
Representation and 
manipulation of curves



B-Rep Structure -  cont’
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Parametric equation

Implicit nonparametric

Intersection of two surfaces
Ambiguous independent parameters

Explicit nonparametric

Should choose proper neighboring point during curve generation

Types of curve equations
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Conic curves
Curves obtained by intersecting a cone with a plane
Circle (circular arc), ellipse, hyperbola, parabola
Ex) Circle (circular arc)

Circle in xy-plane with center               and radius 

Points on the circle are generated by incrementing θ by △θ
from 0, points are connected by line segments
Equation of a circle lying on an arbitrary plane can be 
derived by transformation
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Hermite  curves

Parametric eq. is preferred in  CAD systems
Polynomial form of degree 3 is preferred : 

C2 continuity is guaranteed when two curves are connected

Impossible to predict the shape change from 
change in coefficients⇒ not intuitive
⇒Bad for interactive manipulation 

eq. algebraic : )10(                                          
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Hermite  curves – cont’

Apply Boundary conditions to replace 
algebraic coefficients

use                     ⇒ Substitute in Eq(1)′′
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Hermite  곡선  방정식  – cont’

Solve for                  in Eq (2)3210 a  ,a  ,a  ,a
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Hermite  곡선  방정식  – cont’

Substitute (3) into  (1)

It is possible to predict the curve shape change 
from the change in P0, P1, P0′, P1′ to some extent
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Hermite  curves – cont’

determine the curve shape by blending the 
effects of  P0,  P1,  P0′,  P1′=> blending 
function
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Bezier curves

It is difficult to realize a curve in 
one’s mind by changing size and 
direction of P0′,  P1′ in Hermite curves

Bezier curves

Invented by Bezier at Renault

Use polygon that enclose a curve 
approximately

control polygon, control point



Bezier curves – cont’
Passes through 1st and last vertex of control 
polygon
Tangent vector at the starting point is in the 
direction of 1st segment of control polygon
Tangent vector at the ending point is in the 
direction of the last segment
Useful feature for smooth connection of two Bezier curves

The n-th derivative at starting or ending point is 
determined by the first or last (n+1) vertices of 
control polygon
Bezier curve resides completely inside its convex 
hull
Useful property for efficient calculation of intersection 

points





Bezier curves – cont’

point   control                                                                      
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Bezier curves – cont’

Highest term is      for the curve defined by (n+1) control 
points
Polynomial of degree n 

Degree of curve is determined by number of control points

Large number of control points are needed to represent a 
curve of complex shape -> high degree is necessary.
Heavy computation, oscillation

Better to connect multiple Bezier curves

Global modification property (not local modification)
Difficult to result a curve of desired shape by modifying portions

nu



Blending functions in Bezier 
curve

for degree 3
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