

2005 Term Project Review

Dong-II "Dan" Cho

School of Electrical Engineering and Computer Science, Seoul National University Nano/Micro Systems & Controls Laboratory

> Email: dicho@snu.ac.kr URL: http://nml.snu.ac.kr

Contents

- Project Goals & Design Constraints
- Design Procedure Example
- 2005 Design Summary
- 2005 Design Examples (Good & Bad)
- Conclusions & Q/A

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other ² usage and possession is in violation of copyright laws

Project Goals & Design Constraints

- Design and fabricate a comb-drive type actuator
 - for large actuation distance
 - low-voltage
 - DC actuation or AC resonance at any natural frequency is possible
- Design Constraints
 - Die size: 4mm X 4 mm
 - Lithography, etch constraints: 4 um (line and space)
 - Minimize the footing phenomenon
 - Must put a ruler to measure the actuation distance
 - Must use less than 200 volts or so, due to limited supply and possible breakdown
- Project Goal
 - maximum distance
 - measure *applied voltage*
 - Maximize the ratio

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other ³ usage and possession is in violation of copyright laws

Design Procedure Example

- 1. Die size & Core size
- 2. Decide 'maximum distance' and 'applied voltage'
- 3. Decide 'spring constant' and calculate 'capacitance'
 - Choose 'spring type' (fixed-end, guided-end, folded, folded-flexure)
 - Choose 'mass type' (comb-drive, parallel plate)
- 4. Draw layout & perform simulation
 - Cadence, ANSYS

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other ⁴ usage and possession is in violation of copyright laws

2005 Design Summary

	#	1	2	2	3	3	4	4	Ľ	5	(5	7	8
	type	#1	#1 #2 #1 #2 #1 #2 #1		#2	#1	#2	#1	#1					
spring design	spring type	folded spring	folo spr	ded ing	folo spr	ded ing	guided -end spring	folded -flexure spring	fold spr	ded ing	serpe spr	entine ing	folded spring	folded -flexure spring
uesign	spring constant [N/m]	7.34	10.4	7.3	-	-	8.51	2.23	-	-	32.03	-	93	5.07
_	applied voltage [V[28.4	10.8	10.65	44	30	40.6	20.8	14	30	15	15	39.7	20
Force	maximum displacement [um]	15	18	15	15	10	33	15	20	20	25	15	10	10.5
comb	Туре	comb- drive	comb- drive	comb- drive	comb- drive	comb- drive	comb- drive	comb- drive	comb- drive	comb- drive	comb- drive	comb- drive	comb- drive	comb- drive
design	number of combs	1200	2600	2600	-	-	1280	320	4000	2500	1580	1580	4440	-
target	um/V	0.53	1.67	1.41	0.34	0.33	0.81	0.72	1.43	0.67	1.67	1.00	0.25	0.53

result	um/V	0.45 (10um, 22V)	-	-	0.63 (15um, 24V)	-	-	-	1.05 (10um, 9,5V)	0.85 (20um, 23.3V)	-	-	0.4 (10um, 25V)	-
	actuation	0	0	x	0	x	x	x	ο	0	x	x	0	x

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other ⁵ usage and possession is in violation of copyright laws

Design Layout

Fabrication Result

- Comments
 - Folded spring design: spring length, spring gap
 - Etch hole size: 4 um X 40 um

Nano/Micro Systems & Controls Lab.

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other 6 usage and possession is in violation of copyright laws

Comb resonator design #3 (cont'd)

Fabrication Result (Footing effect)

- Measurement result
 - Measurement: 15um @ 24V (10um @ 21V)
 - Design: 15um @ 44V
 - → Due to footing effect, decrease spring constant
 - Large displacement with high-voltage is easier

Dong-II "Dan" Cho

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2008. Any other 7 usage and possession is in violation of copyright laws

- Comments
 - Spring design
 - Etch hole size: 10 um X 10 um
 - Ruler design error
 - Anchor design error

→ Release failure, not actuated

- Comments
 - Spring gap vs. other openings
 - Etch hole size: 10 um X 10 um
 - No ruler
- → Release failure, not actuated

Dong-II "Dan" Cho

Nano/Micro Systems & Controls Lab. This material is intended for students in 4541.844 class in the Spring of 2008. Any other 8 usage and possession is in violation of copyright laws

Magnified view of comb-drive

			÷																																										
		Ŀ				÷																						÷		÷	÷		÷				÷			÷	J.			1	
	1	(2	9																																									•
-	_	4	-	y.																								÷.,			÷.,		÷.,												
			÷																																										
-																																											•		•
-			•						•		•					•	•		•					•			•	•			•	•	•	•	•		•			•					•
1			1	1	1	×																																					1	1	1
-								. •			. *	1	1	. *		. •	1		. *	1	. *		. •		1			1		1			1		*	1		1		۰.	٠.				
-																																													
-			×.																																						25		з.		•
-			4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
1			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	•		R I	4	•
-																																											н.		•

Magnified view of spring

- Comments
 - 1) Comb-drive gap difference \rightarrow Abnormal actuation in wrong axis (x-axis) & Spring breakage Spring gap difference
 - 2) Etch hole size: 4 um X 8 um → Release failure, not actuated

Dong-II "Dan" Cho

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2008. Any other ⁹ usage and possession is in violation of copyright laws

Comb resonator design #6 (cont'd)

- Comments
 - 1) Comb-drive gap difference & Spring gap difference
 - 2) Etch hole size: 4 um X 8 um
 - 3) Unstable design: yawing motion posibilities
 - 4) Unbalanced design: actuation in abnormal direction could occur

Dong-II "Dan" Cho

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2008. Any other usage and possession is in violation of copyright laws

- Comments
 - Etch hole size: 5 um X 5 um
 - → Release failure, not actuated

Dong-II "Dan" Cho

Nano/Micro Systems & Controls Lab. This material is intended for students in 4541.844 class in the Spring of 2008. Any other usage and possession is in violation of copyright laws

Conclusions & Q/A

- Etch lag phenomenon
 - Etch hole design consideration
 - Gap variation issue
- Footing effect
- Release
 - Anchor design issue
- AC actuation
 - Larger displacement at lower voltage is possible

Dong-II "Dan" Cho

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2008. Any other 12 usage and possession is in violation of copyright laws