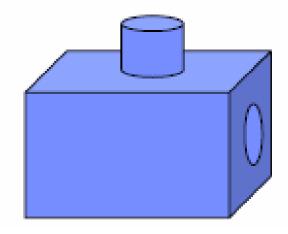


Prof. Sung-Hoon Ahn

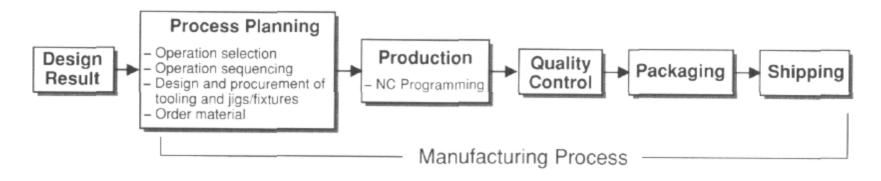

2006-10-16

From Design to Manufacturing

Now we are in the Manufacturing domain

Design domain: How to create geometry

Manufacturing domain: How to make part Need to consider

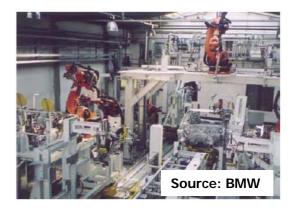

- Manufacturing process
- Material
- Machine

Example Product: Self-made Vehicle

Computer-Aided Manufacturing (CAM)

- Definition
 - The technology concerned with the use of computer systems to plan, manage, and control manufacturing operations through either direct or indirect computer interface with the plant's production resources.

< Main Phases of discrete part manufacturing >


CAM Software

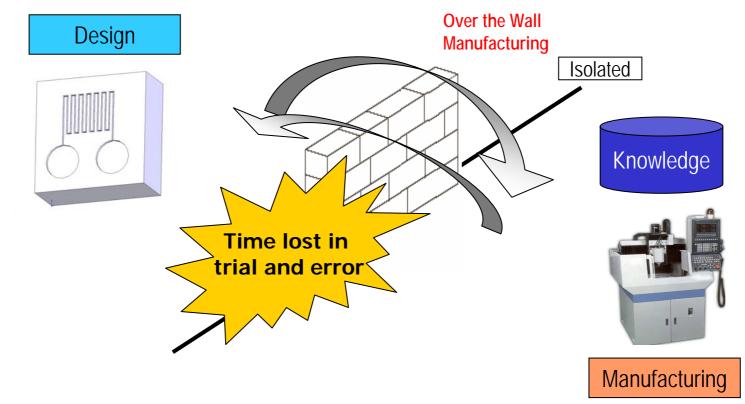
- NC software
 - NC is a system in which actions are controlled by direct insertion of numerical data at some point. The system must automatically interpret at least some portion of this data

- Electronic Industries Association (EIA)

- Computer Numerical Control (CNC)
- Robot programming software
 - Selecting and positioning tools and work-pieces for NC machines

CAM Software (cont.)

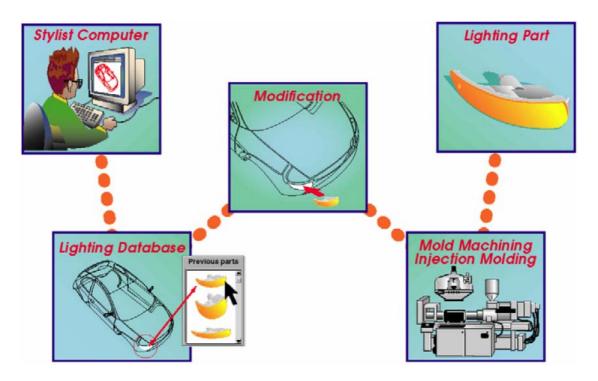
- Process planning software
 - The act of preparing detailed work instructions to machine or assemble a part of parts


- Computer-Aided Manufacturing, Chang et al., 1998

- Process plan; operation sheet; route sheet
- Computer-Aided Process Planning (CAPP)
- Inspection software
 - Coordinate Measuring Machine (CMM)

