation Catastrophically Failure




8.2.1 Inhomogeneous Deformation

Elementary flow events in metallic glasses

atomic
volume Q
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defect free volume .
volume fluctuation shear strain

Amorphous: dilatation

m=) Shear bands form by accumulation
of defects during deformation.
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Footprints in sand.
Water quickly disappears underneath

nature materials | VOL 5 | JANUARY 2006 | www.nature.com/naturematerials



Effect of local favored structure on SB nucleation

> NigoNb,,: fully amorphous phase S=0.016 mm/sec

100 pm



Formation of multiple shear bands during deformation
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Formation of shear bands : variation of free volume
Shear bands form by accumulation of defects during deformation.

clear boundary between
undeformed matrix and

shear bands

Shear deformed areas with the same composition & different density of free volume



Shear band nucleation and propagation: strain softening

100 pm | .

Formation of multiple shear bands in an Nig,Pd;,P,,

: BMG specimen subjected to compression testing.
Shear band formation and propagation in the ribbon bending test K. Wang et al. / Acta Mater. 56 (2008) 2834.

O%%%C% Plastic deformation of metallic glass
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SB nucleation and propagation : Multiple serrations,
observed only at slow strain rates — temperature rise
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FIGURE 8.1

Compressive stress—strain curve for ZryTiNiCu,;Be,; BMG alloy tested at a strain rate of
1 = 10-*s7". (Reprinted from Wright, W]. et al., Mater. Trans., 42, 642, 2001. With permission.)



SB nucleation and propagation : Multiple serrations
— temperature rise
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FIGURE 8.2

(a) Load as a function of time and (b) total displacement as a function of time in the serrated
flow region of the Zr, Ti ,Ni, ,Cu,,Be,, BMG alloy tested in uniaxial compression. (Reprinted
from Wright, W]. et al., Mater. Trans., 42, 642, 2001. With permission.)



Serrated flow is also observed during nano-indentation,
but only at “slow loading rates”. Activation of each individual shear band is
associated with the occurrence of a discrete “pop-in” event (sudden rise in load).
High loading rate — multiple shear bands — smooth load-displacement curve
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FIGURE 8.3

Typical load-displacement (P-h) curves measured on the loading portion of nanoindenta-
tion experiments, for four different BMGs investigated. (a) PdyNigyPa (b) PdygCusgNigPag,
(c) ZrgsALNiCuys, and (d) Zrs; sA1Ni, (CuypTis. Curves are offset from the origin for clear
viewing, and the rate of indentation loading is specified in each graph. (Reprinted from
Schuh, C.A. and Nieh, T.G., Acta Mater., 51, 87, 2003. With permission.)



8.4 Temperature rise at shear bands

Most of the plastic strain is localized in narrow shear bands, which form approximately on the
planes of maximum resolved shear stress. The inhomogeneous flow in metallic glasses appears
to be related to a local decrease in the viscosity in shear bands. One of the reasons suggested for
this was the local adiabatic heating that could lead to a substantial increase in the temperature.
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FIGURE 8.8
Temperature rise, AT in the shear bands at the time of fracture for different BMG alloys plotted

against the glass transition temperature, TE‘ (Reprinted from Yang, B. et al., J. Mater. Res,, 21,
015, 2006. With permission.)



8.4 Temperature rise at shear bands

Most of the plastic strain is localized in narrow shear bands, which form approximately on the
planes of maximum resolved shear stress. The inhomogeneous flow in metallic glasses appears
to be related to a local decrease in the viscosity in shear bands. One of the reasons suggested for
this was the local adiabatic heating that could lead to a substantial increase in the temperature.

FIGURE 8.9

Scanning electron micrograph of the surface of Zry; 5 Ti; 5 Cuy, s NijBes, - BMG, which was origi-
nally coated with a tin coating. During deformation, the “fusible coating” had melted near the
shear bands. The round shape of the tin beads clearly suggests that the coating had melted due
to the temperature rise as a result of deformation and had resolidified. The bar in the micro-
graphs corresponds to 1um. (Reprinted from Lewandowski, |.]. and Greer, A.L., Nat. Mater., 5,

15, 2006. With permission.)



