
Plasma-Surface Interactions

Effects of impurities in Tokamak
• Radiative power loss : line radiation
• Fuel dilution
• Radiation barrier : difficult to heat plasmas initially
• Disruptions : via edge cooling

Impurity-related processes
• Recycling
• Atomic and molecular processes
• Desorption : Wall conditioning
• Sputtering
• Arcing
• Evaporation

Sheath phenomena in Tokamak
• Plasma sheath
• Scrape-off layer



Plasma-Surface

Interactions

Tritium Behavior

Last Closed Flux Surface(LCFS) 
determined by

• Limiters
• Divertors



Basic Concepts of Plasma Sheaths :
sheath formation

• Plasma sheath : the non-neutral potential region between the 

plasma and the wall caused by the balanced flow of particles with 

different mobility such as electrons and ions.
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High electron mobility

--> negative potential buildup
• High energy ion bombardment

• Electrons are retarded

• Ambipolar diffusion established



Basic Concepts of Plasma Sheaths :
presheath formation

• Presheath : a transition layer between the neutral plasma 

and the non-neutral sheath in order to maintain the continuity 

of ion flux, giving rise to an ion velocity at the plasma-sheath 

edge known as the Bohm velocity uB. 
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Bohm Sheath Criterion

Electric potential at sheath by Poisson’s equation 
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Presheath and Sheath Potentials

• Potential drop across the presheath accelerating the ions to the Bohm velocity

where p is the plasma potential

with respect to the sheath-presheath potential.

• Substituting for the Bohm velocity
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Scrape-Off Layer: radial distribution

In steady-state, particle balance gives
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Scrape-Off Layer : global balance

Global particle and energy balance :

total particle outflux = total flux to limiter
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Parallel Transport outside the LCFS

Isothermal fluid model
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Recycling

Recycling : each plasma goes to the divertor target plate or limiter 

and returns to the plasma many times during the discharge

Recycling coefficient : 
ratio of the returning flux to 
the plasma from the solid, 
to the incident flux

Efficient recycling coefficients
with additional influx from 
adsorbed particles ( >1) 

• Particle backscattering 
coefficients, Rp

• Energy reflection 
coefficients, RE



Recycling:
backscattered ion energy distribution

• Backscattered particles 

are predominantly neutral

• Average energy depends 

on RE/Rp

Hydrogen diffusion in solids

- exothermic : trap

- endothermic :escape
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Plasma-Surface Interacting Processes

• Atomic and molecular processes 

• Desorption : Wall conditioning

• Sputtering

• Arcing

• Evaporation



Atomic and Molecular Processes

• Atomic reactions

• excitation H + e --> H* + e

• ionization H + e --> H+ + 2e

• charge exchange H+ + H --> H  + H+

• Molecular reactions

• dissociation H2 + e --> H + H + e

• dissociative ionization H2 + e --> H+ + H + 2e

• H2 
+ + e --> H+ + H+ + 2e

• molecular ionization H2 + e --> H2 
+ + 2e

• dissociative recombination H2 
+ + e --> H + H



• Relative reaction rates depend on plasma temperature and density

• Rate coefficients for hydrogen atoms and molecules

Atomic and Molecular Processes



Atomic and Molecular Processes

• Ionization and charge exchange 

influence the transport of recycling 

species and impurity species

• Charge exchange dominant hydrogen 

processes : random walk diffusion

• Ionization dominant impurity ions are 

multiply ionized

• Dominant charge states of the impurity 

determined by electron temperature, 

electron density, and residual time

• Photon efficiency

• ion influx with absolute radiation

• average energy loss per ionization

• Inverse photon efficiency



Impurity Ion Temperature

Calculated temperature of some typical impurity ion species 
as a function of background plasma temperature 

• Thermalization time

• Ionization time
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• low temperature: the impurities are quickly 

thermalized with low ionization rates

• high temperature: ionization occurs before 

thermalization



Local electron temperature 

determines the charge state

Oxygen ionization state distribution in coronal equilibrium

Charge State Distribution of Impurity Ion Species



Adsorption and Desorption

• Adsorbed atoms: hydrogen, carbon monoxide, water, etc

• weakly bound physical adsorption : ~ 0.3eV

• strongly bound chemical adsorption : ~ 3eV

• Desorbed by incident ions, neutrals, electrons and photons

• electron and photon processes : electronic, weak

• ions and neutrals : by momentum transfer, strong

cross section  up to 10-18m2, yield )exp( tJcJY  

• Desorption can lead to

• impurity accumulation in the plasma

• lack of density control when plasma species desorbed

surface concentration

Incident ion flux density

need wall conditioning



Energy Dependency of Desorption Cross Section

4He+ incident, CO on nickel

3He+ incident, H on tungsten

4He+ incident, H on molybdenum

H+ incident, D on nickel



Wall Conditioning
• Baking the vacuum vessel, typically to 200-350°C
• Discharge cleaning

