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Stress

• Normal Stress: force applied to surface 
/F Aσ =

measured in N/m2 or Pa,
compressive or tensile

/F Aσ =

• Shear Stress: force applied parallel 
to surfaceto su ace

measured in N/m2 or Pa
/F Aτ =

Young’s Modulus:
/E σ ε=

Hooke’s Law:
/E σ ε

/ /K F l EA l= ∆ =
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Strain

• Strain: ratio of deformation to length

/l lγ = ∆

• Shear Modulus

/G τ γ=

• Relation among: 

/G τ γ=

and νG E• Relation among: 

=
EG

,  , and νG E

2(1 )ν+
G
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Poisson’s Ratio

Tensile stress in x direction results in compressive 
stress in y and z direction (object becomes longer stress in y and z direction (object becomes longer 
and thinner)

P i ’  R ti• Poisson’s Ratio:
ν ε ε ε ε= − = −/ /

  t  t i  / l it di l t i  

y x z x

= −  transverse strain / longitudinal strain 

Metals: 
Rubbers: 
C k

0.3ν ≈
0.5ν ≈

0Cork: 0ν ≈
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State of stress

• The combination of forces 
generated by the stresses g y
must satisfy the conditions for 
equilibrium:

0F F F∑ ∑ ∑ 0

0
x y z

x y z

F F F

M M M

= = =

= = =

∑ ∑ ∑
∑ ∑ ∑

C id  th  t  b t th  
( ) ( )0

,   and 
z xy yx

xy yx yz zy yz zy

M A a A aτ τ

τ τ τ τ τ τ

= = ∆ − ∆

= = =

∑
• Consider the moments about the 

z axis:

,xy yx yz zy yz zy

• Only 6 components of stress are 
required to define the complete 
state of stress.

Dong-Il “Dan” Cho     Nano/Micro Systems & Controls Lab.
This material is intended for students in 4541.844 class in the Spring of 2008. Any other 
usage and possession is in violation of copyright laws

5



Stress and Strain Diagram

• Ductile Materials
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Stress and Strain Diagram (cont’d)

• Brittle Materials

Stress-strain diagram for a typical brittle 
t i lmaterial
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Deformations Under Axial Loading

Pσ
• From Hooke’s Law:

P
E

E AE
σσ ε ε= = =

• From the definition of strain:

L
δε =

• Equating and solving for the deformation:

PL
AE

δ =
AE

• With variations in loading, cross-section 
or material properties:or material properties:

i i

i i i

PL
AE

δ = ∑
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Stress Concentration: Fillet

σmax

ave

K
σ
σ

=
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Symmetric Member in Pure Bending

• Pure Bending:  Prismatic members 
subjected to equal and opposite couples 

• Internal forces in any cross section are 

subjected to equal and opposite couples 
acting in the same longitudinal plane

Internal forces in any cross section are 
equivalent to a couple.  The moment of 
the couple is the section bending moment

0x xF dAσ= =∫
0y xM z dA

M y dA M

σ

σ

= =

= =

∫
∫
∫z xM y dA Mσ= − =∫
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Strain Due to Bending

• Consider a beam segment of length L

Af  d f i  h  l h f h  l After deformation, the length of the neutral 
surface remains L.  At other sections,

( )
( )

ρ θ

δ ρ θ ρθ θ

′ = −

′= − = − − = −

L y

L L y y

δ θε
ρθ ρ

= = − = −      (strain varies linearly)

        

x

y y
L
c cε
ρ ε

ε ε

= =

= −

    or    m
m

x m

c c
ρ

yε εx mc
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Stress Due to Bending

• For a linearly elastic material,
y

(stress varies linearly)

x x m

m

y
E E

c
y
c

σ ε ε

σ

= = −

= −
c

• For static equilibrium,

0

0

x x m

m

y
F dA dA

c

y dA

σ σ

σ

= = = −

= −

∫ ∫

∫0 y dA
c

= ∫
First moment with respect to neutral 
plane is zero.  Therefore, the neutral p ,
surface must pass through the section 
centroid.
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Stress Due to Bending (cont’d)

