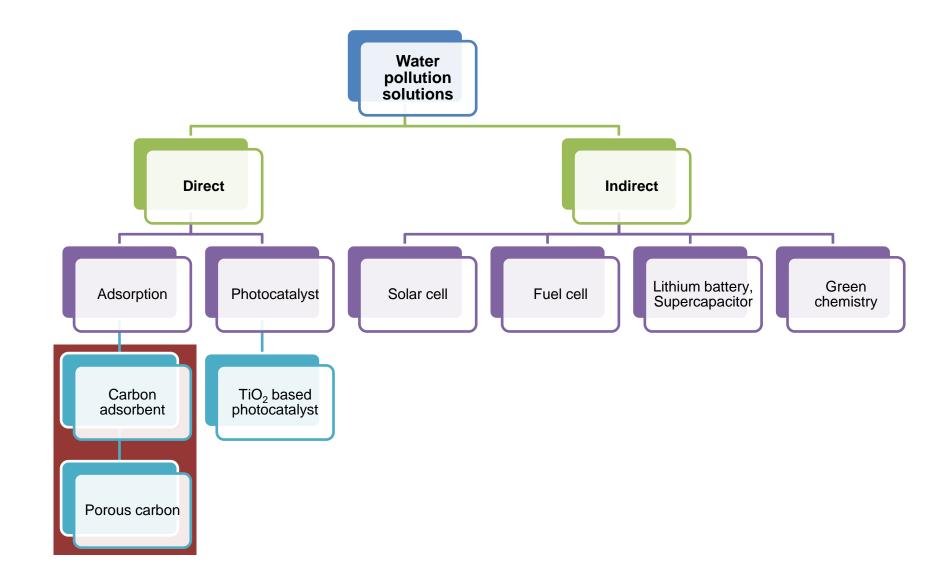
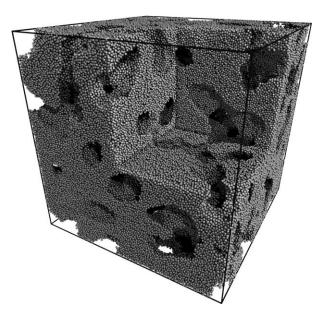

Part 2. The Hydrosphere


Additional Chapter 2. The Water Pollution Solutions (Carbon adsorbent)

2.1 The Water Pollution

Elimination of Pollutants by !!!!

2.2 The Water Pollution Solutions

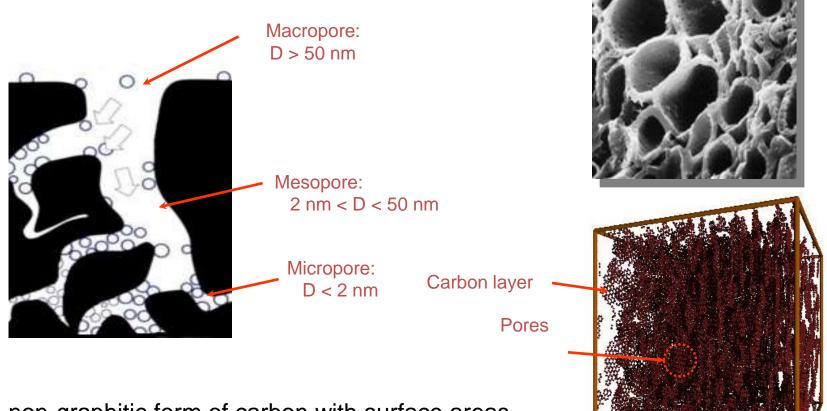

2.2 The Water Pollution Solutions

Contents

Porous carbon

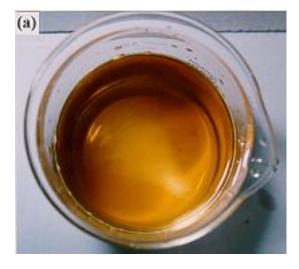
- 1. Introduction (What is porous carbon)
 - 1.1. Porous carbon (History)
 - 1.2. Structure of porous carbon
 - 1.3. Surface chemistry and pore structure of porous carbon
- 2. Preparation
 - 2.1. Precursors and carbonization
 - 2.2. Activation and post-treatment
- 3. Characterization tools
- 4. State of the art

