8 Joint Probability Distribution of Function of Random Variables

 X_1, X_2 : jointly continuous random variables with joint density $f_{X_1X_2}$

Suppose that $Y_1 = g_1(X_1, X_2)$, $Y_2 = g_2(X_1, X_2)$ for some functions g_1, g_2

Assume that,

1. $y_1 = g_1(x_1, x_2), \ y_2 = g_2(x_1, x_2)$ can be uniquely solved for x_1 and x_2 in terms of $y_1 \& y_2$, say, $x_1 = h_1(y_1, y_2), \ x_2 = h_2(y_1, y_2)$.

2. $g_1 \& g_2$ have continuous partial derivatives at all points (x_1, x_2) and are such that at all (x_1, x_2) ,

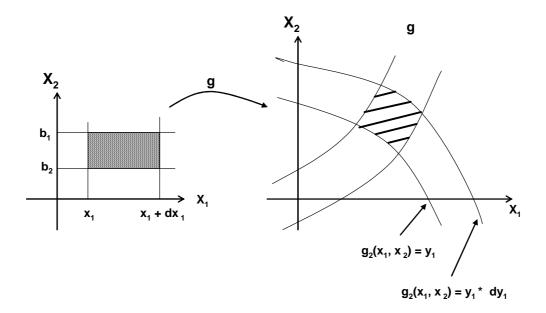
$$\mathbf{J}(x_1, x_2) = \begin{vmatrix} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} \\ \frac{\partial g_2}{\partial x_1} & \frac{\partial g_2}{\partial x_2} \end{vmatrix} \equiv \frac{\partial g_1}{\partial x_1} \frac{\partial g_2}{\partial x_2} - \frac{\partial g_1}{\partial x_2} \frac{\partial g_2}{\partial x_1} \neq 0.$$

Then, $Y_1 \& Y_2$ are jointly continuous with joint density function,

$$f_{Y_1,Y_2}(y_1,y_2) = f_{X_1,X_2}(x_1,x_2) |J(x_1,x_2)|^{-1}$$

Proof.

differentiate w.r.t. $y_1 \& y_2$



 $f_{X_1,X_2}(x_1,x_2)dx_1dx_2$. |J|. $\approx f_{Y_1,Y_2}(y_1,y_2)dy_1dy_2$

Example.

 $(X,\,Y)$: random point in the plane X, Y : independent unit normal random variables Joint distribution of R, Θ ?

Solution.

$$\mathbf{r} = g_1(x, y) = \sqrt{x^2 + y^2}$$
$$\theta = g_2(x, y) = \tan^{-1} \frac{x}{y}$$
$$\mathbf{J} = \begin{vmatrix} \frac{x}{\sqrt{x^2 + y^2}} & \frac{y}{\sqrt{x^2 + y^2}} \\ \frac{-y}{x^2 + y^2} & \frac{x}{x^2 + y^2} \end{vmatrix} = \frac{1}{\sqrt{x^2 + y^2}} = \frac{1}{r}$$
$$f(x, y) = \frac{1}{2\pi} e^{-\frac{1}{2}(x^2 + y^2)}$$
$$f(r, \theta) = \frac{1}{2\pi} r \ e^{-\frac{1}{2}r^2} \qquad 0 < \theta < 2\pi, \ 0 < r < \infty$$

 Θ : uniform over $(0, 2\pi)$.

R : Rayleigh distribution $f(r) = re^{-\frac{r^2}{2}}$ example) X, Y: horizontal/vertical miss distance absolute value of the error ~ Rayleigh.

Example.

(X, Y): random point in the plane X, Y: independent unit normal random va Joint distribution of R^2 , Θ ?

Solution.

$$g_1(x,y) = x^2 + y^2$$
$$J = \begin{vmatrix} 2x & 2y \\ \frac{-y}{x^2 + y^2} & \frac{x}{x^2 + y^2} \end{vmatrix} = 2$$
$$f(d,\theta) = \frac{1}{4\pi}e^{-\frac{d}{2}}$$

 $R^2 \sim \text{exponential distribution with parameter } \frac{1}{2}$. $R^2 = X^2 + Y^2 \Rightarrow R^2 \sim \chi^2 \text{ distribution with 2 d.o.f.}$. The exp distribution with parameter $\frac{1}{2} = \chi^2$ distribution with 2 d.o.f.