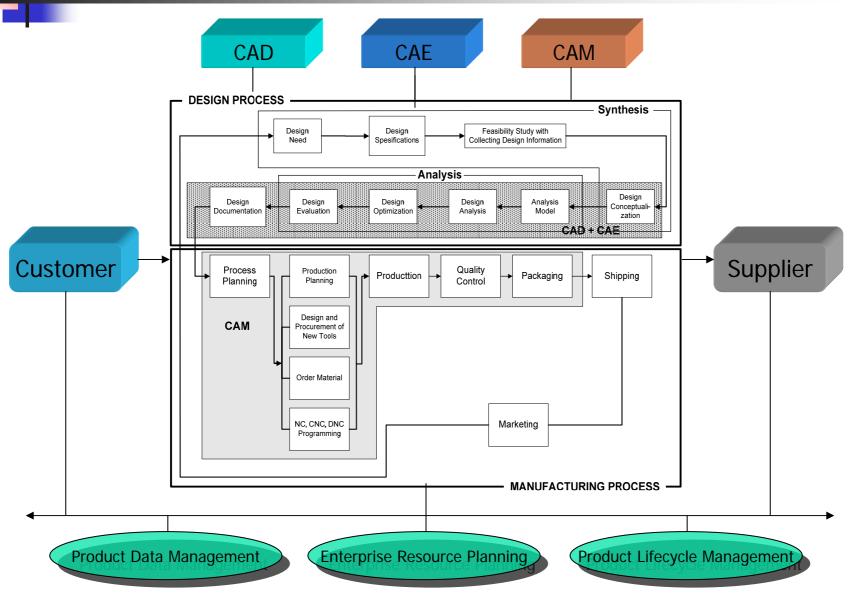
Problems in Traditional Production

 Some barriers Between design and manufacturing process

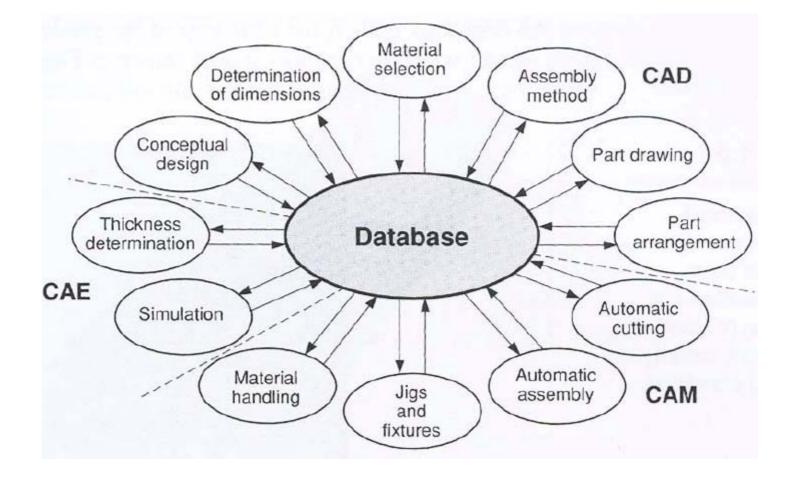


< Diagram of tradition design and manufacturing process >

CAD/CAM Integration


- Goal of integration
 - To facilitate coordination of work and information flow across organizational boundaries

– "Enterprise Integration Modeling", Charles J. Petrie, The MIT Press



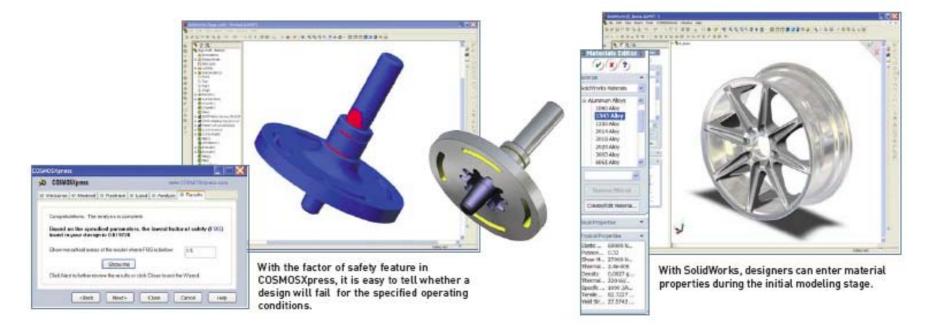
< Example concept of CAD/CAM integration >

Integration in Product Cycle Level

Integration in Database Level

Integration in Commercial Package Level

- Integrated CAD/CAE/CAM/PDM/...
- All in one package
 - Dassult systems: CATIA, DELMIA, INOVIA...
 SolidWorks, CosmosWorks...
 - PTC: Pro/Engineering, Windchill...
 - UGS: Unigraphics, Teamcenter, Technomatix...



