

Oxidation

Dong-II "Dan" Cho

School of Electrical Engineering and Computer Science, Seoul National University Nano/Micro Systems & Controls Laboratory

Usage of oxide (1)

- Mask against dry or wet etch
- Mask against implant or diffusion of dopant into Si
- Electrical isolation for device isolation
- Gate oxide in MOS structures •
- Surface passivation (corrosion, impurity, stress etc)

Dong-II "Dan" Cho

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2008. Any other ² usage and possession is in violation of copyright laws

Techniques of oxidation

- RT ~ 200 °C
 - wet anodization, CVD, sputtering
- 250 ~ 600 °C
 - CVD (SiH₄ + O₂ \rightarrow SiO₂ + 2H₂)
- 600 ~ 900 °C
 - CVD (pyrolysis of $Si(OC_2H_5)_4$, SiH_4 , $SiCl_4$)
- 900 ~ 1200 °C
 - THERMAL OXIDATION

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other ³ usage and possession is in violation of copyright laws

Growth of thermal oxide

- Thermal oxidation consumes the substrate silicon.
 - Dry Oxidation : Si(s) + $O_2(g) \rightarrow SiO_2(s)$
 - Wet Oxidation : Si(s) + $2H_2O(v) \rightarrow SiO_2(s) + H_2(g)$
 - 45 % silicon oxidation \rightarrow 100 % SiO₂

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other 4 usage and possession is in violation of copyright laws

Thermal oxide properties

• Thermal oxide properties

DC Resistivity (Ω cm), 25°C Density (g/cm ³)	10 ¹⁴ - 10 ¹⁶ 2.27	Melting Point (°C) Molecular Weight	~1700 60.08
Dielectric Constant	3.8 - 3.9	Molecules (/cm ³)	2.3×10^{22}
Dielectric Strength (V/cm)	5 - 10 x 10 ⁶	Refrctive Index	1.46
Energy Gap (eV)	~ 8	Specific Heat (J/g °C)	1.0
Etch rate in BHF (Å/min)	1000	Stress in film on Si	2 - 4 x 10 ⁹
Infrared Absorption Peak	9.3	(dyne/cm²)	(compression)
Linear Expansion Coefficient (cm/ºC)	5.0 x 10 ⁻⁷	Thermal Conductivity (W/cmºC)	0.014

Dong-II "Dan" ChoNano/Micro Systems & Controls Lab.This material is intended for students in 4541.844 class in the Spring of 2008. Any other 5usage and possession is in violation of copyright laws

Oxidation kinetics

- Oxidation Kinetics Model by Deal and Grove:
 - Oxidation proceeds by *the diffusion of* an oxidant (molecular H₂O or O₂)
 - Reaction occurs at the Si/SiO_2 interface.
 - Si is consumed and the interface moves into Si

- Concentration of oxidants :
 - C_G : concentration of oxidant in the bulk of the gas
 - C_s : concentration of oxidant at the oxide surface \mathbf{F}_1
 - C_0 : equilibrium C of the oxidant at the oxide surface
 - C_i : concentration of the oxidant at growth interface
- Flux of oxidant :
 - F₁: the bulk of the gas \rightarrow the gas/oxide interface
 - F₂ : the diffusion through the existing oxide
 - F₃: the reaction. at the SiO2/Si

Dong-II "Dan" Cho

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2008. Any other ⁶ usage and possession is in violation of copyright laws

Oxidation kinetics (flux in gas phase)

 F_1 : Due to the concentration difference between C_G and C_S

 $F_1 = h_G(C_G - C_S)$ $h_{\rm G}$: mass transfer coefficient

From the ideal gas law PV = NRT
$$C = \frac{N}{V} = \frac{P}{kT}$$
 $C_G = \frac{P_G}{kT}$ $C_S = \frac{P_S}{kT}$

From Henry's law: "The concentration of a species dissolved in a solid at Equilibrium is proportional to the partial pressure of the species at the solid surface"

> $C_0 = K_H P_{Sr} C^* = K_H P_G \qquad K_H :$ Henrian Constant C^* : equilibrium concentration in the oxide

$$F_1 = h_G(C_G - C_S) = \frac{h_G}{kT}(P_G - P_S) = \frac{h_G}{K_H kT}(C^* - C_0)$$

:.
$$F_1 = h(C^* - C_0)$$
 $h = h_G/K_H kT$

Nano/Micro Systems & Controls Lab.

