
Office: 33-313 
Telephone: 880-7221
Email: espark@snu.ac.kr
Office hours: by an appointment 1

Eun Soo Park

2019	Spring

05.29.2019

“Phase	Equilibria	inMaterials”



2

Chapter 14. The Association of Phase Regions



2) Law of Adjoining Phase Regions: “most useful rule”

R1 : Dimension of the boundary between neighboring phase regions

R : Dimension of the phase diagram or section of the diagram (vertical or isothermal)

D- : the number of phases that disappear in the transition from one phase region to the other

D+ : the number of phases that appear in the transition from one phase region to the other

14.1. Law of adjoining phase regions

* Construction of phase diagram:
Phase rule ~ restrictions on the disposition of the phase regions
e.g. no two single phase regions adjoin each other through a line.

* Rules for adjoining phase regions in ternary systems
1) Masing, “a state space can ordinarily be bounded by another state

space only if the number of phases in the second space is one less
or one greater than that in the first space considered.”



14.2. Degenerate phase regions

* Law of adjoining phase region ~ applicable to space model and their
vertical and isothermal sections, but no “invariant reaction isotherm”
or “four-phase plane” was included.

* In considering phase diagrams or section containing degenerate
phase regions, it is necessary to replace the missing dimensions
before applying the law of adjoining phase regions.

Phase rule: invariant reaction (f=0)

Law of adjoining phase regions

To overcome this situation,
one regards the point TA as a de-
generate (liquid+solid) phase region
and one replaces the missing 
dimension to give the diagram.

This is now a topologically correct
diagram which obeys the law of 
adjoining phase regions (a very
useful method for checking the 
construction of phase diagrams)
but lead to violation of phase rule. 
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* Degenerate phase regions in space models of phase diagrams and in
their sections can be dealt with in a similar manner by replacing the
missing dimensions.

Invariant reaction isothermal 
aeb (one dimension)

Liquidus and solidus curves do not meet at TA

Comply with the law of adjoining phase regions



(b) R=2; R1=0_only four lines may meet at a point in two-dimensional diagrams

α+β+γ

β+γ

α+γ
γ
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Fig. 178b Fig. 178f



14.5. Non-regular two-dimensional sections
Nodal plexi can be classified into four types according to the manner of their formation:

Type 1 The nodal plexus is formed without degeneration of any geometrical element of
the two-dimensional regular section to elements of a lower dimension

Type 2 The number of lines degenerate to a point but there is no degeneration of two
dimensional phase regions. In the formation of a type 2 nodal plexus the line
O1O2 in the regular section degenerates into point O of the nodal plexus
associated with the non-regular section.



14.5. Non-regular two-dimensional sections
Nodal plexi can be classified into four types according to the manner of their formation:

Type 3 A number of two dimensional phase regions degenerate into a point. In this case
the phase region l + α + β disappears with the transition from a regular to a non-
regular two dimensional section.

Type 4 A number of two dimensional phase regions degenerate to a line. In the
formation of the nodal plexus the phase region l + β + γ and β + γ have
degenerated into the line O1O2.



14.5. Non-regular two-dimensional sections
Nodal plexi can be classified into four types according to the manner of their formation:

Nodal plexi of mixed types may also be formed. A type 2/3 one is shown in Fig.
239. In the formation of the nodal plexus the two dimensional l + γ region
degenerates to a point – triangle O2O3O4 degenerates to point O – and the line O1O2
degenerates to the same point O. The former process corresponds to the formation of
a type 3 nodal plexus and the latter to the formation of a type 2 nodal plexus.

1) Formation of nodal plexi: 
Transition from a regular section to a non-regular section of a ternary system

2)  Opening of nodal plexi: 
Subsequent transition from the non-regular section back to a regular section
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Fig. 240. Formation and opening of nodal plexi

<regular section> <non-regular section> <regular section>

Fig. 255a Fig. 255b Fig. 255c
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<regular section> <non-regular section> <regular section>
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<regular section> <non-regular section> <regular section>



Fig. 240. Formation and opening of nodal plexi

<regular section> <non-regular section> <regular section>



17Fig. 225f Fig. 225g



Fig. 240. Formation and opening of nodal plexi

<regular section> <non-regular section> <regular section>



Fig. 178f
Fig. 173a

Fig. 177
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* Three methods by which an non-regular section of the type shown in Fig. 178f may 
change to a regular section → Figs. 240a, b and c → “Figs. 240c is the only possible mode”



* The importance of non-regular
sections lies in the fact that they
represent an intermediate step in
the transition from one-regular
sections to another regular section.
If we started with the two non-
regular sections 11-12 and 3-4
passing through the invariant points
c and E, we could construct the
sequence of vertical section given in
Fig. 178.