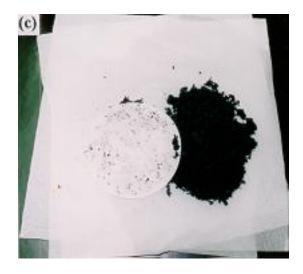
2.3 Porous carbon adsorbent

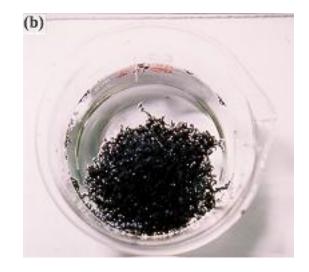

Carbonaceous adsorbents with highly and extensively developed pore structure

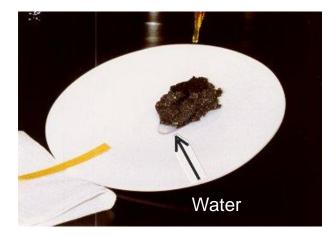
Non graphite carbon having a random imperfect structure such as cracks and crevices

- A broad range of pore size distribution on carbon surface
- Internal surface area : 500~3000 m² g


2.3 Porous carbon adsorbent : what is porous carbon?


What is Porous Carbon ?




A non-graphitic form of carbon with surface areas ranging from 500 to 3000 m²/g.

2.3 Porous carbon adsorbent : what is porous carbon? (spilled heavy oil recovery)

2.3 Porous carbon adsorbent : what is porous carbon?

Air purification

Water purification

Masks

Filters

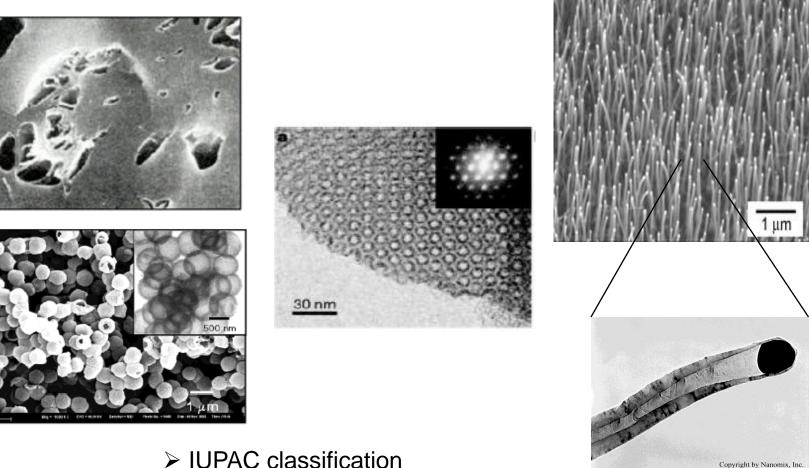
Cartridge

2.3 Porous carbon adsorbent : what is porous carbon?

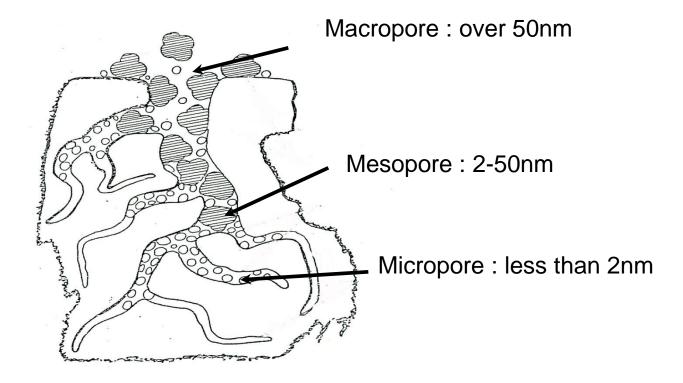
States	Purpose	Applications	Examples
Gas phase	Recovery	Gasoline Vapor Recovery	Gasoline Fuel recovery, ELCD
		Solvent Recovery	MEK, Cyclohexanone, CS2, Furon, Trichloroethane
	Odor Removal	Room Odor Removal	Tobacco, CO, Room filters, Toilet Odor, Pet Odor
		Refrigerator	Deodorizer
		Automobile	Cabin air filters
		Tobacco	Cigarette Filter
		Hospital	Anesthetic gas removal
		Ozone Removal	Copiers, Laser Printers
	Harmful Gas	Closed Environment	Dioxin removal,Space Ships, Underground CO2
	Gas Separation	Nitrogen PSA	Nitrogen Gas Separation
		Other PSA	Radio Active Gas
Liquid Phase	Water Treatment	Factory Waste Water	Cleaning Waste Water
		Drinking Water Treatment	Trihalomethane, Chlorine, VOCs, Lead, Arsenate removal
	Decolorization of Indusrial Chemicals	Industrial Use	Sugar refinement, Pharmaceutical use, Whisky distilment
	Medical Applications	Medical and Nursing	Kidney machine, Nursing supplies, Respirators
	Electronics	Eletrorodes	Double Layer Capacitors, Hardisks
	Mineral Recovery	Gold Recovery	Gold Recovery