• surface cleaned by particle bombardment in discharges
• glow discharges: effective and simple, combined with RF 
operating at lower pressure of 0.1Pa
• pulsed discharges: tokamak ohmic discharge w/o TF 
• ECR discharges: resonance location can be varied
• enhanced cleaning with hot vessel with less readsorption
• light ions such as hydrogen(with chemical action) and 
helium(remove oxygen and hydrogen with carbon walls) are used 
to avoid sputtering 

• Gettering: wall covered with a metal film by evaporation

• Carbonization and boronization: covering wall with low Z

• Wider operating range up to higher densities w/o excessive radiation

• High density and low temperature decrease sputtering yields
not applicable for reactor



Gettering with Thin Metallic Film

Materials for gettering

• high chemical reactivity and high vapor pressures at modest 

temperatures, typically 1500-2000ºK : titanium, chromium

• beryllium : good getter, low atomic number, but high toxicity

Wall covered with a clean metal film by evaporation

•remove unwanted impurity species : fresh layers of chemically 

active metals react with active gases such as O2, CO, H2, and CO2

binding them tightly to the surface

• reduce outgassing : sequential deposition bury the adsorbed gases

Disadvantages

• should cover at least 30% of the vacuum vessel surface

• quick saturation and need getter between shots

• film flakes with the size of 10-100m: random impurity injection



Carbonization and Boronization

Cover the tokamak wall with low Z non-metallic films(C & B) 
to minimize the release of high Z impurities

• Carbonization

• gaseous carbon compound(CH4) --> glow discharges --> deposit a 

thin layer of amorphous carbon on the wall (optimum temp. 300ºC)

• initially increasing the hydrogen --> make density control difficult 

--> recycling control with helium glow discharge after carbonization

• optimum thickness for good adhesion ~1m --> short lifetime

• Boronization

• similar to carbonization with boranes(B2H4 , B2H6) at 400ºC --> 

boron acts as getter and thin boron films pump oxygen and hydrogen

• Trimethyl borone, B(CH3)3, forms mixed films of carbon and boron

• low affinity of boronized surface for water vapor(good for opening)

• silane(SiH4) deposit Si film : good getter, but higher atomic number

• disadvantages : toxicity of both borane and silane 



Sputtering

Removal of atoms from the solid surface by the impact of ions 
or atoms, resulting in impurity radiation and surface erosion

Sputtering yields
• decreases with increasing sublimation energy
• increase with increasing  energy transfer
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Sputtering yields simulated by Monte Carlo code
• linearly increases after threshold until saturated
• decreases at higher energy since collision cascade occurs away 
from the solid surface in deeper location
• maximum yield move to higher energy as target mass increases
• magnitude of sputtering yield depends on surface binding energy
• surface structure and impurity level can change the binding energy



Energy Dependence of Sputtering Yield

General semi-empirical curve for sputter yield
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yield factor depends on incident 

and target atom combination

nuclear stopping cross section

Thomas-Fermi energy

threshold function

• Sputter yield influenced 

by incident angles affected 

by the ion Larmor radius, 

sheath acceleration, and 

the surface roughness



Energy Distribution of Sputtered Atom

• most probable energy : 0.5Es (~2-3eV)