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other ⁷ usage and possession is in violation of copyright laws

Oxidation kinetics (flux in oxide and silicon)

F₂: Due to the concentration difference between C_o and C_i

From the Fick's first law

$$F_{2} = -D\left(\frac{dC}{dx}\right) = -D\frac{(C_{i} - C_{0})}{x_{0} - 0} = D\frac{(C_{0} - C_{i})}{x_{0}}$$

D : diffusion coefficient of the oxidant in oxide

 F_3 : Due to the consumption by the interface reaction at SiO₂/Si

Proportional to the concentration of the oxidant at the interface

$$F_3 = k_S C_i$$
 k_s : chemical rxn. rate const.

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other ⁸ usage and possession is in violation of copyright laws

Oxidation kinetics (steady-state flux)

Under steady-state condition (no build-up or depletion of oxidizing species)

$$F_{1} = F_{2} = F_{3} = F \qquad \Longrightarrow \qquad C_{i} = \frac{C^{*}}{1 + \frac{k_{s}}{h} + \frac{k_{s}x_{0}}{D}} \qquad C_{0} = \frac{(1 + k_{s}\frac{x_{0}}{D})C^{*}}{1 + \frac{k_{s}x_{0}}{h} + \frac{k_{s}x_{0}}{D}}$$

Y.

*

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other ⁹ usage and possession is in violation of copyright laws

Oxidation kinetics (rate limiting step)

I. When the diffusion constant D is very small,

II. When the diffusion constant D is very large,

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other usage and possession is in violation of copyright laws

Oxidation kinetics (oxidation rate)

Oxidation Rate
$$\frac{dx_0}{dt} = \frac{F}{N} = \frac{1}{N} \frac{DC_0 k_s}{D + k_s x_0}$$
Boundary Condition
 $x = x_i$, when $t = 0$
 $N : \# \text{ of oxidant molecules per unit volume}$
 $N(dry) = 2.3 \times 10^{22} \text{ cm}^{-3}$
 $N(wet) = 2.3 \times 10^{22} \text{ cm}^{-3}$
 $\int_{x_i}^{x_0} (D + k_s x_0) dx_0 = \frac{DC_0 k_s}{N} \int_0^t dt$
 $\frac{1}{2} k_s x_0^2 + D x_0 = \frac{DC_0 k_s}{N} t + \frac{1}{2} k_s x_i^2 + D x_i$
 $x_0^2 + \frac{2D}{k_s} x_0 = \frac{2DC_0}{N} t + x_i^2 + \frac{2D}{k_s} x_i$
 $A = \frac{2D/k_s r}{B} = \frac{2DC_0 r}{N} r_s r_s$
 $T = (x_i^2 + A x_i) / B$

Dong-II "Dan" Cho

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2008. Any other usage and possession is in violation of copyright laws

Oxidation Kinetics (Oxidation Rate)

Dong-II "Dan" Cho

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2008. Any other 12 usage and possession is in violation of copyright laws

Factors affecting oxidation rate

- Oxidant Species (Dry and Wet), temperature
- Oxidant Gas Pressure
- Crystallographic Orientation of Si Substrate
- Substrate Doping
- Gas Ambient

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other 13 usage and possession is in violation of copyright laws

Oxidation rate (temperature & oxidant)

Dong-II "Dan" Cho

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2008. Any other usage and possession is in violation of copyright laws

Oxidation rate (pressure)

 High pressure increases the oxide growth rate, by increasing the linear and parabolic rate constants.
 (The increase in the rate constants arises from the increased C*.)

$$\frac{B}{A} = \frac{k_s C_0}{N} \cong \frac{k_s}{N} C^* = \frac{k_s}{N} K_H P_G$$
$$B = \frac{2DC_0}{N} \cong \frac{2D}{N} C^* = \frac{2D}{N} K_H P_G$$

Trade off: $\Delta P = 1$ atm $\Leftrightarrow \Delta T = 30$ °C > Low temperature oxidation can be achieved by high pressure oxidation for the same oxidation rate.