Trends of Commercial Solutions

Dassault systems: CATIA

- Dassault systems: SolidWorks
 - COSMOSXpress; simple analysis
 - COSMOSWorks Designer; simulation

< COSMOSXpress >

< COSMOSWorks Designer >

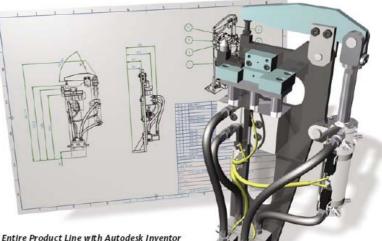
• PTC: ProEngineering

- 2D sketching
- 3D modeling
- Drawing
- Freeform surfacing
- Large Assemblies
- Analysis
- Simulation

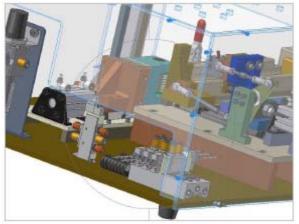
- Sheetmetal
- CAM
- Data sharing
- Maintenance
- **...**

UGS: NX (Unigraphics)All in NX

< Main concept >


> From design to manufacture the complete process Die machining Casting pattern machining NX Machining provides first-class capability in die face machining with the latest techniques in high-speed machining. Highly productive milling applications in NX Machining enable Detailed analysis fast NC programming for die structure components. and optimization by full press line simulation NX Die Design provides a range of capabilities for the detail design of the die structure. Teamcenter Manufacturing provides powerful process planning, data management, configuration control as well as flexible reporting. Completed die design

Process planning shop floor documents

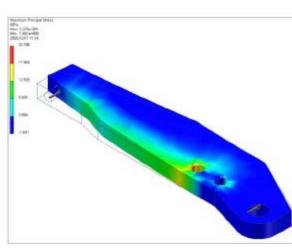

Die structure design

Autodesk: Inventor

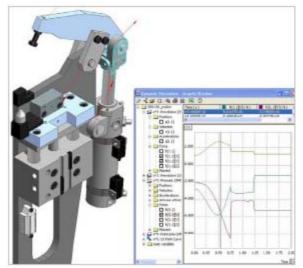
- Move to 3D from 2D (AutoCAD)
- Content center
- Virtual prototyping
- Bill of Material (BOM)

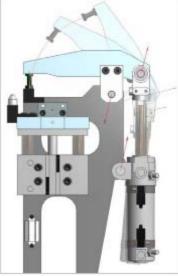
Design Your Entire Product Line with Autodesk Inventor Autodesk Inventor is the best choice for AutoCAD users, because no other company makes it faster or easier to go from concept to production with the power of integrated 2D and 3D design solutions.

< Content center >



< Virtual prototyping >


•		10.04		ROPI DIVENT	Halwia /	Patriate		NN.	
	Base housing	1	Tert	1E Hornal	Aurenue 6051	27-4563	Б.	0	
A	Trat valer	3	Test.	1E formal	Bronce, Seft Tri	1.06-085		0	
A	Large Cap	1	22ml)	1Etional	Cost Briston	199-045	1	0	
4		1	East-	Ethend	Internation -	27-1.060	D.	0	
.9	12	1	high		Robert	21-8734	11	C.	
. n		1	at.		PEEK A	21-7096		a.	
4	Classe dip	1	10	Maria I.	Plank	29-1280	1.	C	
4		4	and a	laor	Polynatomata, L	105-579	2	0	
A	Top saver	4	ant.	woke		27-4581	4	0	
+	Shall Cap	4	Mark	TE WAR	Here Hand	106-004	2	0	
A	Hait shaft	1	Date:	TE formal	Sheet, High Stre.	217-065	5	0	
	Top raver Small Cap	1 1 1	E	NORD NORD	Polynatometa, U Polynatometa, S PVC-Roing renar raps	105-579 27-4581 106-004	4	8	


< Bill of Material (BOM) >

- Embedded CAE ANSYS & Solid Dynamics
 - Stress analysis (ANSYS)
 - Dynamic Simulation (Solid Dynamics)
 - 3D visualization (Solid Dynamics)