2.3 Porous carbon adsorbent : brief history

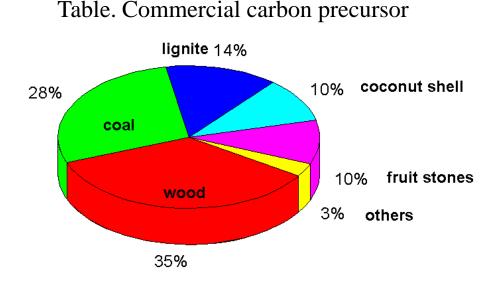
Charcoal, 2000 BC Ancient Egyptian ; in water purification



Granular Activated Carbon (GAC) During World WAR II ; in gas mask


Powdered Activated Carbon (PAC) ; Larger pore diameter than GAC

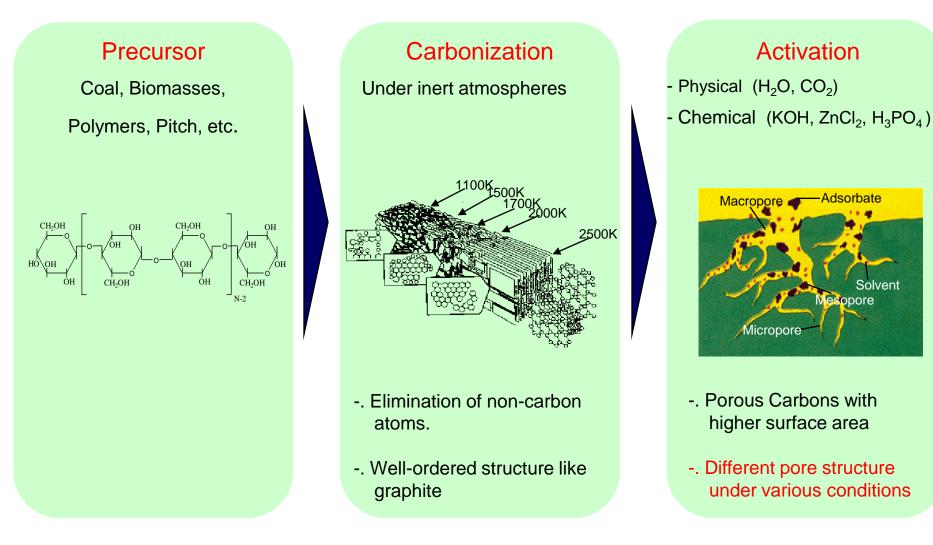
2.3 Porous carbon adsorbent : structure of porous carbon



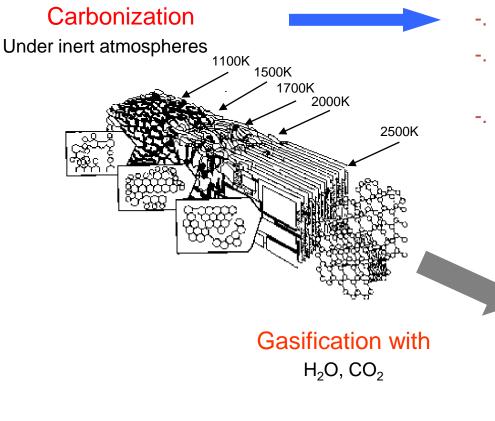
- Ultra-micropore : < 0.5 nm diameter
- Micropore : 0.5 to 2.0 nm diameter
- Mesopore : 2.0 to 50 nm diameter
- Macropore : > 50 nm diameter

2.3 Porous carbon adsorbent : surface chemistry on porous carbon

2.3 Porous carbon adsorbent : preparation (precursor)

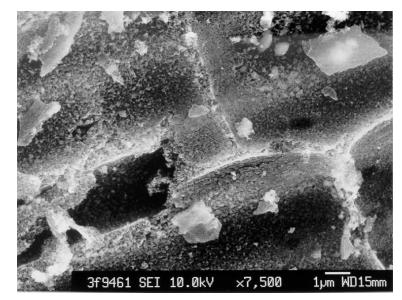

The selection of the precursor essentially determines the range of adsorptive and physical properties that can be attained in the activated carbon products

- Important consideration of selecting a source ; cost, availability, consistency of quality
- Particularly for coal, peat, and lignite ; the mineral matter and sulfur contents


