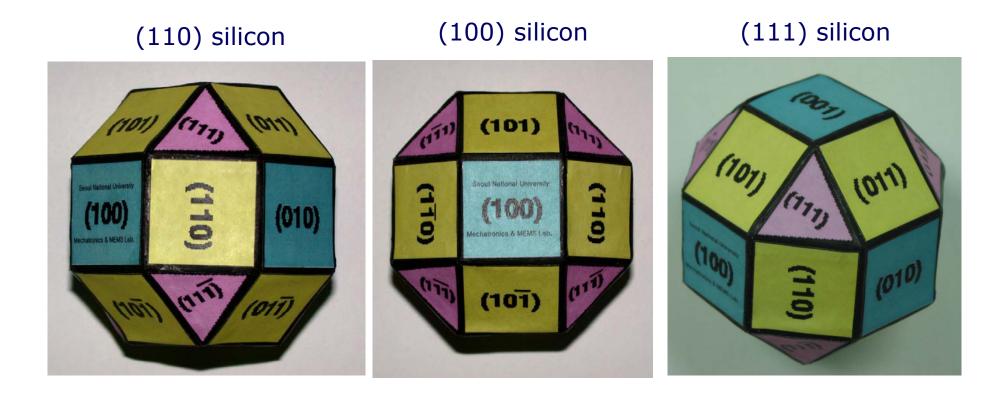

Lecture 19, 20:

Silicon Wet Etching

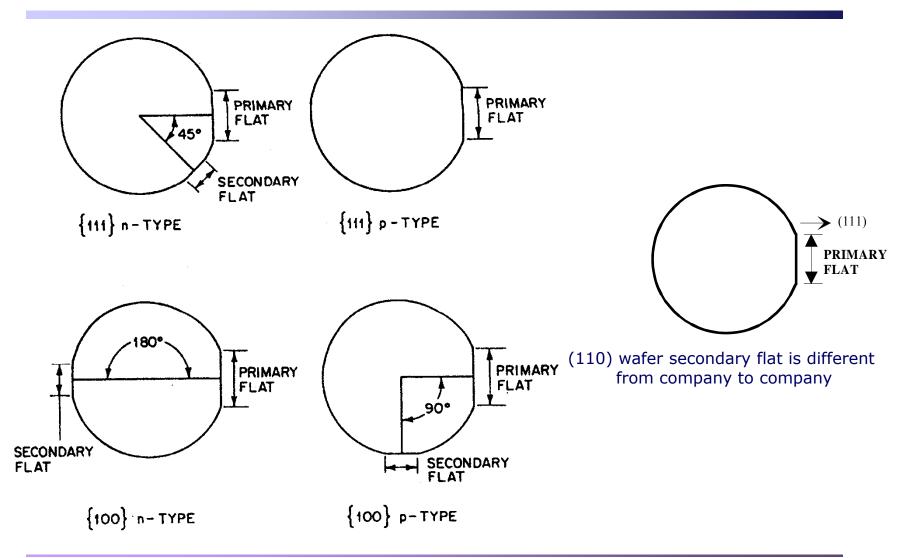
Dong-Il "Dan" Cho

School of Electrical Engineering and Computer Science, Seoul National University Nano/Micro Systems & Controls Laboratory

Silicon Crystallography (1)

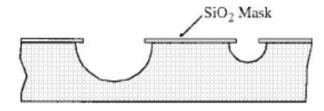


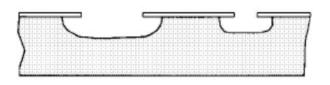
- Miller indices
 - (i j k) : a specific crystal plane or face
 - $\{i \ j \ k\}$: a family of equivalent planes
 - [i j k] : a specific direction of a unit vector
 - <i j k> : a family of equivalent directions


Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other² usage and possession is in violation of copyright laws

Silicon Crystallography (2)

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other ³ usage and possession is in violation of copyright laws




Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other 4 usage and possession is in violation of copyright laws

Isotropic Wet Etching (1)

