

Comb resonator design (2) -Intro. to Mechanics of Materials

Dong-Il "Dan" Cho

School of Electrical Engineering and Computer Science, Seoul National University Nano/Micro Systems & Controls Laboratory

> Email: dicho@snu.ac.kr URL: http://nml.snu.ac.kr

Normal Stress: force applied to surface

 $\sigma = F/A$ measured in N/m^2 or Pa, compressive or tensile

• Shear Stress: force applied parallel to surface

 $\tau = F / A$

Young's Modulus: $E = \sigma / \varepsilon$ Hooke's Law: $K = F / \Lambda l = EA / l$

Dong-II "Dan" Cho

Nano/Micro Systems & Controls Lab. This material is intended for students in 4541.844 class in the Spring of 2008. Any other 2 usage and possession is in violation of copyright laws

Strain

• *Strain:* ratio of deformation to length

• Shear Modulus

• **Relation among:** G, E, and v

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other ³ usage and possession is in violation of copyright laws

Poisson's Ratio

Tensile stress in x direction results in compressive stress in y and z direction (object becomes longer and thinner)

• Poisson's Ratio:

$$v = \left| -\varepsilon_{y} / \varepsilon_{x} \right| = \left| -\varepsilon_{z} / \varepsilon_{x} \right|$$

= -transverse strain / longitudinal strain

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other ⁴ usage and possession is in violation of copyright laws

State of stress

 The combination of forces generated by the stresses must satisfy the conditions for equilibrium:

$$\sum F_x = \sum F_y = \sum F_z = 0$$
$$\sum M_x = \sum M_y = \sum M_z = 0$$

- Consider the moments about the z axis: $\sum M_z = 0 = (\tau_{xy} \Delta A) a - (\tau_{yx} \Delta A) a$ $\tau_{xy} = \tau_{yx}, \ \tau_{yz} = \tau_{zy}$ and $\tau_{yz} = \tau_{zy}$
- Only 6 components of stress are required to define the complete state of stress.

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other ⁵ usage and possession is in violation of copyright laws

Stress and Strain Diagram

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other ⁶ usage and possession is in violation of copyright laws

Stress and Strain Diagram (cont'd)

Brittle Materials

Stress-strain diagram for a typical brittle material

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other ⁷ usage and possession is in violation of copyright laws

Deformations Under Axial Loading

• From Hooke's Law:

$$\sigma = E\varepsilon$$
 $\varepsilon = \frac{\sigma}{E} = \frac{P}{AE}$

- From the definition of strain:
 - $\varepsilon = \frac{\delta}{L}$
- Equating and solving for the deformation:

$$\delta = \frac{PL}{AE}$$

• With variations in loading, cross-section or material properties:

$$\delta = \sum_{i} \frac{P_{i}L_{i}}{A_{i}E_{i}}$$

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other ⁸ usage and possession is in violation of copyright laws

Stress Concentration: Fillet

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other ⁹ usage and possession is in violation of copyright laws

Symmetric Member in Pure Bending

- Pure Bending: Prismatic members subjected to equal and opposite couples acting in the same longitudinal plane
- Internal forces in any cross section are equivalent to a couple. The moment of the couple is the section bending moment

$$F_{x} = \int \sigma_{x} dA = 0$$
$$M_{y} = \int z \sigma_{x} dA = 0$$
$$M_{z} = \int -y \sigma_{x} dA = M$$

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other usage and possession is in violation of copyright laws

Strain Due to Bending

• Consider a beam segment of length L

After deformation, the length of the neutral surface remains L. At other sections,

$$L' = (\rho - \gamma)\theta$$

$$\delta = L' - L = (\rho - \gamma)\theta - \rho\theta = -\gamma\theta$$

$$\varepsilon_{x} = \frac{\delta}{L} = -\frac{\gamma\theta}{\rho\theta} = -\frac{\gamma}{\rho} \quad \text{(strain varies linearly)}$$

$$\varepsilon_{m} = \frac{c}{\rho} \quad \text{or} \quad \rho = \frac{c}{\varepsilon_{m}}$$

$$\varepsilon_{x} = -\frac{\gamma}{c}\varepsilon_{m}$$

Neutral axis

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other¹¹ usage and possession is in violation of copyright laws

