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a+b+c+d=100

%A=Pt=c,
%B=Pr=a,
%C=Pu=d,
%D=Ps=b

* Draw four small equilateral tetrahedron
→ formed with edge lengths of a, b, c, d

Chapter 15. Quaternary Phase Diagrams
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B:C:D constant on line AE A constant on plane FGH 

C:D constant on plane ABJ C:D and B:D constant on plane AJK 

Useful geometrical properties 
of an equilateral tetrahedron
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TB > TA > TD > TC

* Isobaric-isothermal sections through a quaternary system involving “two-phase equilibrium”

* The quaternary melt is richer in the 
lower-melting components than the 
quaternary solid solution it is in    
equilibrium with Konovalov’s rule.

* The usual lever rule is applicable to
tie lines in quaternary systems.

* The quaternary tie lines are going  
from one isothermal section to 
another with decreasing temperature 
the tie lines all change their orientation.



5

* Course of solidification of quaternary alloy P

* T1 : liquidus surface m1m2m3 → P
Solidus surface s1s2s3 → α1

* T2 : tie line α2l2
→ this tie line is not parallel to the first

tie line Pα1 in contrast to the series of 
tie lines in the ternary system.

* T3 : liquidus surface m7m8A → l3
Solidus surface s7s8A → P

* Liquid trace curve: Pl2l3
α phase trace curve: α1α2P

→ Any departure from equilibrium 
conditions during solidification results in 
the formation of a cored structure, as was 
noted for the binary and ternary alloys.
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15.3 THREE-PHASE EQUILIBRIUM

Fig. 254. Isobaric-isothermal sections for systems involving three-phase equilibrium. 

(a) Ternary system (b) quaternary system

* The tie triangles in the quaternary three-
phase region do not lie parallel to each    
other, in contrast to the superficially 
similar three-phase region in a ternary 
(isobaric) space model.
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Fig. 255. Polythermal projection of a quaternary system involving three-phase equilibrium 
of the type l ⇄ α ൅ β

TD > TC > E1 > TB > TA > E2 > E3

* Binary eutectic: CA, CB, CD
& A, B, D form continuous series of 
binary solid solution with each other.

* Face ACD of the tetrahedron ABCD= 
polythermal projection of the ternary system ACD

: Continuous transition from 
the binary eutectic CD
to the binary eutectic AC     
(monovariant liquidus curve E1E3)

* Change in solubility in α and β

α1α2α3 → α’1α'2α'3 ,   β1β2β3 → β’1β'2β'3
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Fig. 256. Isobaric-isothermal sections through the quaternary system of Fig. 255 

(a) at E1

(b) just below TC

(b) E1 > T > TB

TD > TC > E1 > TB > TA > E2 > E3
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Fig. 256. Isobaric-isothermal sections through the quaternary system of Fig. 255 

(b) E1 > T > TB

TD > TC > E1 > TB > TA > E2 > E3

* Quaternary three phase region

(b) E1 > T > TB
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Fig. 256. Isobaric-isothermal sections through the quaternary system of Fig. 255 

TD > TC > E1 > TB > TA > E2 > E3

(d) at E2 (e) E2 > T > E3
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Fig. 256. Isobaric-isothermal sections through the quaternary system of Fig. 255 

TD > TC > E1 > TB > TA > E2 > E3

(f) below E3

1) At E3 , the last drop of liquid is consumed and all alloys in the 
quaternary system are completely solid at temperatures below E3. 

2) Below E3, change in solubility in α and β ሺα1α2α3 → α'1α'2α'3, β1β2β3 → β'1β'2β'3 ሻ

(e) E2 > T > E3
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The three-phase regions from Fig. 256.b, d, and e have been 
superimposed on the polythermal projection in Fig. 257.
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Fig. 255. Polythermal projection of a quaternary system involving three-phase equilibrium 
of the type l ⇄ α ൅ β

TD > TC > E1 > TB > TA > E2 > E3

* Binary eutectic: CA, CB, CD
& A, B, D form continuous series of 
binary solid solution with each other.

* Face ACD of the tetrahedron ABCD= 
polythermal projection of the ternary system ACD

: Continuous transition from 
the binary eutectic CD
to the binary eutectic AC     
(monovariant liquidus
curve E1E3)

* Change in solubility in α and β

α1α2α3 → α’1α'2α'3 , β1β2β3 → β’1β'2β'3



* Equilibrium freezing of alloys

Vertical sections a-c, c-b, and a-b at the ternary faces ACD, BCD, and ABD

A method proposed by Schrader and Hannemann
: the construction of a three-dimensional temperature-

concentration section for a constant amount of one of
the components.
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Fig. 260. (a) Three-dimensional temperature-concentration diagram for a 
quaternary system abc; (b) two-dimensional section throgh Fig. 260 (a).

