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4 Continuous Random Variables

There are random variables whose set of possible values are uncountable.

Example . The lifetime of a light bulb.

Definition:

X is a continuous random variable if there exist a non-negative funtion f , defined for all
real x ε (−∞, ∞), having the property that for any set B of real numbers.

P{X ε B} =
∫

B
f(x)dx

The function f is called the probability density funtion of the random variable X.

• f must satisfy

1 = P{X ε (−∞, ∞)} =
∫ ∞

−∞
f(x)dx.

P{a ≤ X ≤ b} =
∫ b

a
f(x)dx

P{X = a} =
∫ a

a
f(x)dx = 0

This shows that the probability of a continues random variable will assume any

fixed value is 0.

P{X < a} = P{X ≤ a} = F(a) =
∫ a

−∞
f(x)dx.

Example .

The amount of time, in hours that a computer funtions before breaking down:

a continuous random variable with probability density funtion

f(x) =





λe−
x

100 x ≥ 0

0 x < 0

(a) Probability that a computer will funtion between 50 and 150 hours

before breaking down ?
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1 =
∫ ∞

−∞
f(x)dx = λ

∫ ∞

0
e−

x
100 dx = 100 λ

⇒ λ =
1

100

P{50 < X < 150} =
∫ 150

50

1
100

e−
x

100 dx

= e−
1
2 - e−

3
2 ≈ .384

(b) Probability that it will function less than 100 hours ?

P{X < 100} =
∫ 100

0

1
100

e−
x

100 dx = 1 - e4 ≈ .633

• F (a) = P{X ε (−∞, a) =
∫ a

−∞
f(x)dx

• F (a) = P{X ε (−∞, a)} =
∫ a

−∞
f(x)dx

⇒ d

da
F(a) = f(a).

• For very small ε, and when f(.) is continuous at a,

P{ a -
ε

2
≤ X ≤ a +

ε

2
} +

∫ a− ε
2

a+ ε
2

f(x)dx ≈ εf(a).

• X : A continuous random variable with probability density funtion f(x), then

f(x)dx ≈ P{ x ≤ X ≤ x + dx} for small dx

E[X] =
∫ ∞

−∞
xf(x)dx : the expected value of X for any real - valued funtion g,

E[g(X)] =
∫ ∞

−∞
g(x)f(x)dx

Lemma For a non-negative random variable Y,
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E[Y] =
∫ ∞

0
P{Y > y} dy

x

y

Proof.

RHS =
∫ ∞

0

∫ ∞

y
fY (x)dx dy

(By interchanging the order of integration)

=
∫ ∞

0

(∫ x

0
dy

)
fY (x)dx

=
∫ ∞

0
xfY (x)dx

= E[Y]

• If a & b are constants, then

E[aX + b] = aE[X] + b

• Var(X) = E[(X − µ)2] = E[X2] - (E[X])2

• Var(aX + b) = a2 Var(X).

4.1 Uniform Random Variable

• A random variable is said to be uniformly distributed over the interval (0, 1)

if its probability density function is

f(x) =





1 0 < x < 1

0 otherwise

⇒ P{a ≤ X ≤ b} =
∫ b

a
f(x)dx = b− a

for any 0 < a < b < 1.
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• X ∼ U[α, β]

f(x) =





1
β−α α < x < β

0 otherwise

⇒F(a) =





0 a ≤ α

a−α
β−α α < a < β

1 a ≥ β

E[X] =
∫ ∞

−∞
xf(x)dx =

∫ β

α

x

β − α
dx =

α + β

2

E[X2] =
∫ β

α

1
β − α

x2dx =
1
3
(α2 + αβ + β2)

Var[X] =
α2 + αβ + β2

3
-

(
α + β

2

)2

=
(β − α)2

12

4.2 Normal Random Variables

• X is normally distributed with parameters µ and σ2 if the density of X is

given by

f(x) =
1√
2πσ

e
−(x−µ)2

2σ2 −∞ < x < ∞ (∗)

• Many random phenomena obey, at least approximately, a normal probability

distribution.