• For static equilibrium, Bending Momentum M
t

σ
=−

= =∫∫ ∫ ∫
2

2

( ) ( ( ) )
tA w h

M dF h h h dA h

σ σσ
=− = −

= = =∫ ∫ ∫ ∫
2 2

2max max
max( )

( ) ( ) ( )

t t

t tw wh h

h
M dA h h dA I

t t t
= =

=

2 2

max

( ) ( ) ( )
2 2 2

2

h h

Mt
s

EI

σmaxwhere  :magnitudeof stress

             :  moment of inertia of the cross-sectionI

max

             h :  height of a beam
             t : thickness of a beam
             s :maximum longitudinal strain
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Deformations in a Transverse Cross Section

• Deformation due to bending moment M 
is quantified by the curvature of the q y
neutral surface
1 1m m Mc

c Ec Ec I
ε σ

= = =
c Ec Ec I

M
EI

ρ

=

• Although cross sectional planes remain 
planar when subjected to bending 
moments, in-plane deformations are 
nonzero,

y yν ν
y x z x

y yν νε νε ε νε
ρ ρ

= − = = − =
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Bending of Beams

• Reaction Forces and Moments

- For equilibrium

0 0,  therefore R RF F F F F∑ = = − = =

0 0 0,  therefore R RM M FL M FL∑ = = − + = =
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Bending of Beams (cont’d)

• Shear Forces and Moments 
(at any point in the beam)(at any point in the beam)

0 and 0F M∑ = ∑ =

At every point along the beam equilibrium requires that, 

0 ( ) 0   
0 ( ) ( ) 0  ( ) ( ) L

F F V x V F
M M x F L x M x F L x

∑ = = − + = → =
∑ = = − + − = → = − −
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Bending of Beams – differential element

• Equilibrium of a fully loaded differential element: 

0 and 0F M∑ = ∑ =For equilibrium, 
+( )V dV V dV+ −

∑ = = + + − = → = =

∑ = = + + =

( )
0 ( ) 0  -  

0 ( ) ( ) 0 

V dV V dV
F qdx V dV V q

dx dx
dx

M M dM M V dV dx qdx∑ = = + − − + − =

+ −
→ = = 2

0 ( ) ( ) 0 
2

( )
  (neglecting ( ) terms).

M M dM M V dV dx qdx

M dM M dM
V q dx

dx dx
Dong-Il “Dan” Cho     Nano/Micro Systems & Controls Lab.
This material is intended for students in 4541.844 class in the Spring of 2008. Any other 
usage and possession is in violation of copyright laws

17

dx dx



Bending of Beams – differential element

• Approximation for radius of curvature: 

An increment of beam length dx is related to ds via
dx

The slope of the beam at any point is given by 

θ θ= → ≈cos( ) ,  for small   
dx

dx ds
ds

θ θ θ= → ≈tan( ),  for small   
dw dw
dx dx

For a given radius of curvature,     is related to      viads dθ
2

2

1
,  so for small   

d d w
ds d

dx dx
θρ θ θ

ρ
= → ≈ ≈

For a given radius of curvature,     is related to      viads dθ
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Bending of Beams – differential element

• Basic Differential Equations for Beam Bending:

F  ll 
2 1d wFor small 

Now that we have a relationship between        and       
   th  t d h  f    

θ
ρ

→ =2

1d w
dx

( )w x ρ

2d dM

we can express the moment and shear forces as a 
function of        ( )w x

= − =
2

2

3

Moments: ,  now recall 

Sh    ll 

d w dM
M EI V

dx dx
d w dV

V EI= − = −

=

3

4

4

Shear: ,  now recall 

Uniform Load: 

V EI q
dx dx

d w
q EI

d 4q
dx
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Analysis of Cantilever Beam