* Consider the solidification of 
alloy P on plane abc,
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Fig. 261. Freezing of quaternary alloy P illustrated by reference to the 
polythermal projection of Fig. 255.

* Consider the solidification of alloy P

1) β solid solution precipitation 
with β4 composition
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Fig. 261. Freezing of quaternary alloy P illustrated by reference to the 
polythermal projection of Fig. 255.

* Consider the solidification of alloy P
: primary (1) and secondary crystallization (3)

1) β solid solution precipitation 
with β4 composition

2) β phases trace paths similar to those  
shown in Fig. 253. ( β4 → β5 )

T
↓

3) Liquid meet the eutectic surface E1E2E3.
→ three phase equilibrium appear.

( l5α5β5 → l6α6β6 )

1)

2)

3)

3)

3)

4) With cooling to room temperature,
α1α2α3 → α’1α'2α'3 , β1β2β3 → β’1β'2β'3

2)

2)

1)
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15.4 FOUR-PHASE EQUILIBRIUM

Fig. 262. Isobaric-isothermal section of a ternary system at the ternary eutectic temperature

Four phases can only exist at one temperature in a ternary system. 

E
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Fig. 263. Polythermal projection of the ternary systems 
involved in a quaternary four phase eutectic equilibrium
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Assumption, XA
β = X A

l > XA
α (New coordinate system)

∆m(XA
-XA

) = m∆XA
 + m∆XA

 + ml∆XA
l  

∆mβ + ∆ml = - ∆mα

l
A A A l A A AX m X m X m X X m X m   

              0l
A lX m  

-XA
∆m - XA

∆m - XA
l∆ml = m∆XA

 + m∆XA
 + ml∆XA

l 

here, ∆m : change of  phase fraction with ∆T

∆m ∆m ∆ml

+ + - l  eutectic
+ - - l   peritectic
- + - l   peritectic

Sign Assumption Sign
∆m(XA

 – XA
) XA

 = XA
l > XA

 m∆XA
 + m∆XA

 + ml∆XA
l

∆m(XA
 – XA

) XA
 = XA

l > XA
 m∆XA

 + m∆XA
 + ml∆XA

l

∆ml(XA
 – XA

l) XA
 = XA

 > XA
l m∆XA

 + m∆XA
 + ml∆XA

l

“Hillert’s criterion indicates that the relative amounts of the α, β and liquid phases
(the average alloy composition) are of importance in determining the type of reaction.”

<Hillert’s criterion>

.



21

Hillert’s criterion indicates that the relative amounts of the α, β and liquid 
phases (the average alloy composition) are of importance in determining 
the type of reaction.

In the case of a quaternary four-phase equilibrium application of the 
criterion indicates that:

(1) ∆m∆mβ∆mγ are positive and ∆ml is negative, the quaternary four-phase    
equilibrium is of the eutectic type: l ⇄ α ൅ β + γ.

(2) If one the expressions, ∆m∆mβ∆mγ is negative and ∆ml is negative, the 
quaternary reaction is a quasi-peritectic type:  l ൅ α ⇄  β + γ for negative ∆m.

(3) If two of the expressions ∆m∆mβ∆mγ are negative and  ∆ml is negative, 
the quaternary reaction is a peritectic type:  l ൅ α + β ⇄  γ for negative ∆m
and ∆mβ.
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* Simplest case of quaternary four-phase equilibrium:     

l ⇄ α ൅ β + γ
1)  Five binary eutectic systems 

AB, AC, AD, CD and BD
& one binary solid solution, BC

2) Ternary eutectic type
ABD and ACD

& only ternary three-phase equilibria
ABC and BCD

TD > TA > TB > e1 > e2 > TC > e3 > e4 > e5 > E1 > E2 

Fig. 264. Polythermal projection of a 
quaternary system involving four-phase 
equilibrium of the type l ⇄ α ൅ β + γ
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TD > TA > TB > e1 > e2 > TC > e3 > e4 > e5 > E1 > E2 

* Monovariant quaternary eutectic reaction,

l ⇄ α ൅ β + γ

* Primary crystallization β: e1E1e2e4E2e1D
Primary crystallization α: e1E1e3E2e1A
Primary crystallization γ: e2e4E2E1e3e5CB

* Secondary crystallization involves
equilibrium of three phases as a
series of tie triangles.

l ⇄ α + β

l ⇄ α + γ

l ⇄ β + γ

Changes in solid solubility for the α phase

Fig. 264. Polythermal projection of a quaternary system involving four-phase 
equilibrium of the type l ⇄ α ൅ β + γ



