1.6 Consolidation Test

1.6.1 General

- Consolidation can be defined as a dissipation process of excess pore pressure induced by applied load or change of boundary conditions.
- It is a time dependent behavior of soil deformation.
 - \Rightarrow Significant in saturated clayey soils.
 - \Rightarrow Factors on consolidation time

- Consolidation test determines parameters for the time dependent behavior of soils.
 - The amount of deformation ⇒ (Primary) Consolidation settlement (+ Secondary compression settlement)
 - 2) Rate of consolidation (i.e. Consolidation time)

- Idealized stages in primary consolidation

(a) Piezometers have reached static equilibrium under some compressive load p.

(c) Relative positions of piezometers some time after application of Δp . With shorter flow path the upper piezometer loses head faster than the bottom one.

Figure 13-2 Stages in primary consolidation (idealized).

- Consolidation theory follows Darcy's law.
 - $v = ki = k(\Delta h/L) \implies \Delta t = L/v = L/\{k(\Delta h/L)\} = L^2/(k\Delta h)$
 - \Rightarrow Doubling L requires 4 times for consolidation.
 - \Rightarrow Consolidation rate is getting slower with decreasing Δh .

(b) On adding a load increment Δp the piezometers record a hydrostatic pressure increase of Δh as shown. There is often some finite time lag before Δh is fully developed but Δh is considered instantaneous in any idealization.

(d) At end of primary consolidation under pressure increment Δp both piezometers have returned to the initial position of "a." Secondary compression will continue under Δp for some additional time so that the final total settlement will be larger than the ΔH at the end of primary consolidation.

1.6.2 Consolidation Test

- Simulates 1-dimensional state (flow and deformation)
 - \Rightarrow Using a circular metal ring confining the sample.
 - \Rightarrow (Possible to measure the pore pressure during consolidation and to perform the permeability tests in the oedometer.)

- Sample size : 20 40 mm thickness(H) and 45 113 mm diameter(D). D/H > 2.5 and $D < \{(Tube sample) - 6mm.\}$ (Commonly used sample size : D = 63.5mm, H = 25.4mm)
- Ring-to-soil friction problems:
 - \Rightarrow Should be reduced by limiting sample thickness, spraying the inner ring wall

with tefron powder or using a tefron-lined ring.

- Equipment calibration
 - \Rightarrow Check the compressibility's of load block and porous stones, if necessary.
- A loading sequence and measurements
 - 1) A loading sequence

* Applying loads with a load ratio $\Delta p/p = 1$ in general, such as

(5, 10), 20, 40, 80, 160, 320, 640 ... etc., kPa with at least 1 unload-reload

cycle (after reaching maximum past pressure, p_{max}) 2 steps

* Each load is sustained for one day (24 hrs)

* The specimen is kept under water throughout the test.

- 2) Measurements
 - * Measuring vertical deformation from dial gage or LVDT with time. (Vertical strain, volumetric strain, change of void ratio)

Dial gage reading \times Calibration factor = Vertical deformation (ΔH)

 \Rightarrow Vertical strain $\varepsilon_{vertical}$ (= volumetric strain, ε_{volume}) = $\Delta H/H_o$

- \Rightarrow Change of void ratio, $\Delta e = (1+e_o) \varepsilon_{vertical}$
- * Take a dial gage reading at time sequence for each load as below (example) 8sec, 15sec, 30sec, 1min, 2min, 4min, 8min, 15min, 30min, 1hr, 2hr...

 $\left(\frac{1}{2}P_{\max},\frac{1}{8}P_{\max}\right)$

1.6.3 Evaluating consolidation parameters from consolidation test

Typical plot of the test results

Fig. ΔH vs. t (log scale) for each load increment.