Method

1. Pressurizing water-pumping

2. Producing water by pyrogenic system

Dong-II "Dan" Cho

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2008. Any other 15 usage and possession is in violation of copyright laws

Oxidation rate (crystallographic orientation)

• SiO2/Si interface is strongly related to the cystallographic orientation of Si.

- i.e., # of available Si-Si bonds per unit area

 The growth rate ratio (v111/v100) decreases at high temperatures, since the parabolic rate constant is predominant.

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other¹⁶ usage and possession is in violation of copyright laws

Oxidation rate (doping)

- Group III and V dopants enhance the oxidation rate when heavily doped.
- The oxidation rate depends on
 - > the $C_{\rm B}$ in SiO₂ for diffusion controlled oxidation (*B* dominates).
 - > the $C_{\rm B}$ at Si surface for reaction controlled oxidation (*B*/A dominates).

Boron segregated in SiO₂
weakens the SiO₂ bond structures.
➢ Rapid diffusion of O₂ and H₂O

Phosphorous piles up at Si surface.
 ➤ Enhanced oxidation rate in the reaction controlled regime

Dong-II "Dan" Cho

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2008. Any other usage and possession is in violation of copyright laws

Oxidation rate (additional gases)

- Halogenic Oxidation:
 - The presence of chlorine mixed with O₂ gas during dry oxidation
 - Enhance the oxidation rate.
 - Improves device characteristics.
 - * Chlorine-containing gases: Cl₂, HCl, TCE, TCA

Color chart (1)

Film Thickness (microns)	Order (5450 Å)	color and comments			
0.050 0.075		Tan Brown			
0.100 0.125 0.150 0.175		Dark violet to red violet Royal blue Light blue to metallic blue Metallic to very light yellow-green			
0.200 0.225 0.250 0.275		Light gold or yellow slightly metallic Gold with slight yellow orange Orange to melon Red-violet			
0.300 0.310 0.325 0.345 0.350 0.365 0.375 0.390	II	Blue to violet-blue Blue Blue to blue-green Light green Green to yellow-green Yellow-green Green-yellow Yellow			

Dong-II "Dan" Cho Nano/Micro Systems & Controls Lab. This material is intended for students in 4541.844 class in the Spring of 2008. Any other

usage and possession is in violation of copyright laws

Color chart (2)

Film	Order						
Thickness	(5450Å)	color and comments					
0.412		Light orange					
0.426		Carnation pink					
0.443		Violet-red					
0.465		Red-violet					
0.476		Violet					
0.480		Blue-violet					
0.493		Yellow					
0.502		Blue-green					
0.520		Green(broad)					
0.540		Yellow-green					
0.560	III	Green-yellow					
0.574		Yellow to "yellowish"					
0.585		Light orange or yellow to pink borderline					
0.60		Carnation pink					
0.63		Violet-red					
0.68		"Bluish"					

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other usage and possession is in violation of copyright laws

Color chart (3)

Film Thickness (microns)	Order (5450 Å)	color and comments				
0.72	IV	Blue-green to green (quite broad)				
0.77		"Yellowish"				
0.80		Orange(rather broad for orange)				
0.82		Salmon				
0.85		Dull, light red-violet				
0.86		Violet				
0.87		Blue-violet				
0.89		Blue				
0.92	V	Blue-green				
0.95		Dull yellow-green				
0.97		Yellow to "yellowish"				
0.99		Orange				
1.00		Carnation pink				
1.02		Violet-red				
1.05		Red-violet				
1.06		Violet				
1.07		Blue-violet				

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other usage and possession is in violation of copyright laws

Color chart (4)

Film Thickness (microns)	Order (5450 Å)	color and comments			
1.10		Green			
1.11		Yellow-green			
1.12	VI	Green			
1.18		Violet			
1.19		Red-violet			
1.21		Violet-red			
1.24		Carnation pink to salmon			
1.25		Orange			
1.28		"yellowish"			
1.32	VII	Sky blue to green-blue			
1.40		Orange			
1.45		Violet			
1.46		Blue-violet			
1.50	VIII	Blue			
1.54		Dull yellow-green			