2.3 Porous carbon adsorbent : preparation (precursor)

Raw materials	Carbon (%)	Volatile (%)	Density (Kg/M ³)	Ash (%)	Texture of activated carbon	Application of activated carbon
Softwood	40–45	55–60	0.4-0.5	0.3–1.1	Soft, large pore volume	Aq. phase adsorption
Hardwood	40-42	55-60	0.55-0.8	0.3–1.2	Soft, large pore volume	Aq. phase adsorption
Lignin	35–40	58–60	0.3–0.4	-	Soft, large pore volume	Aq. phase adsorption
Nut shells	40–45	55–60	1.4	0.56	Hard, large multi pore volume	Vapour phase adsorption
Lignite	55-70	25–40	1.0-1.35	5–6	Hard small pore volume	Waste water treatment
Soft coal	65–80	25–30	1.25–1.50	2.12	Medium hard, medium micropore volume	Liquid & vapour phase adsorption
Petroleum coke	70–85	15–20	1.35	0.5–0.7	Medium hard, medium micropore volume	Gas–vapour adsorption
Semi hard coal	70–75	1–15	1.45	5-15	Hard large pore volume	Gas–vapour adsorption
Hard coal	85–95	5-10	1.5-2.0	2.15	Hard large volume	Gas–vapour adsorption

2.3 Porous carbon adsorbent : preparation (methods)



2.3 Porous carbon adsorbent : preparation (carbonization)

-. Disorganized material is removed with subsequent increase in pore volume

- -. Liberation of non-carbon atoms
- -. Rigid carbon skeleton formed by aromatic sheets and strips.
- -. Pores are filled or blocked by disorganized carbon.

Porous carbon from rice straws

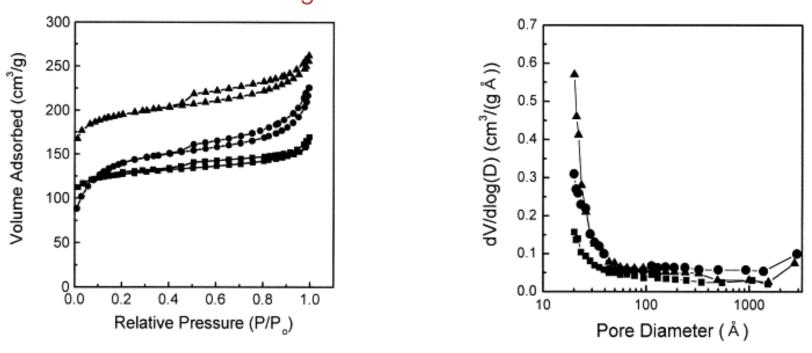
2.3 Porous carbon adsorbent : preparation (carbonization)

Variables of carbonization

- Rates of heating
- Final heat treatment temperature
- Soak time
- > Ambient gases
- Reaction temperature
- Reacting gases

2.3 Porous carbon adsorbent : preparation (carbonization)

Effect of carbonization temperature on yield and composition of charcoal


Carbonization Temperature	Chemical a char	•	Charcoal yield based on oven dry wood
°C	% of fixed charcoal	% volatile material	(0% moisture)
300	68	31	42
500	86	13	33
700	92	7	30

Low carbonization temperatures give a higher yield, but low grade

2.3 Porous carbon adsorbent : preparation (activation)

2.3 Porous carbon adsorbent : preparation (physical activation)

Gasification with Oxidizing Gases

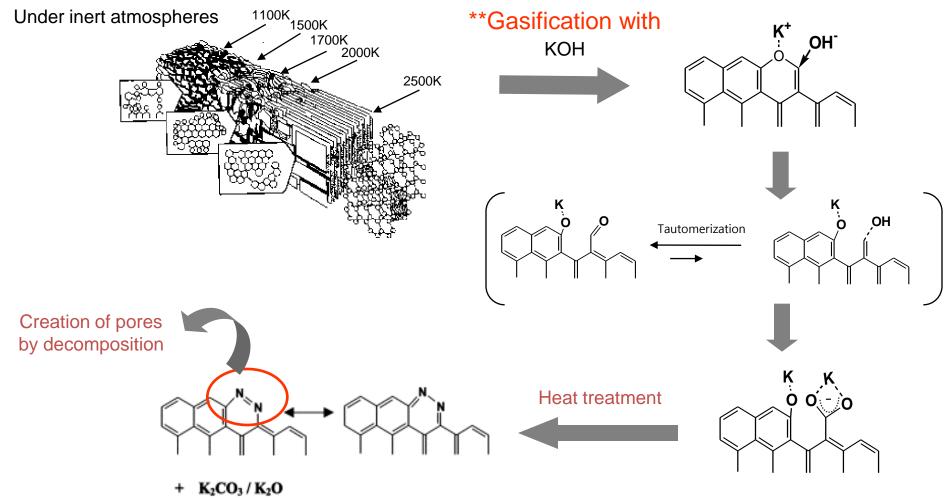

- Fig. 1 Adsorption/desorption isotherms of porous carbon from rice straws.
 - (■: 700°C, ▲: 800°C, ●:900°C)

Fig. 2 Pore size distribution of porous carbon from rice straws. (■: 700°C, ▲: 800°C, ●:900°C)

Yun CH et al., Carbon 2001, 39, 559-67.