Stress Due to Bending

• For a linearly elastic material,

$$\sigma_{x} = E\varepsilon_{x} = -\frac{\gamma}{c}E\varepsilon_{m}$$
$$= -\frac{\gamma}{c}\sigma_{m} \quad \text{(stress varies linearly)}$$

• For static equilibrium,

$$F_{x} = 0 = \int \sigma_{x} \, dA = \int -\frac{y}{c} \sigma_{m} \, dA$$

$$0 = -\frac{m}{c} \int y \, dA$$

First moment with respect to neutral plane is zero. Therefore, the neutral surface must pass through the section centroid.

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other¹² usage and possession is in violation of copyright laws

Stress Due to Bending (cont'd)

• For static equilibrium, Bending Momentum M

$$M = \iint_{A} dF(h)h = \int_{w} \int_{h=-\frac{t}{2}}^{\frac{t}{2}} (\sigma(h)dA)h$$
$$M = \int_{w} \int_{h=-\frac{t}{2}}^{\frac{t}{2}} (\sigma_{\max} \frac{h}{(\frac{t}{2})} dA)h = \frac{\sigma_{\max}}{(\frac{t}{2})} \int_{w}^{\frac{t}{2}} \int_{h=-\frac{t}{2}}^{h^{2}} h^{2}dA = \frac{\sigma_{\max}}{(\frac{t}{2})}I$$
$$S_{\max} = \frac{Mt}{2EI}$$

where σ_{max} : magnitude of stress

- *I*: moment of inertia of the cross-section
- h: height of a beam
- t: thickness of a beam

s_{max} : maximum longitudinal strain

Dong-II "Dan" Cho

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2008. Any other 13 usage and possession is in violation of copyright laws

Deformations in a Transverse Cross Section

 Deformation due to bending moment M is quantified by the curvature of the neutral surface

$$\frac{1}{\rho} = \frac{\varepsilon_m}{c} = \frac{\sigma_m}{Ec} = \frac{1}{Ec} \frac{Mc}{I}$$
$$= \frac{M}{EI}$$

 Although cross sectional planes remain planar when subjected to bending moments, in-plane deformations are nonzero,

$$\varepsilon_{y} = -v\varepsilon_{x} = \frac{vy}{\rho}$$
 $\varepsilon_{z} = -v\varepsilon_{x} = \frac{vy}{\rho}$

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other¹⁴ usage and possession is in violation of copyright laws

Bending of Beams

Reaction Forces and Moments

- For equilibrium

 $\Sigma F = 0 = F - F_R = 0$, therefore $F_R = F$

$$\sum M_0 = 0 = -M_R + FL = 0$$
, therefore $M_R = FL$

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other¹⁵ usage and possession is in violation of copyright laws

Bending of Beams (cont'd)

• Shear Forces and Moments (at any point in the beam)

At every point along the beam equilibrium requires that,

 $\Sigma F = 0 \text{ and } \Sigma M = 0$ $\Sigma F = 0 = -F + V(x) = 0 \rightarrow \underline{V} = F$ $\Sigma M_{L} = 0 = -M(x) + F(L - x) = 0 \rightarrow M(x) = -F(L - x)$

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other¹⁶ usage and possession is in violation of copyright laws

Bending of Beams – differential element

• Equilibrium of a fully loaded differential element:

For equilibrium, $\Sigma F = 0$ and $\Sigma M = 0$ $\Sigma F = 0 = qdx + (V + dV) - V = 0 \rightarrow q = \frac{(V + dV) - V}{dx} = -\frac{dV}{dx}$

$$\Sigma M = 0 = (M + dM) - M - (V + dV)dx - qdx \frac{dx}{2} = 0$$

$$\rightarrow V = \frac{(M + dM) - M}{dx} = \frac{dM}{dx} \text{ (neglecting } q(dx^2) \text{ terms).}$$

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other¹⁷ usage and possession is in violation of copyright laws

Bending of Beams – differential element

• Approximation for radius of curvature:

An increment of beam length dx is related to ds via $\cos(\theta) = \frac{dx}{ds}$, for small $\theta \rightarrow dx \approx ds$

The slope of the beam at any point is given by tan(a) for small a , $a \sim \frac{dw}{dw}$ dw

$$\frac{dx}{dx} = \tan(\theta), \text{ for small } \theta \to \theta \approx \frac{dx}{dx}$$

For a given radius of curvature, ds is related to $d\theta$ via

$$ds = \rho d\theta$$
, so for small $\theta \rightarrow \frac{d\theta}{dx} \approx \frac{1}{\rho} \approx \frac{d^2w}{dx^2}$

Dong-II "Dan" Cho

Nano/Micro Systems & Controls Lab. This material is intended for students in 4541.844 class in the Spring of 2008. Any other 18

usage and possession is in violation of copyright laws

Bending of Beams – differential element

- Basic Differential Equations for Beam Bending:
 - For small $\theta \rightarrow \frac{d^2 w}{dx^2} = \frac{1}{\rho}$ Now that we have a relationship between w(x) and ρ we can express the moment and shear forces as a function of w(x)

Moments: $M = -\frac{d^2 w}{dx^2} EI$, now recall $V = \frac{dM}{dx}$ Shear: $V = -\frac{d^3 w}{dx^3} EI$, now recall $q = -\frac{dV}{dx}$ Uniform Load: $q = \frac{d^4 w}{dx^4} EI$

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other¹⁹ usage and possession is in violation of copyright laws

Analysis of Cantilever Beam

1x

x

• Cantilever Beam with Point Load:

$$M(x) = -F(L - x)$$
Point Load F
$$\frac{d^2w}{dx^2} = -\frac{M}{EI} = \frac{F}{EI}(L - x)$$
Integrating the above equation twice,
we have
$$w(x) = A + Bx + \frac{FL}{2EI}x^2 - \frac{F}{6EI}x^3$$
Point Load F
$$M_R$$

Boundary conditions:

$$w(0) = 0 \qquad \frac{dw}{dx}\Big|_{x=0} = 0$$

Dong-II "Dan" Cho Nano/Micro Systems & Controls Lab. This material is intended for students in 4541.844 class in the Spring of 2008. Any other 20 usage and possession is in violation of copyright laws

Analysis of Cantilever Beam (cont'd)

• Cantilever Beam with Point Load (cont'd):

Using the boundary conditions, we obtain the beam deflection equation,

 $w(x)=\frac{FLx^2}{2EI}(1-\frac{x}{3L})$

Maximum deflection : $w(x) = \frac{FL^3}{3EI}$ Spring constant : $k = \frac{3EI}{L^3} = \frac{EWH^3}{AL^3}$

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other²¹ usage and possession is in violation of copyright laws

Stress Concentration: Fillet

$$K = rac{\sigma_{\max}}{\sigma_{\max}}$$

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other²² usage and possession is in violation of copyright laws

Simple Beam Equations

• Relation between Load and deflection (1)- concentrated load

Dong-II "Dan" Cho

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2008. Any other 23 usage and possession is in violation of copyright laws

Simple Beam Equations (cont'd)