- Si isotropic etching by HNA
 - HNA: Hydrofluoric acid + Nitric acid + Acetic acid
 - Isotropic etchant
 - Si + HNO₃ + 6HF \rightarrow H₂SiF₆ + HNO₂ + H₂O + H₂
 - HNO₃: oxidize silicon
 - HF: F ion forms the soluble compound, H_2SiF_6
 - CH₃COOH: Prevent dissociation of HNO₃ into NO₃ or NO₂
 → thereby allowing formation of the species directly responsible for the oxidation of Si: N₂O₄ ↔ 2NO₂
 - Drawback: Poor selectivity over SiO₂

ISOTROPIC WET ETCHING: AGITATION ISOTROPIC WET ETCHING: NO AGITATION

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other ⁵ usage and possession is in violation of copyright laws

Isotropic Wet Etching (2)

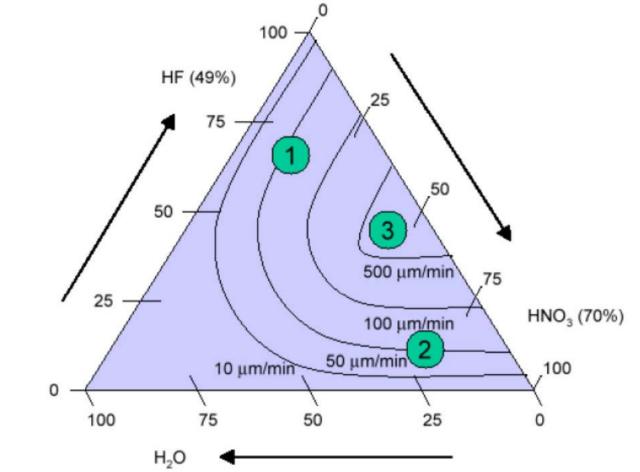
- Electrochemical reaction in HNA etching
 - Injection of holes into Si to form Si²+ $HNO_3 + H_2O + HNO_2 \rightarrow 2HNO_2 + 2OH^- + 2h^+$ Si + 2h⁺ \rightarrow Si²⁺
 - Reaction of hydrated Si to form SiO₂ Si²⁺ + 2OH⁻ → Si(OH)₂ → SiO₂ + H₂O
 - Dissolution of SiO₂ and formation of water soluble product SiO₂ + 6HF → H₂SiF₆ + 2H₂O

Overall reaction is,

 $2e^{-} + HNO_2 + HNO_3 + H_2O \rightarrow 2HNO_2 + 2OH^{-}$

Which can be rewritten,

 $HNO_2 + HNO_3 + H_2O \rightarrow 2HNO_2 + 2OH^- + 2h^+$


\rightarrow Etching is "Charge-transfer-driven process"

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other ⁶ usage and possession is in violation of copyright laws

Isotropic Wet Etching (3)

• Isoetch contours

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other ⁷ usage and possession is in violation of copyright laws

Isotropic Wet Etching (4)

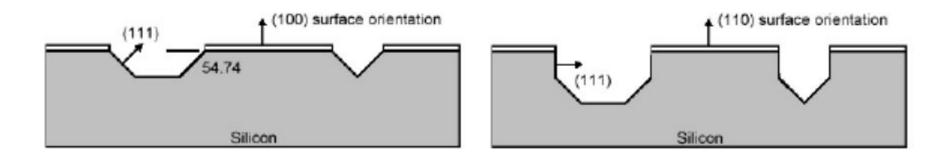
- Region (1)
 - For high HF concentrations, contours are parallel to the lines of constant HNO₃, therefore the etch rate is controlled by HNO₃ in this region
 - Leaves little residual oxide
- Region (2)
 - For high HNO₃ concentrations contours are parallel to the lines of constant HF, therefore the etch rate is controlled by HF in this region
 - Leaves a residual 300~500 nm of oxide
- Region (3)
 - Initially not very sensitive to the amount of H_2O , then etch rate falls of sharply for 1:1 HF:HNO₃ ratio

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other ⁸ usage and possession is in violation of copyright laws

Isotropic Wet Etching (5)

Etchant (Diluent)	Reagent Quantities	Temp. °C	Etch Rate (μm/min)	(100)/(111) Etch Ratio	Dopant Dependence	Masking Films (etch rate)
HF	10 ml		, Y		$\leq 10^{17} \text{ cm}^{-3} \text{ n or p}$ reduces etch rate $\approx 150 \times$	
HNO ₃	30 ml	22	0.7 to 3.0	1:1		SiO ₂ (30 nm/min)
(water, CH ₃ COOH)	80 ml			~		
HF	25 ml					
HNO ₃	50 ml	22	4	1:1	no dependence	Si3N4
(water, CH ₃ COOH)	25 ml					
HF	9 ml					
HNO3	75 ml	22	7	_~ 1:1		SiO ₂ (70 nm/min)
(water, CH ₃ COOH)	30 ml					