2.3 Porous carbon adsorbent : preparation (chemical activation) *Gasification with Oxidizing Chemicals*

*Carbonization

*Marsh H, Carbon 1991, 29, 703.

**Oh GH, Park CR, Fuel 2002, 81, 327-36.

2.3 Porous carbon adsorbent : preparation (chemical activation)

Gasification with Oxidizing Chemicals



Fig. 3 Adsorption/desorption isotherms of porous carbon from rice straws.

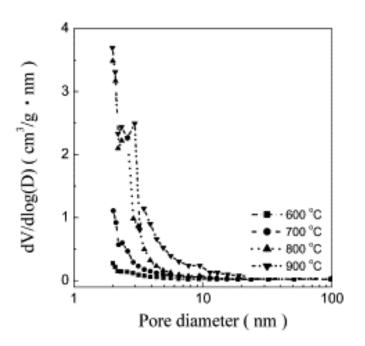
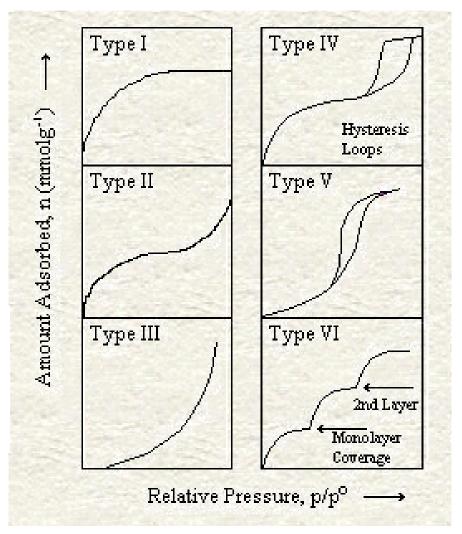


Fig. 4 Pore size distribution of porous carbon from rice straws.

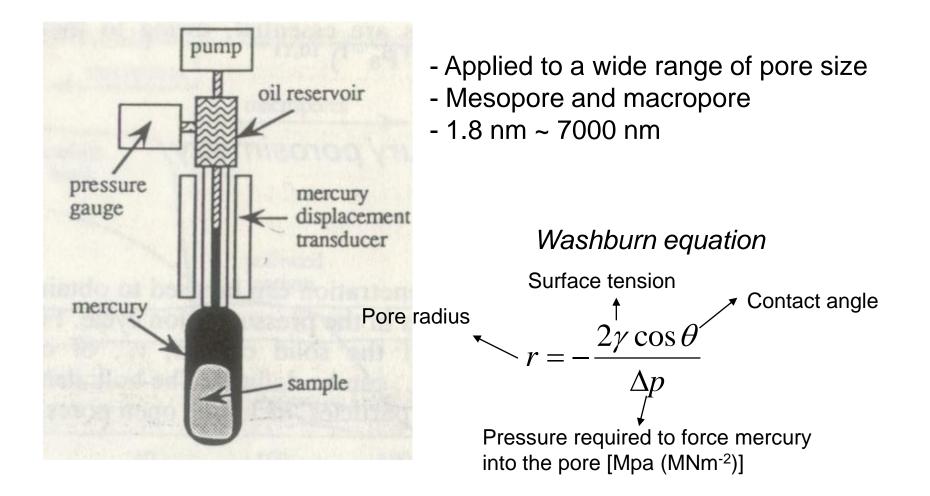
2.3 Porous carbon adsorbent : Characterization (nitrogen adsorption)