• Is (∗) indeed a probability funtion ?

Let y =
x− µ

σ
, then

∫ ∞

−∞

1√
2πσ

e
−(x−µ)2

2σ2 dx =
1√
2π

∫ ∞

−∞
e−

y2

2 dy (∗∗)

Let I =
∫ ∞

−∞
e−

y2

2 dy then

I2 =
(∫ ∞

−∞
e−

y2

2 dy
)(∫ ∞

−∞
e−

x2

2 dx
)
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where as, x = r cos θ, y = r sin θ

∴ =
∫ ∞

0

∫ 2π

0
e−

r2

2 rdθdr

= 2π

∫ ∞

0
re−

r2

2 dr

= 2π

∴ (∗∗) = 1

E[X] =
1√
2πσ

∫ ∞

−∞
(x− µ)e

−(x−µ)2

2σ2 dx +
µ√
2πσ

∫ ∞

−∞
e
−(x−µ)2

2σ2 dx

↓ x− µ = y

=
1√
2πσ

∫ ∞

−∞
ye

−(y)2

2σ2 dy + µ

∫ ∞

−∞
f(x) dx

[
Where as,

1√
2πσ

∫ ∞

−∞
ye

−(y)2

2σ2 dy = 0 and µ

∫ ∞

−∞
f(x) dx = 1

]

= µ

• Var(X) = E[(X - µ)2]

=
1√
2πσ

∫ ∞

−∞
(x− µ)2 e

−(x−µ)2

2σ2 dx

↓ y =
x− µ

σ

=
1√
2πσ

∫ ∞

−∞
y2 e

−(y)2

2 dy

=
1√
2πσ

[
- y e

−(y)2

2

∣∣∣∣
∞

−∞
+

∫ ∞

−∞
e
−(y)2

2 dy
]

↓ Integration by parts

=
σ2

√
2π

.
√

2π
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= σ2

• If X ∼ N(µ, σ2) , then

Y = αX + β ∼ N(αµ + β, α2σ2)

Proof.

(Suppose that α > 0).

The cumulative distribution funtion of Y

FY (a) = P{αX + β ≤ a} = P{X ≤ a− β

α
} = FX

(
a− β

α

)
.

↓ differentiate

fY (a) =
1
α

fX

(
a− β

α

)
=

1√
2πασ

e

[
−(a− β − αµ)2

2(ασ)2

]

• X ∼ N(µ, σ2) , then

Z = X−µ
σ ∼ N(0, 1) : Standard unit normal distribution.

Notation: The cumulative distribution funtion of a standard normal random variable

= Φ(x) =
1√
2π

∫ x

−∞
e−

y2

2 dy

Regarding Φ(x), we can look up the table for x ≥ 0

For non-negative x,

Φ(−x) = 1 - Φ(x) −∞ < x < ∞
(∵ symmetry of the density funtion)

Distribution funtion of X ∼ N(µ, σ2) ?

Fx(a) = P{X ≤ a}

= P
(

X − µ

σ
≤ a− µ

σ

)

= Φ
(

a− µ

σ

)
.
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4.3 Binomial Distribution Ã Normal Distribution

De Moivre - Laplace Limit Theorem

Sn = # of successes that occur when n independent trials, each with

success probability p, are performed.

Then, for any a < b,

P

{
a ≤ Sn − np√

np(1− p)
≤ b

}
→ Φ(b) - Φ(b)

(Where as, np is mean and np(1 - p) is Standard deviation)

Remarks. This is the special case of the central limit theorem, to be presented in Chapter-8.

Example 4.h

100 people are put on the special diet. it will be endorsed if ≥ 65% of the people have

lower cholesterol after the diet.

Assume that if the diet has no effect on the cholesterol, then , strictly by chance,

each persons cholesterol level will be lower than before with probability 1/2.