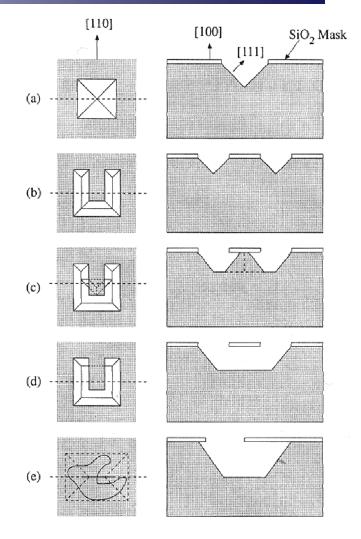
Table of HNA etchant formulations


Ref.) Kurt E. Petersen, Proceedings of The IEEE, 70(5), pp. 420-457, 1982

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other ⁹ usage and possession is in violation of copyright laws

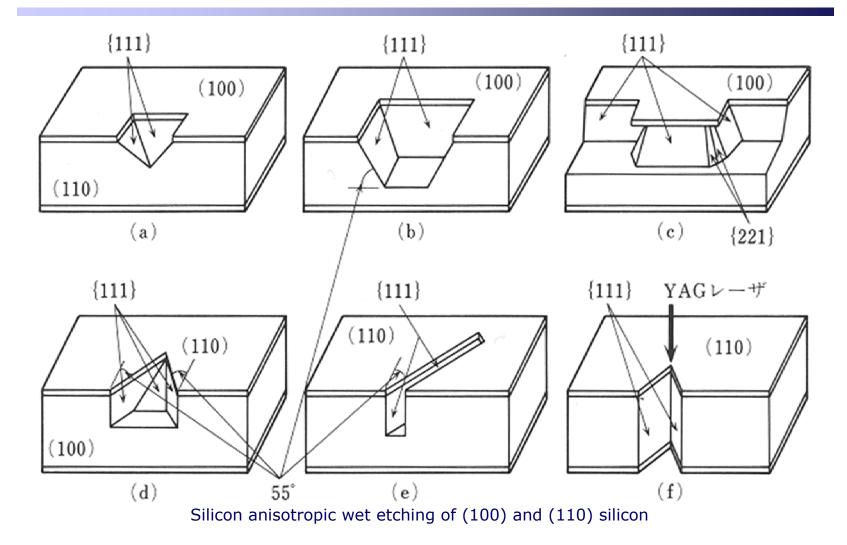
Anisotropic Wet Etching (1)

- Anisotropic wet etching
 - Anisotropic etchants etch much faster in one direction than in another
 - \rightarrow Exposing the slowest etching crystal planes over time
 - \rightarrow (111) planes have the slowest etch rate
 - Several solutions: Alkalic OH (KOH, NaOH), TMAH, EDP
 - Etching at concave corners on (100), stop at (111) intersections, convex corners are under cut



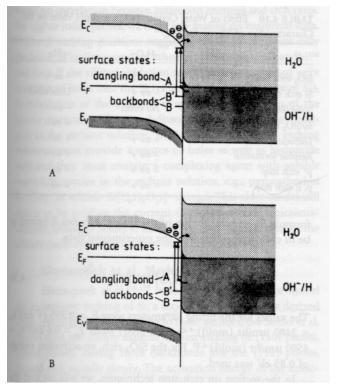
Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other 10 usage and possession is in violation of copyright laws

Anisotropic Wet Etching (2)


- Examples of anisotropic etching
 - (a) typical pyramidal pit bounded by
 (111) planes, etched into (100)
 silicon with an anisotropic etch
 through a square hole in an oxide
 mask
 - (b) cantilever mask pattern with a slow convex undercut rate
 - (c) the same mask pattern can result in a substantial degree of undercutting using an etchant with a fast convex undercut rate such as EDP
 - (d) further etching of (c) produces a cantilever beam suspended over pit
 - (e) illustration of the fact that anisotropic etch undercutting converges to predictable shapes after a sufficiently long time