• energy distribution varying as E-2 at high energies

• higher mean energy when sputtered by heavier ions



Sputtering Models

• energy balance

m

p

p

m

p

m

Y

Y

n

n









1

ppesCRH VnaTPPP  /)(













 m

m

m
p

p

p

m

m Y
n

Y
nn






• flow balance in steady-state

input power
radiated power

energy transported to the surface per e-i pair



Choice of Materials • impurity production rates

• structual strength

• neutron activation

• thermal shock resistanceminimize Z and sputter yield

• figure of merit
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Arcing

• Power arc by external potential

• Unipolar arc by plasma sheath

Sustained with low voltage, high current

Joule heating, evaporation

erosion

Ion currents : 7-10%, 50-100eV,

in charge states up to 4-5



Heat Flux, Evaporation, and Heat Transfer

• evaporation

--> erosion, contamination

--> low vapor pressures

low sputtering yield

• thermal shock

--> loss of structual strength

--> high thermal conductivity

Upper limit of tolerable heat flux : 10-20MW/m2

Heat flux for high reliability : 2-5MW/m2



Plasma-Surface

Interactions

Tritium Behavior

Last Closed Flux Surface(LCFS) 
determined by

• Limiters
• Divertors



Limiters define plasma boundary

Roles of the limiter
• protect the wall from the plasma : disruptions, runaway electrons, 
other instabilities -->high heat loads --> refractory material
• localize the plasma-surface interaction
• localize the particle recycling : high neutral density and radiation

Material selection criteria for the limiter
• withstand thermal shock
• produce as low an impurity flux as possible
• maintain low atomic number with impurity
• have good thermal conductivity for heat transfer

Materials for the limiter
• low Z materials : carbon and beryllium, high heat loads
• high Z materials : tungsten and molybdenum, good thermal 
properties, low sputtering yields; however, very low 
concentrations allowed because of their high Z



Limiters
Different types of limiters have different

• connection lengths

• scrape-off layer decay lengths
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Divertors define the LCFS solely by the magnetic field and 

isolate plasma surface interactions from the confined plasma

Possible ways of reducing power density at the target
• placing the target tiles at an oblique angle to the field lines
• flux expansion of the field lines as they approach the target
• magnetically sweeping the strike point over a width > p

• radiating power before reaching to the target by conduction
• transferring the energy to neutral particles in the divertor

Objectives of divertor design in the fusion reactor
• minimizing the impurity content of the plasma by having the 
plasma surface interactions remote from the confined plasma 
and designing the divertor particle flow
• removing the alpha particle power by heat transfer through 
a solid surface to a fluid transfer medium
• removing the helium ash resulting from the fusion reactions

Avoiding target surface erosion as well as impurity flow into plasmas



One-dimensional Fluid Model of Divertor SOL

• no energy or momentum sources or 

sinks (radiation) in the scrape-off layer 

• Simplified geometry between X point 

and the target

• Energy flow from the confined plasma

Assume

Momentum conservation
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Radial Power Distribution in the SOL

Steady state power flow in the scrape-off layer
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Volume Losses of Power in the Divertor
To minimize power deposition on the target plates, radiate 
power so that it can be distributed over a large surface area

• Introduce impurity to enhance the radiation,  dVTRnnP eemr )(

maximum  radiation parameter, R(Te)~ 10-31Wm3,

for  1GW radiated power, nm neV< 1040m-3

nm /ne~10% with ne~ 1020m-3  and V= 10m3

Lead to impurities flowing into the confined plasma

Cause unacceptable increase in the target sputtering

• Volume loss mechanisms with charge exchange neutral loss (low 
plasma temp.) and ion-neutral collisions (high neutral density)

• Detached divertor plasma : momentum and energy must be 

transferred from the plasma to a neutral gas blanket near the target

Detached plasma drops target density --> difficult helium ash removal



Allowable Fraction of Impurities



Flow in the Divertor
• Ionization due to recycling is 
localized near the target --> density 
peaks and temperature falls
• Helium ash removal requires very 
high pumping speed --> transporting 
the plasma to the separate divertor 
chamber can ease the restrictions 
(central fueling with NBI and pellets)
• High ionization due to high local 
density --> reverse flows back to LCFS



General Design Considerations for the Divertor
• Single and Double nulls 

• double null doubles wall interaction area and halves connection 
length, more triangularity, decreases plasma volume

• Target geometries: flat plates and enclosed chamber
• flat plates: simple, easy diagnostic access, rigid structure
• enclosed chamber: good isolation from the main confined plasma

• Target tiles
• reduce thermal stress due to non-uniform heat flux --> make small
• increase the effective area with small angle, and displace targets

• Erosion of the surface and consequent redeposition of eroded material



Tritium Behavior

• implanted tritium moves 
both by diffusion and 
surface recombination

Diffusion-dominated hydrogen distribution

• release rate for diffusion 
dominant case with uniform 
distribution 2/1 AtR

• non-metalic material : porous, 
pearmeate and trapped  at the 
lattice defects
--> heating and hydrogen 
discharge can remove tritium

• Wall materials(exothermically 
dissolving hydrogen, Ti, Zr, Nb) 
release little gas and build up 
tritium inventory --> not tolerable