Probability that the diet will be endorsed when it actually has no effect

=
100∑

i=65

(
100
i

)(
1
2

)100

= P{X ≥ 64.5}

= P





X − 100.12√
100.12 .12

≥ 2.9





≈ 1 - Φ(2.9) ≈ 0.0019

4.4 Exponential Random Variables

• An exponential random variable with parameter λ

: probability density funtion

f(x) =
{

λ e−λx x ≥ 0
0 x < 0
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⇒ Cumulative distribution function

F(a) = P{X ≤ a} =
∫ a

0
λe−λx dx = 1 - e−λa a ≥ 0

• E[X] =
∫ ∞

0
xλe−λx dx

↓ Integration by parts

= −xe−λx
∣∣∞
0

+
∫ ∞

0
e−λxdx

= 0 -
e−λx

λ

∣∣∣∣
∞

0

=
1
λ

• E[X2] =
∫ ∞

0
xλe−λx dx

↓ Integration by parts

= −x2e−λx
∣∣∞
0

+
∫ ∞

0
2xe−λxdx

= 0 +
2
λ

E[X]

=
2
λ2

∴ Var[X] =
1
λ2

Example .

Amount of time until an Earthquake.

Amount of time until a new war. etc.

Definition:

A non-negative random variable is memoryless
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If ,

P{X > s + t | X > t } = P{X > s} for all s, t ≥ 0.

If the instrument is alive at age t, the distribution of the remaining amount

of time that it survives is the same as the original lifetime distribution.

(It does not remember that it has already been used for a time t)

⇔ P{X > s + t,X > t}
P{X > t} = P{X > s}

⇔ P{X > s + t} = P{X > s} P{X > t}.

Example .

e−λ(s+t) = e−λs e−λt

∴ Exponential distributed random variables are memoryless.

Claim:

The exponential distribution is the unique distribution possessing the

memoryless property!

– Suppose X is memoryless and let F (x) = P{X > x}.
Then

F (s + t) = F (s)F (t)

i.e. F (.) satisfies g(s + t) = g(s) g(t).

The only right continuous solution of this is

g(x) = e−λx.

⇒ F (x) = e−λx.

Why ?

g
(

z
n

)
= g

(
1
n

+
1
n

)
= g2

(
1
n

)

g(1) = g

(
1
n

+
1
n

+ ....... +
1
n

)
= gn

(
1
n

) ⇒ g
(

1
n

)
= (g(1))

1
n

g
(

m
n

)
= gm

(
1
n

)
= (g(1))

m
n
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⇒ g(x) = (g(1))x Since g is right continuous.

g(1) = (g(1
2))2 ≥ 0

⇒ g(x) = e−λx

λ = − log g(1).

4.5 Laplace Distribution (Double Exponential)

Density Function f(x) = 1
2 λ e−λ|x| −∞ < x < ∞

Distribution Funtion

f(x) =





1
2

∫ x
−∞ λeλxdx x < 0

∫ 0
−∞ λeλxdx + 1

2

∫ x
0 λe−λxdx x > 0

=





1
2 eλx

1 - 1
2 e−λx

• A positive continuous random variable X ∼ lifetime of some item, with

distribution funtion F and density ρ

Hazard rate (failure rate)

λ(t) of F

λ(t) =
f(t)
F (t)

F (t) = 1 - F

Suppose that the item has survived for t and we want to know the probability that it

will not survive for additional dt.

P{X ε (t, t + dt) | X > t} =
P{Xε(t, t + dt), X > t}

P{X > t}

=
P{Xε(t, t + dt)}

P{X > t}
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≈ f(t)
F (t)

dt

: The conditional probability intensity that a t-unit-old item will fail.

Example . Exponential Distribution

⇒ memoryless ⇒ distribution of remaining life for a t-year-old item is the same

as for a new item.

⇒ λ(t) is constant

λ(t) =
λe−λt

e−λt
= λ.

• The failure rate function λ(t) uniquely determines the distribution F.