< Stress analysis >

< Dynamic Simulation >

< 3D visualization >

ANSYS

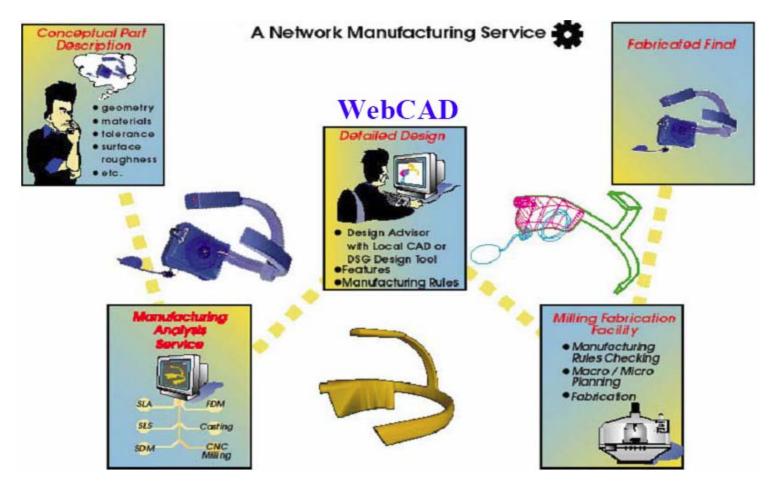
- Multi-physics Analysis software
- CAD supporting in pre-processing

			Co	mplete S	Simulatio	on Solutio	ons			Mest	ning Solu	itions
	Multiphysics™	Mechanical™	Structural™	Professional [™]	DesignSpace®	Emag™	CFX®	ED ^m [C-12]	LS-DYNA™	Advanced Meshing	CFX® PrepPost [™]	ANSYS [®] PrepPost [™]
Pre-Processing												
Solid Modeling	•	•		1		•		•	•			· · · ·
Defeaturing	•	· ·	· · ·	· · · ·		· · ·		•	•	· ·		1 A 1
IGES Geometry Transfer	•	•	· · ·	· · ·		· · · ·		•	•	· · ·		10 A 11
Geometry Repair	•	•	· · · ·	· · · ·		· · · ·		•	•	· · ·		10 A.
Topology Diagnosis										· · · ·		
Faceted Data Handling										· · ·		
Mid-Surfacing	•	•	•	· ·				•		•		
Variable Thickness Mid-Surfacing										· · · ·		
Tetra/Prism Meshing							•			•	•	
Structured Hex Meshing										•		
Automatic Free-Meshing	•	•	•	•	•	•		•	•	•		•
Automatic Hex-Meshing		•	· ·	· ·	•			•		•		•

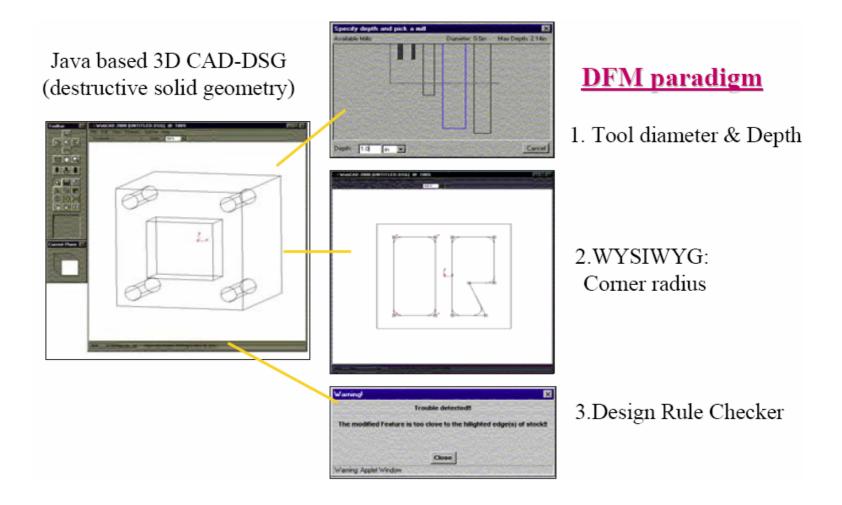
- ALGOR
 - Multi-physics Analysis software
 - Direct CAD support

	Multiphysics	MES	Static/NLM	CFD	Designer	Static/LM	PipePak	Civil	ALG/NASTRA	FEMPRO
CAD Support (Direct)										
Alibre Design	\checkmark	1	\checkmark	1	\checkmark	1			\checkmark	1
Autodesk Inventor	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1			\checkmark	\checkmark
CADKEY	\checkmark	1	1	1	\checkmark	1			\checkmark	1
KeyCreator	\checkmark	1	1	1	\checkmark	1	1		\checkmark	1
Mechanical Desktop	\checkmark	\checkmark	\checkmark	1	\checkmark	1			\checkmark	1
Pro/ENGINEER	\checkmark	\checkmark	1	1	\checkmark	1			\checkmark	1
Rhinoceros	\checkmark	1	1	1	\checkmark	1			1	1
Solid Edge	\checkmark	1	1	1	\checkmark	1			1	1
SolidWorks	\checkmark	1	1	1	\checkmark	1			1	1
Full Associativity	1	1	1	1	1	1			1	1
Captures Exact Assembly or Part Geometry without File Translation	✓	1	1	1	✓	1			✓	1
User-Controlled Feature Suppression	1	1	1	1	√	1			✓	1