Adsorption Isotherm

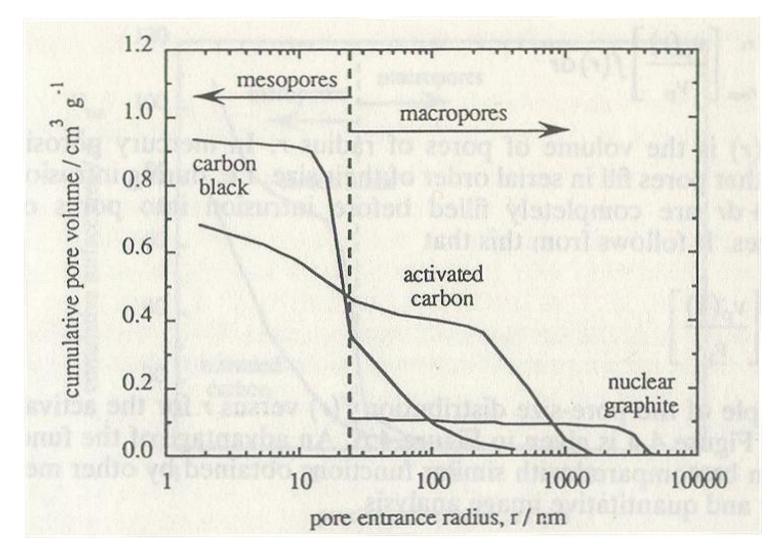

To quantify the adsorption process, extents of adsorption (mmolg⁻¹) are related to the equilibrium partial pressure p/p^0 at constant temperature to create the *isotherm*

- Estimates of the surface area
- Estimates of pore volumes in the various porosity, i.e. pore-size of potential energy distributions
- Assessments of the surface chemistry of the adsorbent
- The nature of the adsorbed phase
- Assessments of the efficiency of industrial carbons employed in separation/purification techniques

2.3 Porous carbon adsorbent : Characterization (nitrogen adsorption)


Adsorption Isotherm

6-Major Class of Isotherm Shape


2.3 Porous carbon adsorbent : Characterization (mercury porosimetry)

Mercury Porosimetry

2.3 Porous carbon adsorbent : Characterization (mercury porosimetry)

Mercury Porosimetry

2.3 Porous carbon adsorbent : state of the art (Anthropogenic inputs of trace metal into the aquatic ecosysrem)

Critical contaminants (As, Cr)

Source category	Annual global discharge (10 ⁹ m ³)	As	Cd	Cr	Cu	Hg	Mn	Мо	Ni	Рь	Sb	Sc	v	Zn
Domestic wastewater ⁺														
-Central	90	1.8-8.1	0.18-1.8	8.1-36	4.5-18	0-0.18	18 - 81	0-2.7	9.0-54	0.9 - 7.2	0-2.7	0-4.5	0-2.7	9.0-45
-Non-central	60	1.2-7.2	0.3-1.2	6.0-42	4.2-30	0-0.42	30-90	0 - 1.8	12-48	0.6 - 4.8	0 - 1.8	0-3.0	0 - 1.8	6.0-36
Steam electric	6	2.4-14	0.01-0.24	3.0-8.4	3.6-23	0-3.6	4.8 - 18	0.1-1.2	3.0 - 18	0.24-1.2	0-0.36	6.0-30	0-0.6	6.0-30
Base metal mining	:													
and dressing	0.5	0-0.75	0-0.3	0-0.7	0.1-9	0-0.15	0.8-12	0-0.6	0.01-0.5	0.25-2.5	0.04-0.35	0.25 - 1.0	_	0.02-6
Smelting and refining	:													
-Iron and steel	7						14-36			1.4-2.8				5.6-24
-Non-ferrous metals	2	1.0-13	0.01-3.6	3-20	2.4-17	0-0.04	2.0-15	0.01 - 0.4	2.0-24	1.0-6.0	0.08-7.2	3.0 - 20	0-1.2	2.0-20
Manufacturing processes														
- Metals	25	0.25-1.5	0.5 - 1.8	15-58	10-38	0-0.75	2.5 - 20	0.5-5.0	0.2-7.5	2.5-22	2.8 - 15	0-5.0	0-0.75	25-138
-Chemicals	5	0.6-7.0	0.1-2.5	2.5-24	1.0-18	0.02-1.5	2.0-15	0-3.0	1.0-6.0	0.4 - 3.0	0.1-0.4	0.02-2.5	0-0.35	0.2-5.0
-Pulp and paper	3	0.36-4.2	-	0.01 - 1.5	0.03-0.39	-	0.03 - 1.5	_	0-0.12	0.01-0.9	00.27	0.01-0.9		0.09-1.5
-Petroleum products	0.3	0-0.06	_	0-0.21	0-0.06	0-0.02	_	_	0-0.06	0-0.12	0-0.03	0-0.09		0-0.24
Atmospheric fallout‡		3.6-7.7	0.9-3.6	2.2-16	6.0-15	0.22 - 1.8	3.2 - 20	0.2 - 1.7	4.6-16	87-113	0.44-1.7	0.54 - 1.1	1.4-9.1	21-58
Dumping of sewage	[6×10 ⁹ kg]													
sludge§		0.4-6.7	0.08-1.3	5.8-32	2.9-22	0.01-0.31	32-1.06	0.98 - 4.8	1.3 - 20	2.9 - 16	0.18 - 2.9	0.26-3.8	0.72-4.3	2.6-31
Total input, water		12-70	2.1-17	45-239	35-90	0.3-8.8	109-414	1.8-21	33-194	97-180	3.9-33	10-72	2.1-21	77-375
Median value		41	9.4	142	112	4.6	262	11	113	138	18	41	12	226
			<u>,</u>								/			(