• Relation between Load and deflection (2)-Distributed load

X-OZ				
		cantilever	guided-end	fixed-fixed
<pre>(a) cantilever beam</pre>	Elongation	$X = \frac{f_x L}{E}$	$x = \frac{f_x L}{E}$	$x = \frac{f_x L}{4E}$
	Deflection	$y = \frac{3}{2} \frac{f_y L^4}{Ehw^3}$	$y = \frac{1}{2} \frac{f_y L^4}{Ehw^3}$	$y = \frac{1}{32} \frac{f_y L^4}{Ehw^3}$
(b) guided-end beam	Defiection	$Z = \frac{3}{2} \frac{f_z L^4}{Ewh^3}$	$Z = \frac{1}{2} \frac{f_z L^4}{Ewh^3}$	$Z = \frac{1}{32} \frac{f_z L^4}{Ewh^3}$
(c) fixed-fixed beam	[notation] <i>L: length of beam</i> <i>h: height of beam</i> <i>w: width of beam</i>			

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other²⁴ usage and possession is in violation of copyright laws

Stability of Structures

- In the design of columns, crosssectional area is selected such that
 - allowable stress is not exceeded

$$\sigma = \frac{P}{A} \le \sigma_{all}$$

- deformation falls within specifications

$$\delta = \frac{PL}{AE} \le \delta_{spec}$$

• After these design calculations, may discover that the column is unstable under loading and that it suddenly becomes sharply curved or buckles.

Dong-II "Dan" Cho

Nano/Micro Systems & Controls Lab. This material is intended for students in 4541.844 class in the Spring of 2008. Any othe r^{25} usage and possession is in violation of copyright laws

Stability of Structures (cont'd)

• Consider model with two rods and torsional spring. After a small perturbation,

 $K(2\Delta\theta) =$ restoring moment $P\frac{L}{2}\sin\Delta\theta = P\frac{L}{2}\Delta\theta =$ destabilizing moment

 Column is stable (tends to return to aligned orientation) if

$$P\frac{L}{2}\Delta\theta < K(2\Delta\theta)$$
$$P < P_{cr} = \frac{4K}{L}$$

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other²⁶ usage and possession is in violation of copyright laws

Stability of Structures (cont'd)

 Assume that a load P is applied. After a perturbation, the system settles to a new equilibrium configuration at a finite deflection angle.

$$P\frac{L}{2}\sin\theta = K(2\theta)$$
$$\frac{PL}{4K} = \frac{P}{P_{cr}} = \frac{\theta}{\sin\theta}$$

• Noting that $\sin\theta < \theta$, the assumed configuration is only possible if P > Pcr.

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other²⁷ usage and possession is in violation of copyright laws

Euler's Formula for Pin-Ended Beams for Buckling

 Consider an axially loaded beam. After a small perturbation, the system reaches an equilibrium configuration such that

$$\frac{d^2y}{dx^2} = \frac{M}{EI} = -\frac{P}{EI}y \quad \rightarrow \quad \frac{d^2y}{dx^2} + \frac{P}{EI}y = 0$$

 Solution with assumed configuration can only be obtained if

$$P > P_{cr} = \frac{\pi^2 EI}{L^2}$$
$$\sigma = \frac{P}{A} > \sigma_{cr} = \frac{\pi^2 E(Ar^2)}{L^2 A} = \frac{\pi^2 E}{(L/r)^2}$$

where $r=\sqrt{I/A}$

Dong-II "Dan" Cho

Nano/Micro Systems & Controls Lab. $_{\gamma}$

This material is intended for students in 4541.844 class in the Spring of 2008. Any other 28 usage and possession is in violation of copyright laws

Extension of Euler's Formula

- A column with one fixed and one free end, will behave as the upper-half of a pin-connected column.
- The critical loading is calculated from Euler's formula,

$$P_{cr} = \frac{\pi^{2} EI}{L_{e}^{2}}$$

$$\sigma_{cr} = \frac{\pi^{2} E}{(L_{e}/r)^{2}}$$

$$L_{e} = 2L = \text{ equivalent length}$$

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other²⁹ usage and possession is in violation of copyright laws

Net Torque Due to Internal Stresses

• Net of the internal shearing stresses is an internal torque, equal and opposite to the applied torque:

 $T = \int \rho \, dF = \int \rho \left(\tau \, dA \right)$

 Unlike the normal stress due to axial loads, the distribution of shearing stresses due to torsional loads can not be assumed uniform.