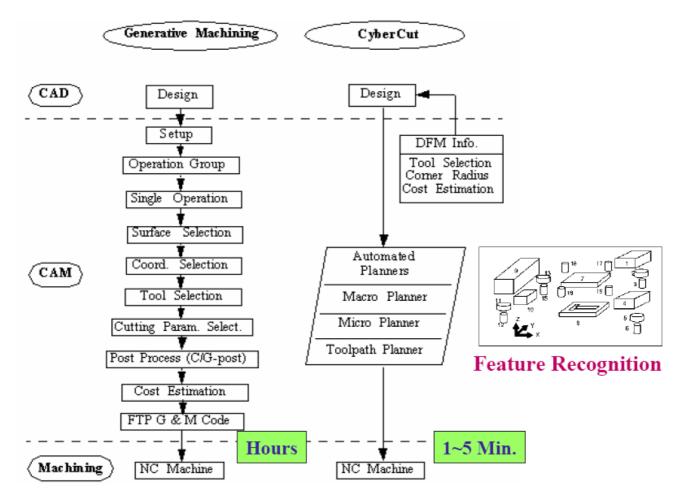
Z

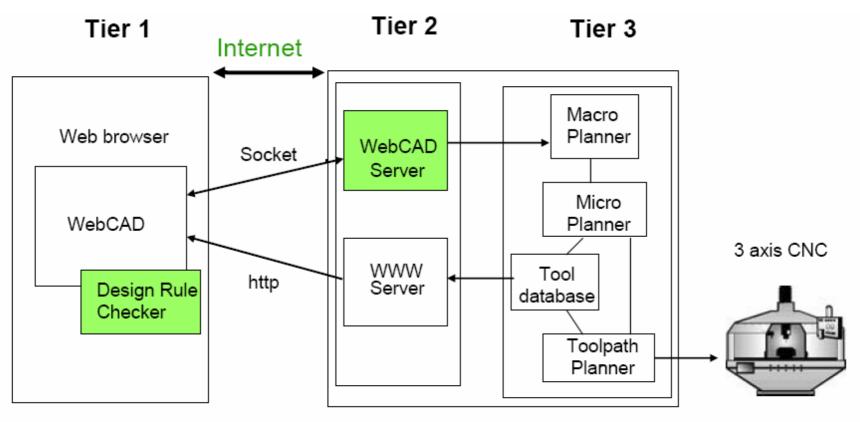

Coupling Modes in Integration

There are 3 types of coupling modes between design and manufacturing

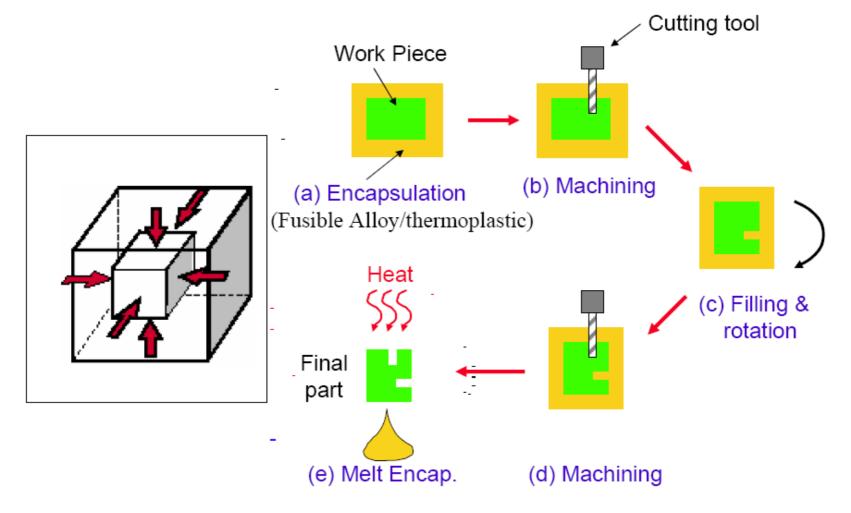

Coupling Mode	Pros	Cons	Example
Loose/ Repetitive	Flexible design	Cost & delay for redesign	Conventional CAD/CAM
Stiff/ One-way	Guaranteed Manufacturing	Less design freedom	CyberCut, MOSIS
Strong/ Bidirectional	Moderately flexible design, guaranteed manufacturing	Some loss of design freedom	SmartLite, SmartFab