“Figs. 240c is the only possible mode”
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14.6. Critical Points

The rule of adjoining phase regions does not apply in the immediate
neighborhood of critical points in phase diagrams and their sections.

An empirical formula for the determination of
the dimensions of a critical element:

Where R1 is the dimension of the boundary between neighboring phase regions,
R is the dimension of the phase diagram or section, and
Dc represents the number of phases that are combined into one phase as a result of

the corresponding critical transformation.

Example
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Chapter 15. Quaternary phase Diagrams

Four components: A, B, C, D

A difficulty of four-dimensional geometry
→ further restriction on the system

Most common figure: 
“ equilateral tetrahedron “

Assuming isobaric conditions,
Four variables: XA, XB, XC and T

4 pure components
6 binary systems
4 ternary systems
A quarternary system
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a+b+c+d=100

%A=Pt=c,
%B=Pr=a,
%C=Pu=d,
%D=Ps=b

* Draw four small equilateral tetrahedron
→ formed with edge lengths of a, b, c, d
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%A=Da

%B=ab

%C=bP

%D=Pd



28

B:C:D constant on line AE A constant on plane FGH 

C:D constant on plane ABJ C:D and B:D constant on plane AJK 

Useful geometrical properties 
of an equilateral tetrahedron
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The three-dimensional equilateral tetrahedron can be used 
to study quaternary equilibria in the following ways.

1) Isobaric-isothermal sections (both P and T are fixed)

It is necessary to produce a series of three-dimensional tetrahedra 
to indicate the equilibria at a series of temperatures.



• Isothermal section (TA > T > TB)

10.1. THE EUTECTIC EQUILIBRIUM (l = )

(a) TA > T >TB (b) T = e1 (c) e1 > T > e3 (d) T = e3

(g) TA = E(e) T = e2 (f) e2 > T > E (h) E = T
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2) Polythermal sections

Ternary eutectic • Projection : solid solubility limit surface
: monovariant liquidus curve

10.1. THE EUTECTIC EQUILIBRIUM (l = )
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2) Polythermal sections

(1) Quaternary system: a polythermal projection which is three dimensional

Fig. 255. Polythermal projection of a quaternary system 
involving three-phase equilibrium  of the type l ⇄ α  β
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2) Polythermal sections

(2) Temperature-concentration sections: either 3-dimensional or 2-dimensional
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15.2 TWO-PHASE EQUILIBRIUM

Tie lines in (b) connect all points of surface 3 5 2 to corresponding 
points on surface 4 6 1. → They do not intersect one another.
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TB > TA > TD > TC

* Isobaric-isothermal sections through a quaternary system involving two-phase equilibrium

* The quaternary melt is richer in the 
lower-melting components than the 
quaternary solid solution it is in    
equilibrium with Konovalov’s rule.

* The usual lever rule is applicable to
tie lines in quaternary systems.

* The quaternary tie lines are going  
from one isothermal section to 
another with decreasing temperature 
the tie lines all change their orientation.
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This rotation coincides with the direction of 
highest melting point component to the lowest.

Konovalov’s Rule: Solid is always richer than the melt 
with which it is in equilibrium in that
component which raises the melting 
point when added to the system. 
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then

and

Therefore,

In this form Konovalov’s Rule can be applied to ternary systems to indicate 
the direction of tie lines.
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(iv) Tie lines at T’s will rotate continuously. (Konovalov’s Rule)

: Clockwise or counterclockwise

Counterclockwise

8.4 TWO-PHASE EQUILIBRIUM
8.4.1 Two-phase equilibrium between the liquid and a solid solution
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* Course of solidification of quaternary alloy P

* T1 : liquidus surface m1m2m3 → P
Solidus surface s1s2s3 → α1

* T2 : tie line α2l2
→ this tie line is not parallel to the first

tie line Pα1 in contrast to the series of 
tie lines in the ternary system.