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other²² usage and possession is in violation of copyright laws

Rapid Thermal Oxide (RTO)

Dong-II "Dan" Cho

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2008. Any other²³ usage and possession is in violation of copyright laws

Wet oxidation recipe

• Wet oxidation recipe

			1000°C					
STANDBY					1 1 1 1 1	1 1 1 1 1		900 °C
900%	PUSH	PRE-HEAT	RAMP UP	STABILIZ,	PRE OXID.	WET OXID.	RAMP DOWN	PULL
Nz	5,00 SLPM	5,00 SLPM	5,00 SLPM	5,00 SLPM		1 1 1	5,00 SLPM	5,00 SLPM
LOW O2	0,2 SLPM	0,2 SLPM	0,2 SLPM	0.2 SLPM		1 1 1 1		1 1 1 1
HIGH O₂		1 1 1 1	1 1 1 1		4,50 SLPM	4,50 SLPM		1 1 1 1
H2		1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	6,75 SLPM	1 1 1 1	1 1 1 1
TIME	10 MIN	10 MIN	20 MIN	5 MIN	ЗMIN	144 MIN	30 MIN	10 MIN

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other²⁴ usage and possession is in violation of copyright laws

Furnace at ISRC (CMOS)

- Model No : SELTRON CO. SHF Series
 - Annealing, Wet Oxidation, Dry Oxidation, Reflow, POCl₃, Drive-in, Alloy
 - Wet oxidation
 - Gas : H_2 , O_2 , N_2
 - Process temp. : 800~1000 ℃
 - Wafer size/quantities : 6" or 4" wafer/ 1~25
 - Temperature uniformity : ± 1 °C
 - Oxide thickness uniformity : $\pm 1\%$

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other²⁵ usage and possession is in violation of copyright laws

Furnace at ISRC (MEMS)

- Model No : Sungjin Semitech JSF-2000-T43
 - Annealing , Wet oxidation , Reflow , ${\rm POCI}_3$
 - Wet oxidation
 - Gas : H_2 , O_2 , N_2
 - Process temp. : 900~1000 ℃
 - Wafer size/quantities : 4"wafer/ 1~25
 - Temperature uniformity : ± 1 °C
 - Oxide thickness uniformity: $\pm 1\%$

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other²⁶ usage and possession is in violation of copyright laws

Furnace at ISRC (mini)

- Model No : Seoul Electron SMF-800
 - Dry oxidation, Annealing, Alloy
 - Dry Oxidation : <2000Å, 1000°C (gas : N_2 , O_2)
 - Annealing : N+, P+ annealing, $<1000^{\circ}$ C

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other²⁷ usage and possession is in violation of copyright laws

RTP/RTA at **ISRC** (CMOS)

- RTP (Rapid Thermal Process)
 - Model No : NYMTECH.CO., RTA200H-SVP1
 - RTA (Rapid Thermal Annealing), RTO (Rapid Thermal Oxidation), **RTN** (Rapid Thermal Nitridation)
 - Rapid annealing : < 1250℃
 - Temperature uniformity : ± 2.0℃
 - MFC (N₂, O₂, Ar, NH₃)
- RTA (Rapid Thermal Annealing)
 - Model No : Korea Vacuum Tech., KVRTP-020
 - Annealing, Alloy
 - Wafer Size : 4"~6"wafer, chip
 - Temperature uniformity : $\pm 5^{\circ}$
 - Process time : < 60sec

RTP (Rapid Thermal Process)

RTA (Rapid Thermal Annealing)

Dong-II "Dan" Cho

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2008. Any other 28 usage and possession is in violation of copyright laws

Reference

- J. D. Lee, "Silicon Integrated Circuit microfabrication technology," 2nd edition
- Gregory T. A. Kovacs, "Micromachined Transducers Sourcebook," 1st edition

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other 29 usage and possession is in violation of copyright laws