Example Solutions of Stiff mode

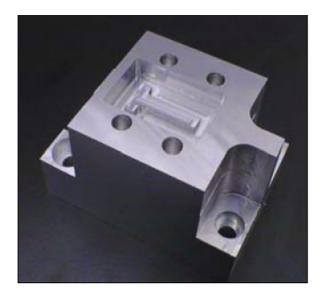

CyberCut paradigm

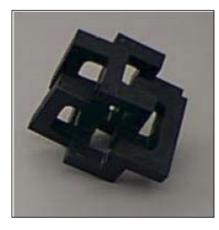

• CyberCut – Feature 1. WebCAD

CyberCut – Feature 2. Automated Process Planning

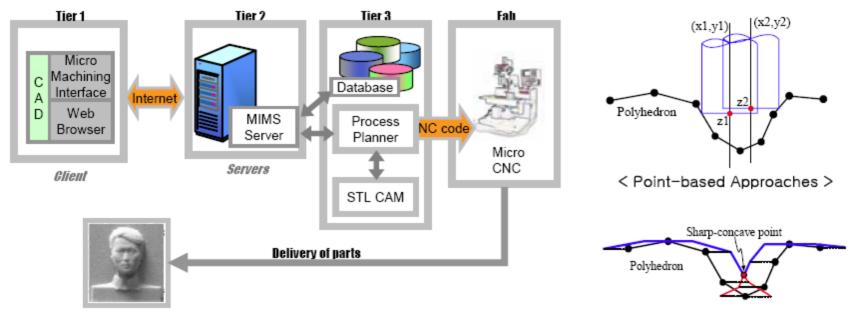

CyberCut – Network communication

Client Machine


Server Machines


CyberCut – Feature 3. Universal fixture

CyberCut – Fabricated parts

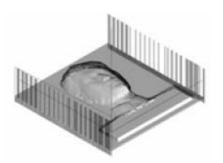


SmartLite: I-DEAS based tools

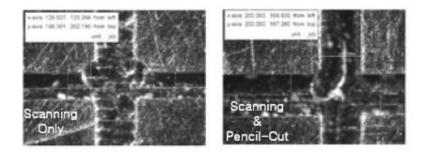
KBE-Smart	Help Help Close	SmartLite
8	Lumen Calculator	Lumen Besult
	Lamp Type Headlamp Focal length (mm) 31.75 ● Socket diameter (mm) 34.00 ● Metalized reflectivity (%) 88.00 ● Transmissivity (%) 90.00 ● Bulb by name	Lumen Value Total Collected Lumens for Low/Minor Filament 24.85 Total Collected Lumens for High/Major Filament 33.83 Criteria Lamp type Headlamp Min. (Im) 400.0 (low beam); 450.0 (high beam) Performance (Im) NVA
	Sub Straine 9007 Stape : Select curves Preview Select Filament Orientation : Transverse Calculate Load Input Save Input	Focal length (mm) 31.75 Socket Diameter (mm) 34.00 Reflectivity (%) 88.00 Transmissivity (%) 90.00 Bulb Name (MSCP) 9007 (83.0, 113.0) Save Dismiss

Web-based CAD/CAM Integration

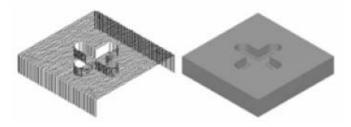
- Micro Machining System (MIMS)
 - Micro machining service using the internet
 - Communication with 3-tier client-server model
 - Upload STL file



< Communication architecture >


< Curve-based approaches >

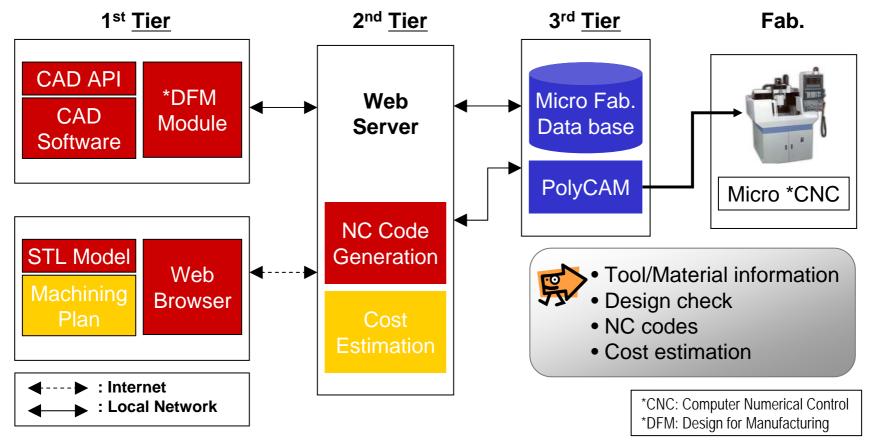
Micro Machining System (MIMS)