Table 4 Anthropogenic inputs of trace metals into the aquatic ecosystems (106 kg yr-1)

Additional Chapter 2. The Water Pollution Solutions 2.3 Porous carbon adsorbent : state of the art (Anthropogenic inputs of trace metal into the aquatic ecosysrem)

Critical contaminants (As, Cr)

Exposure to Arsenic

- Skin, lung, bladder, and kidney cancer
- Pigmentation changes
- Skin thickening (hyperkeratosis)
- Muscular weakness
- Loss of appetite
- Nausea

Exposure to Chromium

- nausea, diarrhea, liver and kidney damage
- ➤ dermatitis,
- ➢ internal hemorrhage,
- respiratory problems(asthma)

Journal of Hazardous Materials 2007, 142, 1–53

2.3 Porous carbon adsorbent : state of the art (Aresenic adsorption)

Iron-containing mesoporous carbon (IMC)

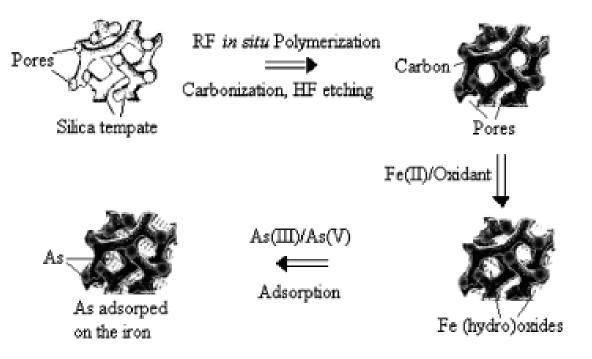


Table 2. Physicochemical properties of mesoporous silica templates and mesoporous carbons prepared in this study.

_	BET surface area (m²/g)	Average pore diameter (nm)	Median pore diameter (nm)	Porosity	Volume of pore (cm ³ /g)
MCM-48	1167	2.64	2.70	0.48	0.77
Porous C	513	4.07	5.83	0.34	0.52
IMC	401	4.41	7.87	0.31	0.44

Environ. Eng. Sci. 2007, 24, 113-121

2.3 Porous carbon adsorbent : state of the art (Aresenic adsorption)

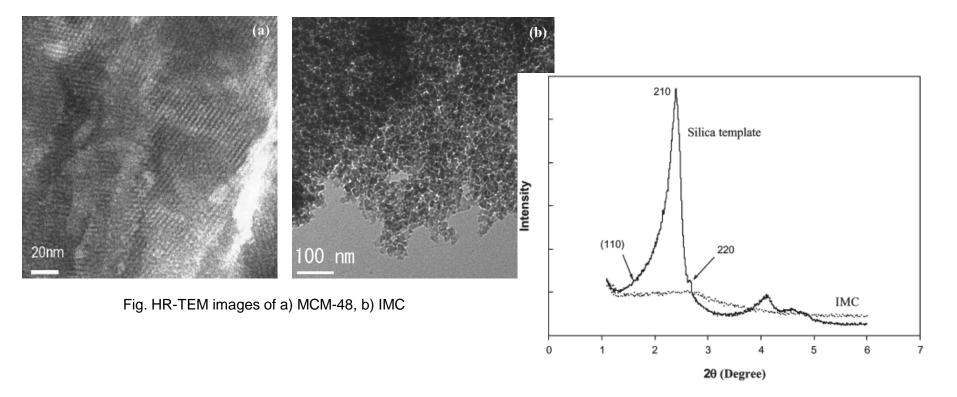


Figure. Low-angle X-ray diffraction (XRD) patterns of silica template and IMC.