• Cantilever Beam with Point Load:

2

2

( ) ( )

( )

M x F L x

d w M F
L x

dx EI EI

= − −

= − = −

Integrating the above equation twice,
we have

dx EI EI

2 3( )
2 6
FL F

w x A Bx x x
EI EI

= + + −

Boundary conditions:

(0) 0     0
dw

w
d

= =
0

( )
xdx =
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Analysis of Cantilever Beam (cont’d)

• Cantilever Beam with Point Load (cont’d):

Using the bo nda  conditions  Using the boundary conditions, 
we obtain the beam deflection equation,

2FL 2

( ) (1 )
2 3
FLx x

w x
EI L

= −

3FLMaximum deflection : 
3

( )
3
FL

w x
EI

=

S i  t t  
33EI EWHSpring constant : 

3 3

3
4

EI EWH
k

L L
= =
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Stress Concentration: Fillet

σmax

ave

K
σ
σ

=
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Simple Beam Equations

• Relation between Load and deflection (1)- concentrated 
load

cantilever guided-end fixed-fixed

Elongation
(a) cantilever beam

xF L
x

Ehw
= xF L

x
Ehw

=
4

xF L
x

Ehw
=

Deflection

3

3

4 yF L
y

Ehw
=

34F L

3

3
yF L

y
Ehw

=

3F L

3

3

1
16

yF L
y

Ehw
=

31 F L(b) guided-end beam
3

3

4 zF L
z

Ewh
=

3

3
zF L

z
Ewh

=
3

3

1
16

zF L
z

Ewh
=

[notation] L: length of beam

(c) fixed-fixed beam

[notation] L: length of beam

h: height of beam

w: width of beam 
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Simple Beam Equations (cont’d)

• Relation between Load and deflection (2)-Distributed 
load

cantilever guided-end fixed-fixed

(a) cantilever beam xf L
x

E
= xf L

x
E

=
4

xf L
x

E
=Elongation

(b) guided-end beam

4

3

3
2

yf L
y

Ehw
=

43 f L

4

3

1
2

yf L
y

Ehw
=

41 f L

4

3

1
32

yf L
y

Ehw
=

41 f LDeflection(b) guided end beam

3

3
2

zf L
z

Ewh
=

3

1
2

zf L
z

Ewh
= 3

1
32

zf L
z

Ewh
=

[notation] L: length of beam

(c) fixed-fixed beam

h: height of beam

w: width of beam 

Dong-Il “Dan” Cho     Nano/Micro Systems & Controls Lab.
This material is intended for students in 4541.844 class in the Spring of 2008. Any other 
usage and possession is in violation of copyright laws

24



Stability of Structures

• In the design of columns, cross-
sectional area is selected such that

- allowable stress is not exceeded

ll

Pσ σ= ≤ allA
σ σ≤

- deformation falls within 
specificationsspecifications

spec

PL
AE

δ δ= ≤

• After these design calculations, may 
discover that the column is unstable 
under loading and that it suddenly under loading and that it suddenly 
becomes sharply curved or buckles.
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Stability of Structures (cont’d)

• Consider model with two rods and 
torsional spring   After a small torsional spring.  After a small 
perturbation,

( )2  restoring momentK θ∆ =( )2  restoring moment

sin  destabilizing moment
2 2

K

L L
P P

θ

θ θ

∆

∆ = ∆ =

• Column is stable (tends to return 
to aligned orientation) ifto aligned orientation) if

( )2
2
L

P Kθ θ∆ < ∆

4
cr

K
P P

L
< =
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Stability of Structures (cont’d)

• Assume that a load P is applied.  
After a perturbation, the system 
settles to a new equilibrium 
configuration at a finite deflection 
angle.g

( )sin 2
2
L

P Kθ θ=

4 sincr

PL P
K P

θ
θ

= =

• Noting that  sinθ < θ , the 
assumed configuration is only assumed configuration is only 
possible if  P > Pcr.
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Euler’s Formula for Pin-Ended Beams for 
BucklingBuckling

