1.10 Cyclic Triaxial Test Liquefaction Resistances of Soils

1. PURPOSE

Evaluating the liquefaction resistances of loose and saturated sandy soils <cyclic stress ratio ($\Delta \sigma_d / 2\sigma_0'$) vs. number of cycles>

2. PROCEDURE

2.1 Preparation and Set-up of Specimen

Method	Sample
Trimming	Block-like or Frozen
Suction	Non-block and reconstituted

2.2 Back Pressure Saturation

- Check the degree of saturation by measuring B-value
- 2.3 Consolidation
- 2.4 Undrained Cyclic Loading
 - (1) Apply cyclic axial load under undrained condition.
 - Typically sinusoidal wave form
 - At a constant frequency in the range of 0.1 and 2.0Hz
 - Measure the axial load, the axial displacement and the pore water pressure

(2) Terminate cyclic axial loading

- When liquefaction is observed. ($\Delta u = \sigma_c$)
- Also when applied number of cycles exceeds about 200 or when the value of $(\Delta L/H_c) \times 100$ becomes larger than 5%
- where ΔL : double amplitude of the axial displacement H_c : height of the specimen after consolidation
- (3) Repeat (1) (2) with another amplitude of cyclic axial load. (we need 4~5 points of liquefaction)

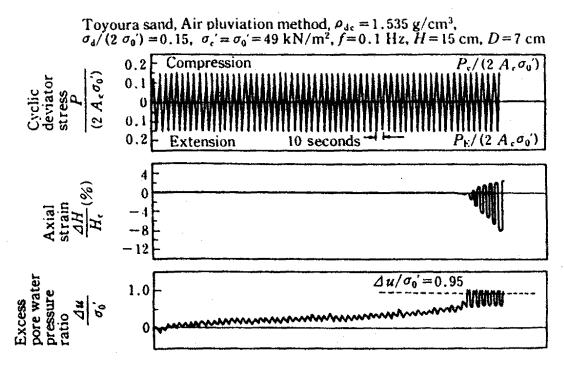


Fig. 1 Typical record of undrained cyclic triaxial test

3. CALCULATION OF TEST RESULTS

- 3.1 The number of cycles to cause liquefaction
 - (1) N_{u95}

- The number of cycles to cause excess pore water pressure (Δu) to reach the effective confining stress (σ_c ')

$$\frac{\Delta u}{\sigma_c'} = 0.95$$

(2) N_c

- The number of cycles to cause the double amplitude of axial strain, DA, of 1, 2 and 5%

$$DA = \frac{\Delta L}{H_c} \times 100(\%)$$

3.2 Cyclic stress ratio (CSR)

- The stress ratio to cause liquefaction at the number of cycles N_{u95} or N_c

$$\text{CSR} = \frac{\sigma_d}{2\sigma_a'}$$

- Represent the ratio of shear stress ($\sigma_d/2$) to normal stress(σ_c') on the plane X-X (Fig. 2)

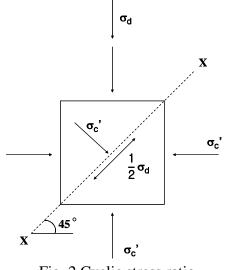


Fig. 2 Cyclic stress ratio

3.3 Liquefaction resistance

- Plot the relationship between cyclic stress ratio and the number of cycles

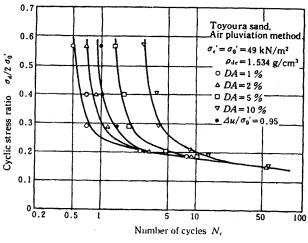
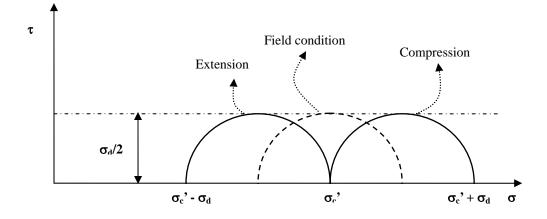


Fig. 3 Typical curve for liquefaction resistance

Geotechnical Engineering Lab

4. NOTES


(1) To consider the probable stress conditions during dynamic loading at field, excess pore water pressure should be corrected, as follows:

$$u_{corr} = u_m - \frac{1}{2}\sigma_d \quad \text{(in compression)}$$
$$u_{corr} = u_m + \frac{1}{2}\sigma_d \text{ (in extension)}$$

where

 u_{corr} : corrected excess pore water pressure

 u_m : measured excess pore water pressure

(2) The correlations for liquefaction potential between stress ratios in the field, cyclic simple shear tests, and cyclic triaxial tests.

$$\left(\frac{\tau_h}{\sigma_v'}\right)_{field} = \beta \left(\frac{\tau_h}{\sigma_v'}\right)_{SS} = \alpha' \beta \left(\frac{\frac{1}{2}\sigma_d}{\sigma_c'}\right)_{TX} = C_r \left(\frac{\frac{1}{2}\sigma_d}{\sigma_c'}\right)_{TX}$$

where

 β

 α'

: correction factor of the results from simple shear test to field condition

 C_r

correction factor of the results from triaxial test to simple shear testcorrection factor of the results from triaxial test to field condition

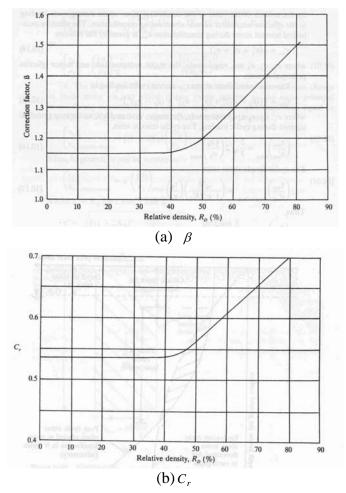


Fig. 4 Variation of correction factors with relative density