- Provide the NC code viewer
- Fabricated by micro-endmill according to scanning and pencil-cut toolpath

< G&M codes on NC code viewer >

< Micro channel >

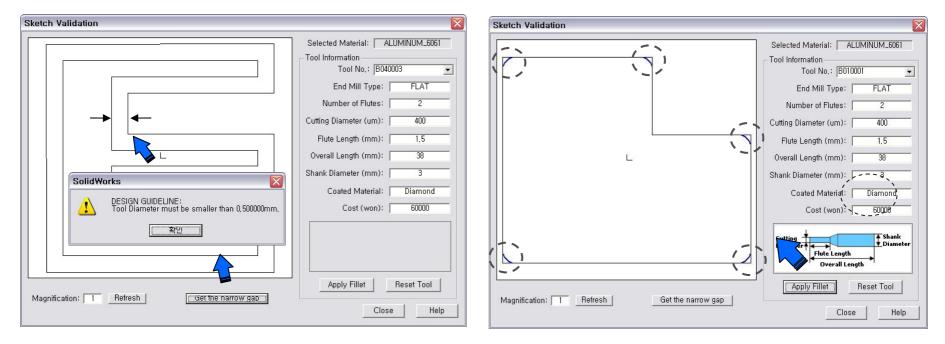
< Two types of toolpath >



< 3D scanned head >

< Micro fluidic channel >

SmartFab


Micro machining using SolidWorks

< Architecture of SmartFab >

SmartFab – Sketch validation

- Improve machinability
- Based on the tool information and DFM philosophy

< Check for minimum Gap >

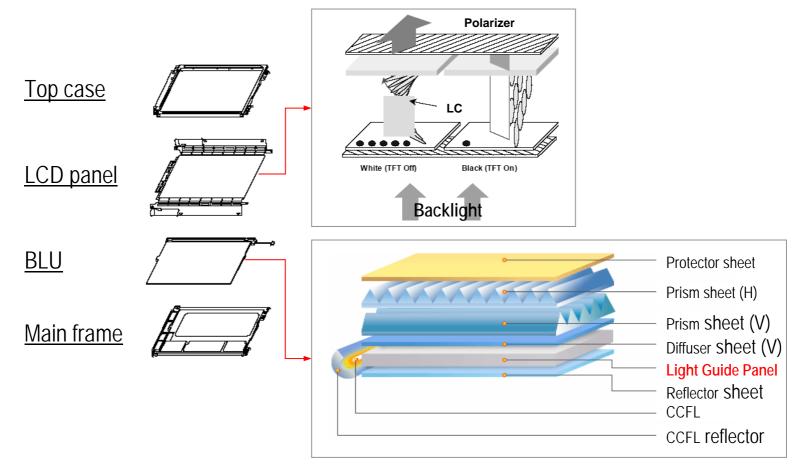
< Check for fillet >

SmartFab – Pocket validation

Pocket Validation Initial Depth of Pocketing: 0 um Base Stock Height: 2000 um Selected Tool ID: MS001 Flute Length (mm): 1000 Cost (won): 100000 Limit of Depth (mm): 1000 Insert the Depth for Pocketing: 500 um Pocketing Cancel Help	For Multiple Pocketing: Limit of depth < Stock height – initial depth Stock height – initial depth
SolidWorks 🛛 🕅	SolidWorks 🔀
Warning!!! Selected pocket depth: 1100,000000 Please check this rule: Pocket depth should be less than limit of depth,	Warning!!! Selected pocket depth: 800,000000 Please check this rule: Pocket depth should be less than (limit of depth - initial depth),