Environ. Eng. Sci. 2007, 24, 113–121

1000

0

0

2000

4000

6000

[As]_{equlibrium}, µg/L

8000

A 7000 В 8000 $q = \frac{5515C}{6282 + C}, R^2 = 0.9954$ 6000 $q = 229 C^{0.37}, R^2 = 0.9155$ [As]_{ads}, µg/g 6000 5000 [As]_{ads}, μg/g 4000 $q = \frac{5956C}{471 + C}, R^2 = 0.9736$ $q = 16.9C^{0.57}, R^2 = 0.9919$ 4000 3000 2000 2000

As(III)

As(V)

12000

0

10000

Figure. Arsenic adsorption isotherm regressed by different model (A) Langmuir adsorption isotherm, (B) Freundlich adsorption isotherm. Table 4. Regressed parameters of isotherm adsorption modeled by different equations.

14000

0

2000

4000

6000

[As]_{equlibrium}, µg/L

8000

	La	ngmuir equation		Freu	ndlich equation	!
Arsenic speciation	$q_m (\mu g/g)$	b (l/µg)	R ² (%)	$K_F (\mu g/g)$	l∕n	R ² (%)
As(III)	5956	471	97.36	16.9	0.57	99.19
As(V)	5515	6282	99.54	229	0.37	91.55
Table 5. Arsenic ads	orption kinetics fit b	y a pseudosecond	-order kinetic mo	xdel.		

	k		qe	Determination
Arsenic speciation	$(g \cdot \mu g^{-1} \min^{-1})$	$\mu g_{As}/g$	$mmol_{As}/g$	coefficient (R ²)
As(III), 4,925 μg/L	2.21×10^{-4}	1,250	0.017	0.988
As(V), 4,910 μ g/L	1.80×10^{-4}	1,667	0.022	0.997

Highest arsenic adsorption capacity and adsorption kinetic rate

Environ. Eng. Sci. 2007, 24, 113-121

As(III)

As(V)

12000

14000

10000

2.3 Porous carbon adsorbent : state of the art (Chromium adsorption)

Adsorbents	рН		Model used	Adsorption capacity (mg/g)		
		(°C)	to calculate adsorption capacities	Cr(VI)	Cr(III)	
Untreated R. nigricans	2.0	30	Langmuir	123.5	-	
CTAB-treated R. nigricans	2.0	30	Langmuir	140.8	_	
PET-treated R. nigricans	2.0	30	Langmuir	161.3		
APTS-treated R. nigricans	2.0	30	Langmuir	200.0		
Biomass of filamentous algae Spirogyra species	2.0	18	Langmuir	14.7	-	
	2.0	22	Langmuir	48.1	-	
Carbonaceous adsorbent from waste tires (TAC)	2.0	30	Langmuir	55.3	-	
	2.0	38	Langmuir	58.5	_	
	2.0	22	Langmuir	1.9	_	
Carbonaceous adsorbent from sawdust (SPC)	2.0	30	Langmuir	2.2	_	
	2.0	38	Langmuir	2.3	_	
	2.0	22	Langmuir	44.4	_	
Carbon, F-400	2.0	30	Langmuir	48.5	-	
	2.0	38	Langmuir	53.2	_	
IRN77 resin	3.5	25	Freundlich	-	35.4	
SKN1 resin	3.5	25	Freundlich	-	46.3	
Dried anaerobic activated sludge	1.0	25	Langmuir	577.0	_	
2	2.0	30	Langmuir	22.7	_	
Red mud	2.0	40	Langmuir	21.6	_	
	2.0	50	Langmuir	21.1	_	
Tannin gel (66% water content)	2.0	30	-	192.0	20.0	
Tannin gel (72% water content)	2.0	30	-	224.0	28.0	
Tannin gel (75% water content)	2.0	30	-	235.0	38.0	
Tannin gel (77% water content)	2.0	30	-	287.0	50.0	
Cow dung carbon	3.4	30	Langmuir	10.0	_	
Carbon C3	3.0	25	Langmuir	35.0	-	
Carbon C4	3.0	25	Langmuir	15.0	-	
Algae, Chlorella vulgaris	2.0	25	Langmuir	27.3	_	
Insoluble straw xanthate (ISX)	3.6-3.9	25	Langmuir	-	1.9	
Alkali-treated straw (ATS)	3.6-3.9	25	Langmuir	-	3.9	
Algae, C. vulgaris	2.0	25	Langmuir	79.3	_	
Algae, S. obliquus	2.0	25	Langmuir	58.8	_	
Algae, Synechocystis sp.	2.0	25	Langmuir	153.6	-	
Algae, C. vulgaris	2.0	25	Freundlich	6.0	-	
Paot	2.0	25	_	30.7	_	

Various activated carbon have shown the high chromium adsorption capacity

Journal of Hazardous Materials 2006, 137, 762–811