λ(t) =
d
dtF (t)

1− F (t)

⇒ −
∫ t

0
λ(t)dt + k = log(1− F (t))

⇒ 1 - F (t) = ek exp{− ∫ t
0 λ(t)dt}

t = 0 ⇒ k = 0. ∴ F (t) = 1 - exp{− ∫ t
0 λ(t)dt}

4.6 Gamma Distribution)

A random variable is said to have a gamma distribution with parameters (α, λ)

λ > 0, α > 0
it its density funtion is given by,

f(x) =





λe−λx(λx)α−1

Γ(α) λeλxdx x ≥ 0

0 x < 0

where , Γ(α) =
∫ ∞

0
e−yyα−1dy : gamma funtion

Note:

Γ(α) = - e−y yα−1
∣∣∞
0

+
∫ ∞

0
e−y(α− 1)yα−2 dy

11



= (α− 1)Γ(α− 1).

Γ(1) =
∫ ∞

0
e−ydy = 1

∴ Γ(n) = (n - 1) Γ (n - 1) = (n - 1)(n - 2)Γ (n - 2) = ....... = (n - 1)!

• TA : The time at which the nth event occurs.

N(t) : # of events in [0, t]

P{Tn ≤ t} = P{N(t) ≥ n} =
∞∑

j=n

P{N(t) = j}

(# of events in [0, t] has a poissons distribution with parameter λt)

↓ Differentiate

f(t) =
∞∑

j=n

e−λtj(λt)j−1λ)
j!

-
∞∑

j=n

λe−λt(λt)j

j!

=
∞∑

j=n

λe−λt(λt)j−1

(j − 1)!
-

∞∑

j=n

λe−λt(λt)j

j!

=
λe−λt(λt)n−1

(n− 1)1

[ gamma distribution with (n, λ) ]

• X ∼ gamma(α, λ).

E[X] =
1

Γ(α)

∫ ∞

0
λe−λx(λx)α−1dx

=
1

λΓ(α)

∫ ∞

0
λe−λx(λx)αdx

=
Γ(α + 1)
λΓ(α)

=
α

λ
.

Var [X] =
α

λ

2
.
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4.7 Beta Distribution

f(x) =





1
B(a,b)x

a−1(1− x)b−1 0 < x < 1

0 otherwise

B (a, b) =
∫ 1

0
xa−1 (1− x)b−1 dx

– used to model a random phenomenon whose se of possible values are some

finite interval [c, d].

f(x)

f(x)

x

x

a > b

0

0

1

1

a > 1

a < 1

(a = b) beta density is symmetric about 1/2

a = 1

Note:

B (a, b) =
Γ(a)Γ(b)
Γ(a + b)

E[X] =
a

a + b

Var (X) =
ab

(a + b)2(a + b + 1)
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4.8 Distribution of a funtion of a random variable

Example .

X : a continuous random variable with probability density function fx.

Y = X2.

Fy(y) = P {Y ≤ y} = P{X2 ≤ y}

= P {-√y ≤ X ≤ √
y}

= Fx(
√

y) - Fx(-
√

y)

↓ Differentiate

fY (y) =
1

2
√

y

[
fx(
√

y) + fx(−√y)
]

Theorem

X : a continuous random variable with probability density fx.

g(x) : a strictly monotone (increasing or decreasing), differentiable (and thus continuous)

funtion of x.

Then the random variable Y = g(x) has a probability density funtion

fY (y) =





fx[g−1(y)] | d
dyg−1(y)| if y = g(x) for some x

0 if y 6= g(x) for all x

Where g−1(y) is define to equal that value of x such that g(x) = y

Proof.

Let y = g(x) for some x. Then

FY (y) = P {g(x) ≤ y} = P{X ≤ g−1(y)}

= Fx(g−1(y)).

↓ differentiating
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fY (y) = fx(g−1(y))
d

dy
g−1(y)

When y 6= g(x) for any x, then FY (y) = 0 or 1. ⇒ fy(y) = 0

Example .

X : a continuous non-negative random variable with density f .

Y = Xn, fY = ?

Solution.

Let g(x) = xn ⇒ g−1(y) = y
1
n

d

dy
(g−1(y)) =

1
n

y
1
n
−1

∴ fY (y) =
1
n

y
1
n
−1 f(y

1
n )

n = 2, fY (y) =
1

2
√

y
f(
√

y).

(Compare with the previous example)
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