

Prof. Sung-Hoon Ahn

2006-11-06

NASA: Fabrication in Space

Requirements in Product Development

- Functional or aesthetic assessment
- Communication aids, visualization
- Assemblability checking
- 25 or 30% of product development budget are spent on physical prototypes and testing
- Rapid Prototyping fabricates a part of arbitrary shape directly from CAD model by forming thin layers of the part layer by layer

Introduction to RP

- Other name of RP
 - Layered Manufacturing
 - Rapid Prototyping and Manufacturing
 - Solid Freeform Fabrication (SFF)
- Group of related technologies that are used to fabricate physical objects directly from CAD data
- Add and bond materials in layers to form objects
- Offer advantages compared to classical subtractive fabrication methods

Basic Idea

- No need to define a blank geometry
- No need to define set-ups and material handling
- No need to consider jigs, fixtures, and clamping
- No need to design mold and die

General System Configuration of RP

Stereo Lithography Process

- Geometry Input : STL file format
 - Developed for STereo Lithography
 - De facto standard for RP data
 - Most CAD systems support STL format

STL file formats

solid example

endloop endfacet : : endsolid example

	Byte	Туре	Description	
	80	String	Head information such as the CAD system used	
	4	Unsigned long integer	Number of facets	
	First Triangle Definition			
	4	Float	Normal x	
d example facet normal 6.89114779E-02 -9.96219337E-01 -5.28978631E-02 outer loop vertex 2.73239994E+01 1.08957005E+01 4.57905006E+01 vertex 2.81019993E+01 1.09582005E+01 4.56250000E+01 vertex 2.75955009E+01 1.09116001E+01 4.58456993E+01	4	Float	Normal y	
	4	Float	Normal z	
	4	Float	Vertex1 x	
	4	Float	Vertex1 y	
	4	Float	Vertex1 z	
	4	Float	Vertex2 x	
	4	Float	Vertex2 y	
endloop	4	Float	Vertex2 z	
:	4	Float	Vertex3 x	
: colid example	4	Float	Vertex3 y	
	4	Float	Vertex3 z	
	2	Unsigned long integer	Number of attributes bytes should be set to zero	
		Second Triangle Definition		

(a) ASCII

(b) Binary

• Typical Errors in STL file

Stair-Step Effect

Surface roughness vs. build time

Support Structures

a. Complementary support.

b. Explicit support.

- Post-processing
 - Determination of Build-up direction
 - Accuracy
 - Build-up speed
 - Trapped volume
 - Necessity of support structure

Issues in RP

- Accuracy and Surface Finish
- Material
 - Stereo Lithography Resins
 - Metals
 - Ceramics and Paper
- Cost
 - Equipment
 - Maintenance
- Time

Stereo Lithography Apparatus (SLA)

- Developed by 3D Systems, Inc
- Laser beam will scan the surface following the contours of the slice
- Commercial machines & Applications

1. StereoLithography Appratus (SLA)

- Developed by 3D Systems, Inc
- The laser beam will scan the surface following the contours of the slice.

SLA(SL)

2. Selective Laser Sintering (SLS)

- Developed by The University of Texas at Austin
- Powders are spread over a platform by a roller.
- A laser sinters selected areas causing the particles to melt and then solidify.

3. Laminated Object Modeling (LOM)

- Developed by Helysis
- The undersurface of the foil has a binder that when pressed and heated by the roller causes it to glue to the previous foil.
- The foil is cut by a laser following the contour of the slice.

4. Fused Deposition Modeling (FDM)

High speed,

three-axis system

b. System

Filament

Plastic model

0

created in

minutes

Filament supply

Heated FDM head

FDM

Fused Deposition Modeling (FDM)

5. 3D Printers

- Developed at MIT
- Parts are built upon a platform situated in a bin full of powder material.

6. Solid Ground Curing (SGC)

- Developed and commercialized by Cubital Ltd. (Israel).
- Uses a Photopolymer, sensitive to UV-light.
- The vat moves horizontally as well as vertically.
- The horizontal movements take the workspace to different stations in the machine.