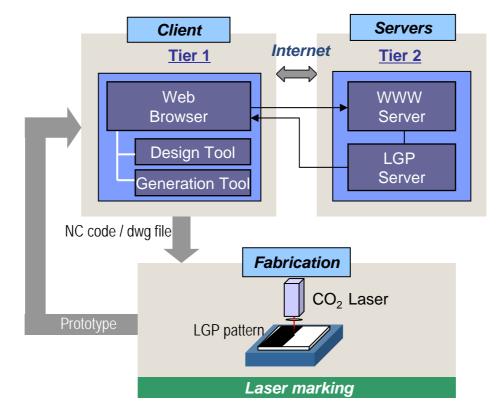
Case I. Depth limit

Case II. Depth limit and initial depth


SmartFab – Cost estimation

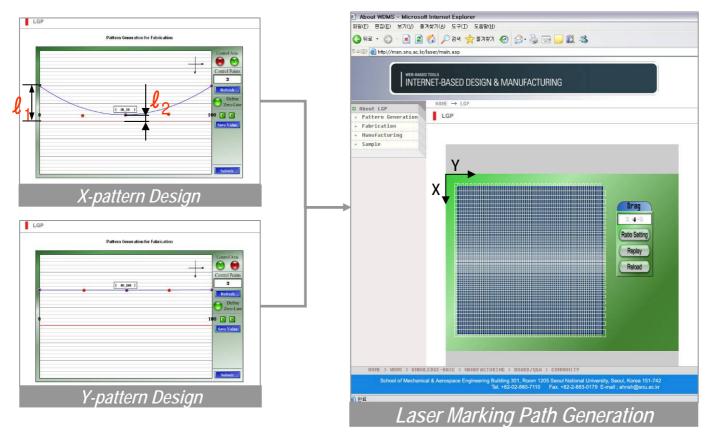
	20
1. Cw (Workpiece cost)	
2. Cp (Preparaton cost)	875_
3. Cm (Machining cost)	11275
4. Cn (Nonproductive cost)	0

Cp = Tp*W	Tp: Preparation time (0.35 hr)
	W : Operator's wage (2500/hr)
Cm = Com+Ct = Tm	*W+Ct
	Tm: Machining time (0.41 hr)
	W: Operator's wage (2500/hr)
$Ct = y^{*}(Tm/T)$	(11275 won, 92% of total cost)
	Ct: Tool usage cost
	T: Tool life (4 hr)
	y: tool cost (100,000)


TFT LCD-LGP (Light Guide Panel) prototyping

< Schematic Structure of LCD Unit >

TFT LCD-LGP (Light Guide Panel) prototyping

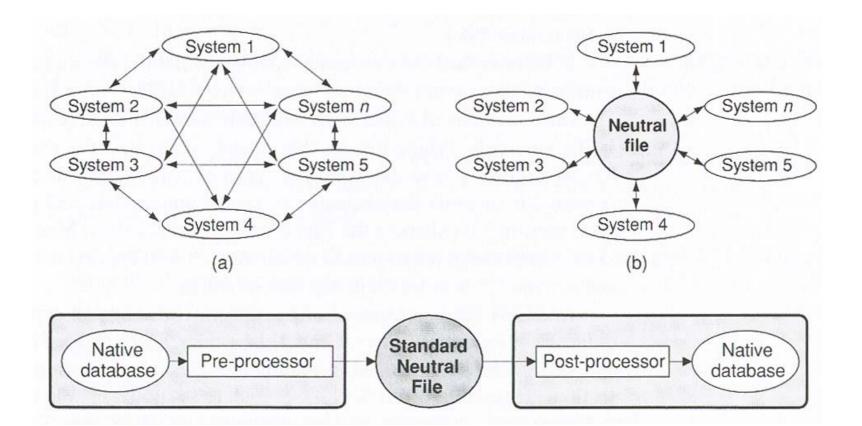

- Patter design & NC code generation tool
- Provide NC code or DWG file

< Communication Architecture of LGP Pattern Generator >

TFT LCD-LGP (Light Guide Panel) prototyping

• X and Y pattern generation service

< Web-based Design Tool for LGP Pattern >


Broad Integration

- PDM (Product Data Management)
 - Control CAD file revisions
 - Manage all data related to project
- PLM (Product Life-cycle Management)
 - Product Development Management (PDM)
 - Include all actors (company departments, business partners, suppliers, OEM, and customers)
 - Share product data
 - Apply common processes
 - Leverage corporate knowledge

Data Exchange

- Standard formats for data exchange
 - IGES (Initial Graphics Exchange Specification)
 - 3D CAD data
 - STEP (Standard for the Exchange of Product model data)
 - DFX (Drawing eXchange Format)
 - 2D drawing data
 - STL (Stereo Lithography)
 - De facto standard in rapid prototyping
 - VRML (Virtual Reality Modeling Language)
 - 3D model on web

Data Exchange (cont.)