8.4.1 Nanocrystallization near Shear Bands

TEM analysis after bend test in Al-based ribbon

* Compressive region of amorphous Al ,Fe;Gd; (at - 40°C)
: A high density of nanocrystals is observed within shear bands.

2um

5“_“ m WH. Jiang et al/ Scripta Mater

HRETEM dark field image 48 (2003) 1195-1200

Low GFA = Severe plastic deformation == Precipitation of nanocrystals
{unstable Amor. Matrix) within shear bands




TEM analysis after severe compressive loading
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nanocrystals is observed within shear bands.

H.J. Chang et al / Scripta Mater: 55 (2008) 509-512
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Unstable Amor. Matrix® Severe plastic deformation®p Precipitation of nanocrystals
within shear bands




TEM analysis after severe compressive loading

* Mg-rich Mgg,Cu,sGd; BMGC ~ large plastic strain
Py B, o

a-Mg

Precipitation of several hundreds nm scale a-Mg
in SB & STZ region occurs during the severe
compressive deformation, which is related to
relatively low T, (or T,) value as well as

unstable amorphous matrix in Mg-rich BMGC.

P . JI Lee will present the detail at July 8 (11: 45, room E7)
51Z i

Unstable Amor. Matrix BpSevere plastic deformation®p Precipitation of nanocrystals
& relatively low T, (or T,) In SB and STZ region




Atomistic models for plastic deformation in metallic glasses

Free volume theory STZ model

F. Spaepen A. S. Argon

Free volume theory Shear transformation zone (STZ)
Homogeneous flow @ steady state Homogeneous plastic flow  Steady / Non-steady
Inhomogeneous flow @ steady state Inhomogeneous plastic flow

Single-atom/ Diffusion-like model/ Spontaneous & cooperative reorganization of a
Internal volume creation small cluster of randomly close-packed atoms

STZ motion = local shear transformation
STZ pushes apart the atoms around free volume
site along activation path

Steady state inhomogeneous flow :
dynamic equilibrium between shear-induced
disordering (creation of free volume) &

diffusional annihilation of structural disorder ] ] ] ] ] o
Plastic flow in metallic glass in which strain is

produced by local shear transformations

nucleated under the applied stress & the

Thermally activated, similar energy scales assistance of thermal fluctuations in regions
Dilatational mechanism around free volume sites (adiabatic heating)

Forward - backward process



Atomic bond topology

Free volume theory STZ model
F. Spaepen A. S. Argon
Free volume theory Shear transformation zone (STZ)

Homogeneous flow @ steady state Homogeneous plastic flow  Steady / Non-steady

|nh0mogeneous flow @ Steady state |nhomogeneous p|astic flow

i 7
S |
<
STZ: basic shear unit
T. Egami (a few to perhaps up to 100 atoms)

Atomic bond topology

Free volume approach
(1) dense random packing of hard spheres
(2) free volume cannot be described by the volume alone, and we have to consider the shape

Network of atomic connectivity / topology of the atomic structure



Atomistic theory of metallic liquids and glasses - T. Egami

e Structure of liquids and glasses is usually described in terms of the
atomic pair-density correlation function (PDF; p,g(r)) or the radial
distribution function (RDF; 4mtr?p,g(r))

 PDF : distribution of the distances between pairs of atoms, averaged
over the volume and angle.
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PDF of BMG Zr, cCti; i Al Tis

e Theidea most frequently used in discussing atomic transport and
deformation is free volume.

* Free volume is a space between atoms, and it is intuitively reasonable to
assume that atoms need some space for moving around.



Bond-exchange mechanism of shear deformation

4>

& :

(a) (o)

Fig. 2.17. The bond-exchange mechanism of shear deformation.** When a vertical tensile
stress 15 applied the bond C-D 1s cut. and the new bond A-B is formed. The total number of
bonds remains unchanged. but the distribution of onentation becomes anisotropic. Bond
orientational anisotropy (BOA) 1s formed as a result of such a bond-exchange process
(reprinted from reference [44] with permission from the American Physical Society)



T. Egami: Local topological instability

Non-integer CN
Local topology is unstable @ half-integer “ 1/2
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Probability

T. Egami: Local topological fluctuation
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Atomic processes and deformation mechanisms
Crystalline Polycrystalline ~ Amorphous

» Plastic flow is a kinetic process.

e Atabsolute zero, polycrystalline solid as having a well defined yield strength,
below which it does not flow and above which flow is rapid.

e Variables that solid strength depends on : strain, strain-rate, and temperature.
(atomistic processes : glide-motion of dislocation lines, their coupled glide and
climb, the diffusive flow of individual atoms, the relative displacement of grains by
grain boundary sliding, mechanical twinning etc.)