• Consider an axially loaded beam.  
After a small perturbation, the 
system reaches an equilibrium 
configuration such that
2 2d y M P d y P

2 2  0
d y M P d y P

y y
dx EI EI dx EI

= = − → + =

• Solution with assumed 
configuration can only be 
obtained if

2EI
P P

π

( )
2

2 2 2

cr

EI
P P

L
E ArP E

π

π πσ σ

> =

>
( )

( )2 2

where r= I/A

crA L A L r
σ σ= > = =
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Extension of Euler’s Formula

• A column with one fixed and one 
free end, will behave as the 
upper-half of a pin-connected 
column.

Th  iti l l di  i  l l t d • The critical loading is calculated 
from Euler’s formula,

2EIπ

π

=
2

2

2

cr
e

EI
P

L

E

( )
πσ = 2

2  equivalent length

cr

e

E

L r

L L= =2  equivalent lengtheL L
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Net Torque Due to Internal Stresses

• Net of the internal shearing stresses 
is an internal torque  equal and 

( )T dF dAρ ρ τ= =∫ ∫

is an internal torque, equal and 
opposite to the applied torque:

( )T dF dAρ ρ τ= =∫ ∫

• Unlike the normal stress due to axial 
loads, the distribution of shearing 

d l l dstresses due to torsional loads can not 
be assumed uniform.
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Shaft Deformations

• From observation, the angle of twist of 
the shaft is proportional to the applied p p pp
torque and to the shaft length:

Tφ ∝
Lφ ∝

• Cross-sections for hollow and solid circular 
shafts remain plain and undistorted 

• Cross-sections of noncircular (non-

p
because a circular shaft is axisymmetric.

C oss sect o s o o c cu a ( o
axisymmetric) shafts are distorted when 
subjected to torsion.
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Shearing Strain

• Since the ends of the element 
remain planar, the shear strain is 

   or   L
ρφγ ρφ γ= =

remain planar, the shear strain is 
equal to angle of twist:

   or   L
L

γ ρφ γ

• Shear strain is proportional to twist 
and radiusand radius

max max   and   
c
L c
φ ργ γ γ= =a aL c
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Stresses in Elastic Range

• Multiplying the previous equation 
by the shear modulus,by the shear modulus,

maxG G
c
ργ γ=

From Hooke’s Law, Gτ γ= , so

4
2
1 cJ π=

maxc
ρτ τ=

From Hooke s Law, Gτ γ , so

The shearing stress varies linearly 2The shearing stress varies linearly 
with the radial position in the 
section.

2max maxT dA dA J
c c

τ τ
ρτ ρ= = =∫ ∫
T T

( )4
1

4
22

1 ccJ −= π

max    and   
Tc T
J J

ρτ τ= =
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Deformations Under Axial Loading

• The angle of twist and maximum 
shearing strain are related:g

max

c
L
φγ =

• The shearing strain and shear are The shearing strain and shear are 
related by Hooke’s Law,

max
max

Tc
G JG

τ
γ = =

G JG

TL
JG

φ =

• With variations in the torsional loading 
and shaft cross-section along the length:

i i

i i i

T L
J G

φ = ∑
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Torsion of a rectangular bar

torsional 
beam

comb

Assume that the torsional beam is isotropic material

• Torsional stiffness (when, th>Wh)

π
π

⎡ ⎤⎛ ⎞⎛ ⎞
= ⋅ ⋅ − ⋅ ⋅ ⋅ =⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

∑3
5 5

2 192 1 1
1 tanh ,  1,3,5...

3 2
h h

h h
nh h h

w tG
k t w n n

L t n w⎣ ⎦

[ref] S. P. Timoshenko and J. N. Goodier, “Theory of Elasticity,” McGraw-Hill, pp. 309 –
313, 1970.
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