SGS Process

7. Shape Deposition Manufacturing (SDM)

- Developed by Stanford University/CMU
- Uses deposition and milling
- Provides good surface finish

Issues in RP Materials

Rapid Fabrication of functional parts

- Structural
- Optical
- Surface Roughness
- Electrical
- Thermal
- Color
-

FDM Software – Three Levels

- STL file Tesselated Stereolithography file export from solid modeling package
- SSL file Sliced Layer File, Support Calculation Proper part orientation can drastically affect build time, support requirements, and part strength
- **SML file** Rastors, Build Parameters, time estimation

STL File – Collapsible Shovel Head

- Tesselated (Triangulated) format
- Standardized Export Type
- Quickslice
 Layout

SSL File – Unsupported, Front View

- Vertically Sliced File
- Orientation Important!
- Unsupported Material will fall

SSL File – Supported, Front View

- Support Calculation
- 45° Support rule
- Foam Substrate
- Foam
 Irregularities

SSL File – Supported, Isometric View

- Support Base (Blue)
- Removing Support Material
- Calculation and Removal can be time intensive

SML File – Supported, Isometric View

- Road Generation
- Colored Layer of SSL file determines road orientation
- Road type and orientation strongly affects build time and part strength

SML File – Supported, Top Layer

- Rastors oriented at 45° angle (FDM material behaves like a composite)
- Note loose fill of support material – easier to break and quicker to build

FDM Build Parameters - Software

- Perimeters, Contours, Rastors (Road type)
 - Perimeter: Follows outer shape of current slice-ideal for cosmetic outer surface
 - Contour: Follows shape of perimeter on part interior not commonly used as it leaves gaps
 - Rastors: Standard back and forth part fill adds strength to part, composite theory (rastor angles)
- Road width Dependant on nozzle size and feed rate ranges from .012 to .0396 for T12 nozzle
- Air Gap gap between roads allows for tightly fused, strong surface, or sparse, quick building fill

Micro Structure of FDM

PartPost-process of FDM

Resin Infiltration

Raw FDM ABSi

During Infiltration

After Infiltration

Flash Memory Reader

Post-process : 24 hours Total prototyping time : 39 hours

Z- corp (3D Printer)

Designed by Carlo H. Sequin

Gallery (cont.)

Z- corp (3D Printer)

Gallery (cont.)

Z- corp (3D Printer)

Designed by Carlo H. Sequin

Applications

Architectures

A machine mounted on rails might be used to build multiple houses.

Materialization of arts

Lifting the kouros out of the Mammoth.

The original Volomandra Kouros and the SLA replica

Micro component

Micro robot by Sandia Lab

Rapid Tooling (RT)

Core and cavity sets produced by RapidTool [™]

DTM's RapidTool[™] process for rapid mold making

Other Examples

Patterning with Ceramic

P. Kumar at al, Ann Arbor

Microreactor

RP Journal

Sensor and Actuator

Electrode ; A. Safari et al. IEEE

PZT Sensor ; J. E. Smay et al. J. Am. Ceram. Soc.

Artificial Bone and Ear

Artificial bone

Y. Tan et al. Am. Ceram. Soc.

Artificial ear

Bio-compatible Material

Hybrid RP System

Hardware

- ✓ Deposition; Rapid Prototyping
- ✓ Cutting; Milling
- ✓ Hybrid; Both

Micro needle

Micro endmill

SPECIFICATIONS

- 3 Axes-stage Dispenser Micro needle Micro tool High speed spindle UV curing system Controller
- 1 μm resolution 15 ~ 700 kPa ϕ 140 μm ϕ 800 μm ϕ 100 μm ϕ 1000 μm Max. 46,000rpm 0 ~ 400 W, λ = 365 nm PMAC (Multi-tasking board)

Hybrid RP System (cont.)

Hybrid process: depositing + machining

Remove Support Conceptual process of NCDS

Hybrid RP System (cont.)

Process planning

Nano composite parts

- Micro Gear
 - A gear geometry with ϕ 2.9mm was fabricated
 - 5wt% MWCNT + Acrylic resin
 - Dispensing process using \$\overline{9}\$ 300\mu\$m needle micro milling using \$\overline{9}\$ 100\mu\$m flat endmill
- Stapes
 - The smallest bone in human body, width 2.5mm
 / height 3.5mm
 - 40wt% Hydroxyapatite + Acrylic resin
 - Dispensing process using \$\overline{140\mumum}\$ needle micro milling using \$\overline{100\mumum}\$ flat endmill
 - Mold (using wax) machining → part deposition
 → surface machining → demolding
- Fabrication time

Parts	Average Time (min)	
Micro Gear	2	
Stapes	15	

Microscope picture of microgear

Scaffold for Bone Growth

Bio-degradable polymer

Drug Delivery System (DDS)

Specimen for Zero-order Release Test

Scaffold Shape of DDS (Controlled Pore Size)

Fabricated drug delivery device of scaffold shape (15layers, $[0^{\circ}_{8}/90^{\circ}_{7}]$, 5mm×5mm)