• We can simulate (generate) normal random variables by making a suitable transformation on uniform random variables.

 U_1, U_2 : independent random variables each uniform over (0, 1)

 X_1, X_2 : two independent unit normal random variables.

$$R^2 = X_1^2 + X_2^2, \Theta \Rightarrow$$
 exponential distribution with $\lambda = \frac{1}{2}$

 $P\{-2\log U_1 < x\} = P\{\log U_1 > -\frac{x}{2}\} = P\{U_1 > e^{-\frac{x}{2}}\} = 1 - e^{-\frac{x}{2}}\}$

 \therefore -2log U_1 as an exp distribution with $\lambda = \frac{1}{2}$.

 $2\pi U_2$: uniform over $(0, 2\pi)$, use it to generate Θ

:. $X_1 = \sqrt{-2\log U_1} \cos(2\pi U_2), X_2 = \sqrt{-2\log U_1} \sin(2\pi U_2)$, independent standard normal.

• When the joint density function of the n random variables X_1, X_2, \ldots, X_n is given and we want to compute the joint density function of Y_1, \ldots, Y_n , where

$$Y_1 = g_1(X_1, ..., X_n)$$

$$Y_n = g_n(X_1, \dots, X_n)$$

•

Assuming g_i 's have continuous partial derivatives and that, at all points $(x_1, ..., x_n)$

$$\mathbf{J}(x_1, x_2) = \begin{vmatrix} \frac{\partial g_1}{\partial x_1} & \dots & \frac{\partial g_1}{\partial x_n} \\ \cdot & & \\ \cdot & & \\ \frac{\partial g_n}{\partial x_1} & \dots & \frac{\partial g_n}{\partial x_n} \end{vmatrix} \neq \mathbf{0}.$$

Suppose that $y_1 = g_1(x_1,...,x_n), \ y_n = g_n(x_1,...,x_n)$ have a unique solution, say $x_1 = h_1(y_1,...,y_n), \ x_n = h_n(y_1,...,y_n)$, then

$$\begin{split} f_{Y_1,...,Y_n} & (y_1,...,y_n) = f_{X_1,...,X_n} & (x_1,...,x_n) \; |J(x_1,...,x_n)|^{-1} \\ \text{where} \quad x_i = h_i(y_1,...,y_n), \quad i = 1,...,n. \end{split}$$

Example.

$$X_{1}, X_{2}, X_{3}: \text{ independent unit normal random variables.}$$

$$Y_{1} = X_{1} + X_{2} + X_{3}$$

$$Y_{2} = X_{1} - X_{2}$$

$$Y_{3} = X_{1} - X_{3}$$

$$\downarrow$$

$$X_{1} = \frac{1}{3}(Y_{1} + Y_{2} + Y_{3})$$

$$X_{2} = \frac{1}{3}(Y_{1} - 2Y_{2} + Y_{3})$$

$$X_{3} = \frac{1}{3}(Y_{1} + Y_{2} - 2Y_{3})$$

$$J = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{vmatrix} = 3$$

$$f_{X_{1}, X_{2}, X_{3}}(x_{1}, x_{2}, x_{3}) = \frac{1}{(2\pi)^{\frac{3}{2}}} e^{-\sum_{i=1}^{3} \frac{x_{i}^{2}}{2}}$$

$$f_{Y_1,Y_2,Y_3}(y_1,y_2,y_3) = \frac{1}{3} \frac{1}{(2\pi)^{\frac{3}{2}}} exp\left[-\frac{1}{2} \left[\left(\frac{y_1+y_2+y_3}{3}\right)^2 + \left(\frac{y_1-2y_2+y_3}{3}\right)^2 + \left(\frac{y_1+y_2-2y_3}{3}\right)^2\right]\right]$$