Representation and manipulation of curves

Topology Vs. Geometry

Types of curve equations

Parametric equation

 $x = x(t), \quad y = y(t), \quad z = z(t)$ Ex) $x = R \cos \theta, \quad y = R \sin \theta, \quad z = 0 \quad (0 \le \theta \le 2\pi)$

Implicit nonparametric

 $x^{2} + y^{2} - R^{2} = 0, \quad z = 0$ $F(x, y, z) = 0, \quad G(x, y, z) = 0$

Intersection of two surfaces Ambiguous independent parameters

Explicit nonparametric

$$y = \pm \sqrt{R^2 - x^2}, \quad z = 0$$

Should choose proper neighboring point during curve generation

e

Х

Conic curves

- Curves obtained by intersecting a cone with a plane
- Circle (circular arc), ellipse, hyperbola, parabola Ex) Circle (circular arc) Circle in xy-plane with center (x_c, y_c) and radius R $x = R \cos \theta + x_c$ $y = R \sin \theta + y_c$ z = 0
- Points on the circle are generated by incrementing θ by $\triangle \theta$ from 0, points are connected by line segments
- Equation of a circle lying on an arbitrary plane can be derived by transformation

Hermite curves

Parametric eq. is preferred in CAD systems

Polynomial form of degree 3 is preferred :
 C2 continuity is guaranteed when two curves are connected

:.
$$P(u) = [x(u) v(u) z(u)] = a_0 + a_1 u + a_2 u^2 + a_3 u^3$$
 (1)
($0 \le u \le 1$): algebraic eq.

 Impossible to predict the shape change from change in coefficients ⇒ not intuitive ⇒Bad for interactive manipulation

Hermite curves - cont'

 Apply Boundary conditions to replace algebraic coefficients

• Use
$$P_{(0)}$$
, $P_{(1)}$, $P_{(0)}$, $P_{(1)}$ \Rightarrow Substitute in Eq(1)
 P_{0} , P_{1} , P_{0} , P_{1}
 $P_{(0)} = P_{0} = a_{0}$
 $P_{(1)} = P_{1} = a_{0} + a_{1} + a_{2} + a_{3}$
 $P_{(0)} = P_{0} = a_{1}$
 $P_{(1)} = P_{1} = a_{1} + 2a_{2} + 3a_{3}$
(2)

Hermite 곡선 방정식 – cont'

• Solve for
$$a_0$$
, a_1 , a_2 , a_3 in Eq (2)
 $a_0 = P_0$
 $a_1 = P_0'$
 $a_2 = -3P_0 + 3P_1 - 2P_0' - P_1'$
 $a_3 = 2P_0 - 2P_1 + P_0' - P_1'$
(3)

Hermite 곡선 방정식 – cont'

Substitute (3) into (1)

$$p(\mathbf{u}) = \begin{bmatrix} 1 - 3u^2 + 2u^3 & 3u^2 - 2u^3 & u - 2u^2 + u^3 & -u^2 + u^3 \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \\ P_0 \\ P_1 \end{bmatrix}$$
geometric coefficiente
$$\uparrow$$
Hermite curve equation

 It is possible to predict the curve shape change from the change in P₀, P₁, P₀', P₁' to some extent

Figure 6.2 Effect of P_0' and P_1' on curve shape

Hermite curves - cont'

• $1-3u^2+2u^3$, $3u^2-2u^3$, $u-2u^2+u^3$, $-u^2+u^3$ determine the curve shape by blending the effects of P₀, P₁, P₀', P₁'=> blending function

Bezier curves

- It is difficult to realize a curve in one's mind by changing size and direction of P₀', P₁' in Hermite curves
- Bezier curves
 - Invented by Bezier at Renault
 - Use polygon that enclose a curve approximately

control polygon, control point

Bezier curves – cont'

- Passes through 1st and last vertex of control polygon
- Tangent vector at the starting point is in the direction of 1st segment of control polygon
- Tangent vector at the ending point is in the direction of the last segment
 Useful feature for smooth connection of two Bezier curves
- The n-th derivative at starting or ending point is determined by the first or last (n+1) vertices of control polygon
- Bezier curve resides completely inside its convex hull
 - Useful property for efficient calculation of intersection points

(a)

Bezier curves – cont' $p(u) = \sum_{i=0}^{n} {n \choose i} u^{i} (1-u)^{n-i} \mathbf{P}_{i} (0 \le u \le 1)$ control point

 $P(u) = (1 - u)P_0 + uP_1$: Straight line from P_0 to P_1 satisfies the desired qualities including convex hull property

 $P(u) = (1-u)^{2}P_{0} + 2(1-u)uP_{1} + u^{2}P_{2} \implies (1-u)^{2} + 2(1-u)u + u^{2} = 1$ satisfies the desired qualities

Bezier curves – cont'

• Highest term is u^n for the curve defined by (n+1) control points

Polynomial of degree n

Degree of curve is determined by number of control points

- Large number of control points are needed to represent a curve of complex shape -> high degree is necessary.
 Heavy computation, oscillation
 Better to connect multiple Bezier curves
- Global modification property (not local modification)
 Difficult to result a curve of desired shape by modifying portions

Blending functions in Bezier curve

for degree 3

그림 10.22 베지에르 곡선은 국부 조정 특성이 없음. •