24

Isobaric-isothermal sections 
Through the quaternary system of Fig. 264             

TD > TA > TB > e1 > e2 > TC > e3 > e4 > e5 > E1 > E2 

(b) at T = e2

* Initiation of 1st three phase (l+α+β) region
→ appears in the ternary ACD and ABD

* Initiation of 2nd three phase (l+β+γ) region
→ appears in the ternary ABD and BCD

(a) at T = e1
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Fig. 256. Isobaric-isothermal sections through the quaternary system of Fig. 255 

(a) at E1

(b) just below TC

(b) E1 > T > TB

TD > TC > E1 > TB > TA > E2 > E3



(c) at T = e3 (d) at T = e4
* Initiation of 3rd three phase (l+α+γ) region
→ appears in the ternary ABD and ABC

* The liquid phase is restricted to a space which
funnels from a triangular region within the ABD
face to the rectangular region on the ACD face
with a small triangular region on the ABC face.

Isobaric-isothermal sections 
Through the quaternary system of Fig. 264             

TD > TA > TB > e1 > e2 > TC > e3 > e4 > e5 > E1 > E2 



(e) E1 > T > E2

* at T = e5 , three phase (l+α+γ) region will degenerate into the tie line a5e5c5 on edge AC.

* Below e5 , three phase (l+α+γ) region will make its first appearance on face ACD.

* Below E1 on face ABD
: (α+β+γ) region will appear on face ABD.
→ αβγ surface extend from tie triangle 

α7β7γ7 to αβγ surface α8β8γ8.

* surface α8β8γ8 is one surface of the tie 
tetrahedron which represents equilibrium 
between l, α, β and γ.

* Points l8, α8, β8 and γ8 lie on curve E1E2, 
α1α2, β1β2, and γ1γ2 (Fig. 264,NEXT page).

Isobaric-isothermal sections 
Through the quaternary system of Fig. 264             

TD > TA > TB > e1 > e2 > TC > e3 > e4 > e5 > E1 > E2 
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l ⇄ α + β

l ⇄ α + γ

l ⇄ β + γ

TD > TA > TB > e1 > e2 > TC > e3 > e4 > e5 > E1 > E2 

Fig. 264. Polythermal projection of a quaternary system involving four-phase 
equilibrium of the type l ⇄ α ൅ β + γ



(e) E1 > T > E2

* at T = e5 , three phase (l+α+γ) region will degenerate into the tie line a5e5c5 on edge AC.

* Below e5 , three phase (l+α+γ) region will make its first appearance on face ACD.

* Below E1 on face ABD
: (α+β+γ) region will appear on face ABD.
→ αβγ surface extend from tie triangle 

α7β7γ7 to αβγ surface α8β8γ8.

* surface α8β8γ8 is one surface of the tie 
tetrahedron which represents equilibrium   
between l, α, β and γ.

* Points l8, α8, β8 and γ8 lie on curve E1E2, 
α1α2, β1β2, and γ1γ2 (Fig. 264).

* The liquid region is now a curved 
tetrahedron based on the 
ternary face ACD.

Isobaric-isothermal sections 
Through the quaternary system of Fig. 264             

TD > TA > TB > e1 > e2 > TC > e3 > e4 > e5 > E1 > E2 



30(f) E2 > T(e) E1 > T > E2

Isobaric-isothermal sections 
Through the quaternary system of Fig. 264             

TD > TA > TB > e1 > e2 > TC > e3 > e4 > e5 > E1 > E2 
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Vertical sections on constant %D

(a) Location of alloys under consideration (b) Vertical sections of the ternary system
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l ⇄ α + β

l ⇄ α + γ

l ⇄ β + γ

TD > TA > TB > e1 > e2 > TC > e3 > e4 > e5 > E1 > E2 

Fig. 264. Polythermal projection of a quaternary system involving four-phase 
equilibrium of the type l ⇄ α ൅ β + γ
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Fig. 267 Vertical sections on constant %D

(a) Location of alloys under consideration

(b) Vertical sections of the ternary system
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Fig. 267 Vertical sections on constant %D

(a) Location of alloys under consideration (c) Quaternary temp.-concentration section

(b) Vertical sections of the ternary system

Liquidus surface
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Fig. 268. Freezing of quaternary alloy P illustrated by reference to the 
polythermal projection of Fig. 264.