 Deformation mechanisms were considered to describe polycrystal plasticity (or
flow); they divided into five groups.

1. Collapse at the ideal strength

2. Low-temperature plasticity by dislocation glide

3. Low-temperature plasticity by twinning

4. Power-law creep by dislocation glide, or glide-plus-climb
5. Diffusional flow

e It's possible to superimpose upper mechanisms. (superplastic flow etc.)



Ashby deformation maps for crystalline materials

Delineating the different modes and mechanism of plastic deformation
of a material as a function of stress, temperature, and structure
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Deformation-mechanism map shows how to combine each plastic
deformation mechanisms.
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Empirical deformation mechanism maps for metallic glasses

Developed by Spaepen using the results for melt-spun metallic glasses,
Explained by using the concept of free volume model

Flow Mechanisms

»» Basic Modes of Deformation l
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» Each volume element
undergoes the same strain.
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Fig. 1. Deformation mechanism map for a metallic glass.



Homogeneous Deformation
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Strain rate, s

« Newtonian to non-Newtonian transition is dependent on
the test temperature.



Liquid Flow

“ Liquid Region (above and near T,)

= Homogeneous Flow
= Low stress in liquid region

= Strain rate is proportional to the stress
= Viscosity is not dependent on stress,

but temperature.

2KT

sinh[govoa} _ EVo0

2kT @ low stress

= Newtonian Viscous Flow

T=n-y
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Shear stress | Viscosity
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Fig. 1. Deformation mechanism map for a metallic glass.



Deformation-induced Softening

= Softening : Lowering
of viscosity in the i
shear bands

= Structural Change :
Creation of free
volume due to high
stress level

-20

Fig. 1. Deformation mechanism map for a metallic glass.
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Empirical deformation mechanism maps for metallic glasses

Developed by Spaepen using the results for melt-spun metallic glasses,
Explained by using the concept of free volume model
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Normalized stress, t/u

Deformation map drawn by C.A. Schuh

Explained by using the concept of STZ, strain rates are represented as a series of contours.
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The Newtonian-non-Newtonian transition is delineated at ~ 10-°S-1. However, it is important to note
that at high enough shear rates, non-Newtonian flow as well as shear localization can occur at high
temperature - even in the supercooled liquid region.



b

Shear rate (5'1)

Deformation map drawn by C.A. Schuh

Explained by using the concept of STZ, stress is represented as a series of contours.
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Deformation modes

/ Plastic deformation \

E Spaepen : Free volume theory

Homogeneous flow @ steady state

Inhomogeneous flow @ steady state

Competition of shear-induced disordering and
a diffusion controlled reordering;
creation of FV vs. relaxation
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Summary

> Plastic deformation in metallic glasses controlled by shear band nucleation
and propagation.

2 Atomistic views of deformation of metallic glasses

F. Spaepen: Free volume theory
A.S. Argon: Shear transformation zone theory
T. Egami: Atomic bond topology

- Free volume theory: liquid 4} o] A 9]
free volume 7@0] 25, MD simulation

1.2
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> Deformation map predicts the deformation modes of metallic glasses
normalized stress o./u, homologous temperature 7/T), shear strain y’



Mechanical behavior of nanoscale metallic glasses

» Deformation mode transition in nanosized MG

Bulk metallic g|ass Volkert et al., J. Appl. Phys. 103 (2008) 083539.
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» Sample size effect on the strength and elastic limit of metallic glasses
Wang et al., Acta. Mater. 60 (2012) 5370. Tian et al., Nature Comm. 3 (2012) 609.
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Deformation map of metallic glasses: size effect of the critical strain rate, &_,.;,

écrit : critical strain rate for deformation mode transition

- shifted by sample size (diameter of spherical particles)
Strainrate (1/s) |
A

Greer et al., MSE R 74 (2013) 71-132
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Figure 5 | Deformation map of metallic glass including iso-viscosity contours and the effect of sample size reduction.
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