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other³⁰ usage and possession is in violation of copyright laws

Shaft Deformations

• From observation, the angle of twist of the shaft is proportional to the applied torque and to the shaft length:

$$\phi \propto T$$

 $\phi \propto L$

- Cross-sections for hollow and solid circular shafts remain plain and <u>undistorted</u> because a circular shaft is axisymmetric.
- Cross-sections of noncircular (nonaxisymmetric) shafts are <u>distorted</u> when subjected to torsion.

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other³¹ usage and possession is in violation of copyright laws

Shearing Strain

• Since the ends of the element remain planar, the shear strain is equal to angle of twist:

$$L\gamma = \rho\phi$$
 or $\gamma = \frac{\rho\phi}{L}$

 Shear strain is proportional to twist and radius

$$\gamma_{\max} = \frac{C\phi}{L}$$
 and $\gamma = \frac{\rho}{c}\gamma_{\max}$

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other³² usage and possession is in violation of copyright laws

Stresses in Elastic Range

 Multiplying the previous equation by the shear modulus,

$$G\gamma = \frac{\rho}{c}G\gamma_{\max}$$

From Hooke's Law, $\tau = G\gamma$, so

$$\tau = \frac{\rho}{c} \tau_{\max}$$

The shearing stress varies linearly with the radial position in the section.

$$T = \int \rho \tau \, dA = \frac{\tau_{\max}}{C} \int \rho^2 \, dA = \frac{\tau_{\max}}{C} \int \rho^2 \, dA$$

$$\tau_{\max} = \frac{IC}{J} \quad \text{and} \quad \tau = \frac{I\rho}{J}$$

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other³³ usage and possession is in violation of copyright laws

Deformations Under Axial Loading

• The angle of twist and maximum shearing strain are related:

$$\gamma_{\rm max} = \frac{C\phi}{L}$$

• The shearing strain and shear are related by Hooke's Law,

$$\gamma_{\max} = \frac{\tau_{\max}}{G} = \frac{Tc}{JG}$$

$$\phi = \frac{TL}{JG}$$

 With variations in the torsional loading and shaft cross-section along the length;

$$\phi = \sum_{i} \frac{T_i L_i}{J_i G_i}$$

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other³⁴ usage and possession is in violation of copyright laws

Torsion of a rectangular bar

Assume that the torsional beam is isotropic material

• Torsional stiffness (when, t_h>W_h)

$$k = \frac{2}{3} \cdot \frac{G}{L_h} t_h w_h^3 \cdot \left[1 - \frac{192}{\pi^5} \cdot \frac{w_h}{t_h} \cdot \left(\sum_n \frac{1}{n^5} \tanh\left(\frac{1}{2}n\pi \cdot \frac{t_h}{w_h}\right) \right) \right], \quad n = 1, 3, 5...$$

[ref] S. P. Timoshenko and J. N. Goodier, "Theory of Elasticity," McGraw-Hill, pp. 309 – 313, 1970.

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other³⁵ usage and possession is in violation of copyright laws

Reference

- F. P. Beer, E. R. Johnston, and Jr. J.T. DeWlof, "Mechanics of Materials", McGraw-Hill, 2002.
- J. M. Gere and S. P. Timoshenko, "Mechanics of Materials", PWS Publishing Company, 1997.
- S. P. Timoshenko and J. N. Goodier, "Theory of Elasticity", McGraw-Hill, 1970.
- Chang Liu, "Foundations of MEMS", Pearson, 2006.
- Nicolae O. Lobontiu, "Mechanical design of microresonators", McGraw-Hill, 2006.

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other³⁶ usage and possession is in violation of copyright laws