* Consider the solidification of alloy P

1) β solid solution precipitation 
with β3 composition ⇔ l3

2) l3 → l4 on e1E1E2e1 : a curved path
β3 → β4 on β surface b1β1β2
Initiation of α precipitation, α4

3) Move over tracing path
l4l5 on e1E1E2e1/ β4β5 on β surface
α4α5 on α surface

Initiation of γ precipitation, γ5

→ solidification is completed when the 
last drop of liquid of composition l6 is 
consumed on the plane of triangle α6β6γ6.

4) Liquid moves l5E2/ α along curve α5α6
β along curve β5β6/γ along curve γ5γ6

→ l5α5β5γ5 tetrahedron : 
now four phase equilibrium

5) Further change in the relative amount   
α, β, γ with fall in temp. to room-temp.
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15.5 FIVE-PHASE EQUILIBRIUM
In an isobaric section of a quaternary system, five phases can only exist in 
equilibrium at one temperature (invariant reaction).

* invariant reaction (1) l ⇄ α + β + γ + δ quaternary eutectic
(2) l + α ⇄ β + γ + δ 2-3 quaternary quasi-peritectic
(3) l + α + β ⇄ γ + δ 3-2 quaternary quasi-peritectic 
(4) l + α + β + γ ⇄ δ quaternary peritectic.

(1) Quaternary eutectic l ⇄ α + β + γ + δ

Fig. 269. Sequence of tie-tetrahedron on cooling through the quaternary eutectic temperature

Four tie tetrahedra
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15.5 FIVE-PHASE EQUILIBRIUM

Fig. 270. Sequence of tie-tetrahedra on cooling through the quaternary 2-3 quasi-peritectic temperature

(2) 2-3 Qaternary quasi-peritectic  l + α ⇄ β + γ + δ

Six trianglesThree tie tetrahedra
lαβγ, lαβδ, lαγδ

Two tie tetrahedra

l + α ⇄ X

X  ⇄ β + γ + δ

l + α ⇄ β + γ + δ



38

15.5 FIVE-PHASE EQUILIBRIUM

Fig. 271. Sequence of tie-tetrahedra on cooling through the quaternary 3-2 quasi-peritectic temperature

(3) 3-2 Qaternary quasi-peritectic  l + α + β ⇄ γ + δ

Six triangles Three tie tetrahedra
lαγδ, lβγδ, αβγδ

Two tie tetrahedra

l + α + β ⇄ Y

Y  ⇄ γ + δ

l + α + β ⇄ γ + δ
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15.5 FIVE-PHASE EQUILIBRIUM

Fig. 272. Sequence of tie-tetrahedra on cooling through the quaternary peritectic temperature

(4) Qaternary quasi-peritectic  l + α + β + γ ⇄ δ

Four tie tetrahedra
lαβδ, lαγδ, lβγδ, αβγδ
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Fig. 273. Polythermal projectin of a quaternary system involving five-phase equilibrium 
of the type l ⇄ α + β + γ + δ (schematic representation of the Bi-Cd-Pb-Sn 
quaternary eutectic system).
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Fig. 274. Regions of primary crystallization in the Bi-Cd-Pb-Sn system

* Primary crystallization

Bi region/ Pb region/ 
Cd region/ Sn region/
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Fig. 275. Regions of secondary crystallization in the Bi-Cd-Pb-Sn system,
(a) assuming complete insolubility of the metals in the solid state

* Secondary crystallization in which the liquid 
phase is precipitating two solid phases simultaneously 
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Fig. 275. Regions of secondary crystallization in the Bi-Cd-Pb-Sn system,
(b) with solid solubility

* Secondary crystallization 
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Fig. 276. Regions of tertiary crystallization in the Bi-Cd-Pb-Sn system,
(a) assuming complete insolubility of the metals in the solid state
(b) with solid solubility

One region of quaternary crystallization in the Bi-Cd-Pb-Sn system:
invariant quaternary eutectic reaction, E 
(isothermal separation from the remaining melt)
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Fig. 277. (a) Change in liquid composition during freezing of an alloy whose composition lies in 
the primary Bi phase region, (b) corresponding change in composition of the Bi solid solution

1→2

2→3

3→B

B

Sn



46

Sn
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A. PRINCE, "Alloy Phase Equilibria",
Elsevier publishing company (1966)_an out-of-printed book 

Thermodynamics
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Liquid α

Equilibrium	Solidification
: perfect mixing in solid and liquid

vs Non‐equilibrium	Solidification	
: No Diffusion in Solid, Perfect Mixing in Liquid

s ssolid x x 

0 Eliquid X k X 

Liquid Primary α + Eutectic
(coring)

Phase	Transformation	=	Thermodynamics	+	Kinetics
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Crystallization
: slower cooling rate

vs Amorphization	
: faster cooling rate

Phase	Transformation	=	Thermodynamics	+	Kinetics