Fig. e vs. $\sigma'(\log scale)$

- 1) Parameters for time dependent behavior.
- The coefficient of consolidation (c_v) and the secondary compression coefficient (c_α)
- From Terzaghi's 1-dimensional consolidation theory

$$T_i = \frac{c_v t_i}{H_d^2}$$
 and $c_v = \frac{T_i H_d^2}{t_i}$

where T_i = time factor given in Table 13.1 \rightarrow

 t_i = corresponding time for T_i

 H_d = the longest drainage path

depend on boundary conditions of consolidation

Table 18-1 Time factors for indicated pressured distribution

Pore-pressure distribution for case I usually assumed for case Ia.

U, %	Case I	Case II
0	0.000	0.000
10	0.008	0.048
20	0.031	0.090
30	0.071	0.115
40	0.126	0.207
50	0.197	0.281
60	0.287	0.371
70	0.403	0.488
80	0.567	0.652
90	0.848	0.933
100	69	~~~

i) Logarithm-of-time method

Fig. 5.37 Logarithm-of-time method for determination of C_v .

ii) Square-root-time method

- 2) Deformation parameters.
- The compressive index (C_c), the recompression (or swelling) index (C_r), and the preconsolidation pressure (or maximum past pressure) (p_{max})
- i) The preconsolidation pressure (p_{max})

Fig. 5.32 Graphical procedure for determination of preconsolidation pressure.

ii) The compressive index (C_c) , and the recompression (or swelling) index (C_r)

- $C_c = (1+e_o)C_c$ ' and $C_r = (1+e_o)C_r$ '
- Note : C_c ', C_r ' and c_{α} ' is related to dial reading or volumetric(vertical) strain.

 C_c , C_r and c_α is related to void ratio e.

1.6.4 Rowe cell test

- 1) Rowe cell type test
 - Specimen is loaded by 1) hydraulic pressure acting on a 2) flexible diaphragm (with/without rigid plate) 3) inside the cell.
 - Overall features of the cell

Fig. Main features of 250mm diameter Rowe cell

- Consolidation is monitored by measurements of pore pressure and volume change (or vertical deformation) with time.
- Main advantages

- Limitations

- Analysis of the test results
 - ① Deformation characteristics
 - : Same as in the conventional oedometer test
 - ⁽²⁾ Coefficient of consolidation
 - Use curve fitting procedure
 - T_v and T_r values are summarized in the table
 - For vertical drainage, log t method is generally adopted.
 - For radial drainage, \sqrt{t} method is generally used.

Fig. Theoretical relationships between time factor and degree of consolidation for vertical drainage

Fig. Theoretical curve relating square-root time factor to degree of consolidation for drainage radially outwards to periphery with equal strain loading

Test Ref.	Drainage direction	Boundary strain	Consolidation location	Theoretical time factor T ₅₀ T ₉₀	Time functio n	Power curve slope factor	Measurement s used	Coefficient of consolidation
(a) and (b)	Vertical,	Free and equal	Average Center of base	$\begin{array}{ccc} 0.197 & 0.848 \\ (T_v) \\ 0.379 & 1.031 \end{array}$	t ^{0.5}	1.15	ΔV or ΔH*	$c_v = \frac{T_v H^2}{t}$
(c) and (d)	Vertical two way	Free and equal	Average	0.197 0.848 (T _v)	t ^{0.5}	1.15	ΔV or ΔH*	$c_v = \frac{T_v (H/2)^2}{t}$
(e)	Radial outward	Free	Average Central	$\begin{array}{c} 0.0632 & 0.335 \\ (T_{ro}) \\ 0.200 & 0.479 \end{array}$	t ^{0.465}	1.22	ΔV p.w.p	$c_{ro} = \frac{T_{ro}R^2}{t}$
(f)		Equal	Average Central	$\begin{array}{c} 0.0866 & 0.288 \\ (T_{ro}) \\ 0.173 & 0.374 \end{array}$	t ^{0.5}	1.17	ΔV or ΔH p.w.p	$c_{ro} = \frac{T_{ro}R^2}{t}$
(g)	Radial inward [†]	Free	Average $r = 0.55R$	0.193 0.658 (T _{ri}) 0.191 0.656	t ^{0.5}	1.17	ΔV p.w.p	$c_{ri} = \frac{T_{ri}D^2}{t}$
(h)		Equal	Average r = 0.55R	0.195 0.649 (T _{ri}) 0.195 0.648	t ^{0.5}	1.17	ΔV or ΔH p.w.p	$c_{ri} = \frac{T_{ri}D^2}{t}$