* T3 : liquidus surface m7m8A → l3
Solidus surface s7s8A → P

* Liquid trace curve: Pl2l3
α phase trace curve: α1α2P

→ Any departure from equilibrium 
conditions during solidification results in 
the formation of a cored structure, as was 
noted for the binary and ternary alloys.
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15.3 THREE-PHASE EQUILIBRIUM

Fig. 254. Isobaric-isothermal sections for systems involving three-phase equilibrium. 

(a) Ternary system (b) quaternary system

* The tie triangles in the quaternary three-
phase region do not lie parallel to each    
other, in contrast to the superficially 
similar three-phase region in a ternary 
(isobaric) space model.
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Fig. 255. Polythermal projection of a quaternary system involving three-phase equilibrium 
of the type l ⇄ α  β

TD > TC > E1 > TB > TA > E2 > E3

* Binary eutectic: CA, CB, CD
& A, B, D form continuous series of 
binary solid solution with each other.

* Face ACD of the tetrahedron ABCD= 
polythermal projection of the ternary system ACD

: Continuous transition from 
the binary eutectic CD
to the binary eutectic AC     
(monovariant liquidus curve E1E3)

* Change in solubility in α and β

α1α2α3 → α’1α'2α'3 ,   β1β2β3 → β’1β'2β'3
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Fig. 256. Isobaric-isothermal sections through the quaternary system of Fig. 255 

(a) at E1

(b) just below TC

(b) E1 > T > TB

TD > TC > E1 > TB > TA > E2 > E3
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Fig. 256. Isobaric-isothermal sections through the quaternary system of Fig. 255 

(b) E1 > T > TB

TD > TC > E1 > TB > TA > E2 > E3

* Quaternary three phase region

(b) E1 > T > TB
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Fig. 256. Isobaric-isothermal sections through the quaternary system of Fig. 255 

TD > TC > E1 > TB > TA > E2 > E3

(d) at E2 (e) E2 > T > E3
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Fig. 256. Isobaric-isothermal sections through the quaternary system of Fig. 255 

TD > TC > E1 > TB > TA > E2 > E3

(f) below E3

1) At E3 , the last drop of liquid is consumed and all alloys in the 
quaternary system are completely solid at temperatures below E3. 

2) Below E3, change in solubility in α and β ሺα1α2α3 → α'1α'2α'3, β1β2β3 → β'1β'2β'3 ሻ

(e) E2 > T > E3
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The three-phase regions from Fig. 256.b, d, and e have been 
superimposed on the polythermal projection in Fig. 257.
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Fig. 255. Polythermal projection of a quaternary system involving three-phase equilibrium 
of the type l ⇄ α  β

TD > TC > E1 > TB > TA > E2 > E3

* Binary eutectic: CA, CB, CD
& A, B, D form continuous series of 
binary solid solution with each other.

* Face ACD of the tetrahedron ABCD= 
polythermal projection of the ternary system ACD

: Continuous transition from 
the binary eutectic CD
to the binary eutectic AC     
(monovariant liquidus
curve E1E3)

* Change in solubility in α and β

α1α2α3 → α’1α'2α'3 , β1β2β3 → β’1β'2β'3



* Equilibrium freezing of alloys

Vertical sections a-c, c-b, and a-b at the ternary faces ACD, BCD, and ABD

A method proposed by Schrader and Hannemann
: the construction of a three-dimensional temperature-

concentration section for a constant amount of one of
the components.
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Fig. 260. (a) Three-dimensional temperature-concentration diagram for a 
quaternary system abc; (b) two-dimensional section throgh Fig. 260 (a).

* Consider the solidification of 
alloy P on plane abc,
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Fig. 261. Freezing of quaternary alloy P illustrated by reference to the 
polythermal projection of Fig. 255.

* Consider the solidification of alloy P

1) β solid solution precipitation 
with β4 composition
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Fig. 261. Freezing of quaternary alloy P illustrated by reference to the 
polythermal projection of Fig. 255.

* Consider the solidification of alloy P
: primary (1) and secondary crystallization (3)

1) β solid solution precipitation 
with β4 composition

2) β phases trace paths similar to those  
shown in Fig. 253. ( β4 → β5 )

T
↓

3) Liquid meet the eutectic surface E1E2E3.
→ three phase equilibrium appear.

( l5α5β5 → l6α6β6 )

1)

2)

3)

3)

3)

4) With cooling to room temperature,
α1α2α3 → α’1α'2α'3 , β1β2β3 → β’1β'2β'3

2)

2)

1)