Table. Rowe cell consolidation tests - Data for curve fitting

† Drain ratio ((Diameter of drains)/(Diameter of specimen)) = 1/20

* ΔH with equal strain only

R : radius of specimen

D : diameter of specimen

2) CRS Test (Constant Rate of Strain Test)

- Consolidation pressure is applied by strain control loading.
- Test is performed with monitoring the axial load, vertical displacement and <u>pore pressure</u> with/without volume change during loading.
- Testing apparatus

①For vertical drainage

⁽²⁾For radially outward drainage

³For radially inward drainage

- Advantages
 - ① Usually completed in much shorter time than the incremental loading test.
 - ② Provide continuous measurements.
 - ③ Allow easier conversion to automation.
 - ④ Generally more efficient, and less labor to perform.
 - (5) Can be saturated using back pressure
- Limitations
 - (1) Rate of strain must be slow enough to prevent development of excessive pore pressure (i.e. hydraulic gradient). → $(\Delta u / \Delta \sigma_v \le 30\%)$ for vertical drainage by ASTM)
 - ② Special attention is given to exclude or minimize the friction between loading bar and the guide wall of top cap of the cell and top cap and consolidation cell.
 - ③ Must saturate the sample
 - ④ Need a little more complicated device with pore pressure measurement.
 - (5) Have difficulty in unload-reload cycle test

- Analysis of test results

- ① Vertical drainage CRS test (Wissa et al., 1971)
 - Nonlinear steady state theory accepted in ASTM
 - Average effective vertical stress

$$\overline{\sigma'_{v}} = (\sigma_{v}^{3} - 2\sigma_{v}^{2}u_{b} + \sigma_{v}u_{b}^{2})^{1/3}$$

- Coefficient of consolidation for vertical flow

$$c_{v} = -\frac{H^{2} \log \left(\frac{\sigma_{v2}}{\sigma_{v1}}\right)}{2\Delta t \log \left(1 - \frac{u_{b}}{\sigma_{v}}\right)}$$

where, σ_v is the total vertical stress, *H* is the current specimen height, u_b is the excess pore pressure at the bottom and σ_{v1} , σ_{v2} is the total stresses at times t_1 , t_2 , respectively

Radially outward drainage CRS test

- Average effective vertical stress

$$\overline{\sigma}_{v}' = \sigma_{v} - \alpha_{ro}u_{c}$$
$$\alpha_{ro} = \frac{\overline{u}}{u_{c}} = \frac{1}{2}$$

where, u_c is the excess pore pressure at the center of the sample, and α_{ro} is the ratio of average pore water pressure (\overline{u}) to the pore pressure at center.

- Coefficient of consolidation for radially outward flow

$$c_{ro} = \frac{R^2 \sigma_v' \log(\sigma_{v2}' / \sigma_{v1}')}{1.736 u_c \Delta t}$$

where, R is the radius of the sample.

③ Radially inward drainage CRS test

- Effective vertical stress

$$\overline{\sigma}'_{v} = \sigma_{v} - \alpha_{ri}u_{o}$$
$$\alpha_{ri} = \frac{N^{4} - 4N^{2} + 3 + 4\ln N}{(1 - N^{2})(2 - 2N^{2} + 4\ln N)}$$

where u_o is the excess pore pressure at the outer boundary of the sample, α_{ri} is the ratio of average pore water pressure (\overline{u}) to the pore pressure at the outer boundary, N is the drainage ratio(= r_w/R), and r_w and R is the drainage radius, and radius of sample, respectively.

- Coefficient of consolidation for radially inward flow

$$c_{ri} = \frac{R^2 \sigma'_{\nu} \log(\sigma'_{\nu 2} / \sigma'_{\nu 1})}{1.736u_o \Delta t} (N^2 - 1 - 2\ln N)$$