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other usage and possession is in violation of copyright laws

Anisotropic Wet Etching (3)



Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other¹² usage and possession is in violation of copyright laws

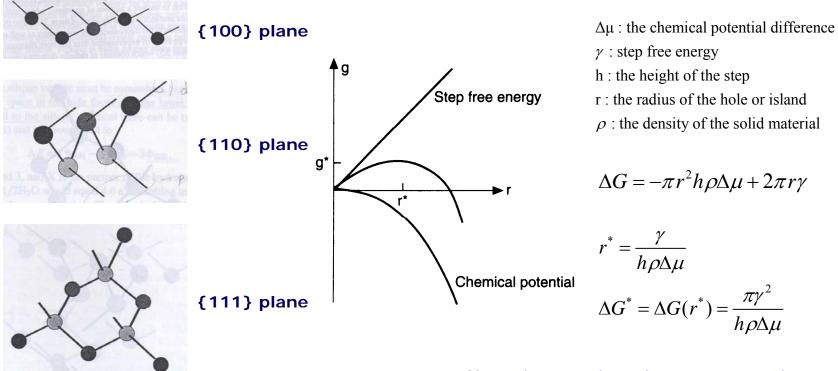
Anisotropic Wet Etching Mechanism (1)

- H. Seidel et al.
 - Band model of the silicon/electrolyte interface for moderately doped Si

Band model of the Si/electrolyte interface (A) p-type Si, (B) n-type Si

 $\begin{cases} 4H_2O + 4e^- \rightarrow 4H_2O^- \\ 4H_2O^- \rightarrow 4OH^- + 4H^+ + 4e^- \rightarrow 4OH^- + 2H_2 \end{cases}$ $(Si+2OH^- \rightarrow Si(OH)_2^{2+}+2e^-)$ $\begin{cases} Si(OH)_2^{2+} + 2OH^- \rightarrow Si(OH)_4 + 2e^- \end{cases}$ $Si(OH)_4 + 4e^- + 4H_2O \rightarrow Si(OH)_6^{2-} + 2H_2$ Si OH Si \bullet OH $^{2+}$ Si \rightarrow Si \bullet OH $^{2+}$ Si OH Si \bullet OH $^{2+}$ + 2e⁻(100) Si Si Si + $Si \longrightarrow Si - OH \longrightarrow Si \bullet | Si - OH | + e^{-}$ (111) Si si Si • Si

> Ref.) H. Seidel, et al., J. Electrochem. Soc., vol. 137, no. 11, Nov. 1990


Dong-II "Dan" Cho

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2008. Any other 13 usage and possession is in violation of copyright laws

Anisotropic Wet Etching Mechanism (2)

- M. Elwenspoek et al.
 - Explained the etching mechanism by the crystal growth theory
 - {111} plane has slow etch rate \leftarrow {111} plane is the smooth face

Ref.) M. Elwenspoek, and H. V. Jansen, Silicon Micromachining, Cambridge University Press, 1998

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other¹⁴ usage and possession is in violation of copyright laws

Si Anisotropic Etchants

	Alkali-OH	EDP(ethylene diamine pyrocatechol)	TMAH (tetramethyl ammonium hydroxide)
Si etch rate µm/min	1 to 2	1 to 30	~1
Si roughness	Low	Low	variable ¹
Nitride etch	Low	Low	1 to 10 nm/min
Oxide etch	1 to 10 nm/min	1-80 nm/min	1 nm/min
Al selective	No	No ²	Yes ³
Au selective	Yes	Yes	Yes
P++ etch stop ?	Yes	Yes	Yes
Electrochemical stop ?	Yes	Yes	Yes
CMOS compatible ? ⁴	No	Yes	Yes
Cost ⁵	Low	Moderate	Moderate
Disposal	Easy	Difficult	Moderate
Safety	Moderate	Low	High

1 Varies with wt% TMAH, can be controlled to yield very low roughness.

2 Some formulations do not attack Al, but are not common.

3 With added Si, polysilicic acid or pH control.

4 Defined as 1) allowing wafer to be immersed directly with no special measures and 2) no alkali ions.

5 Includes cost of equipment.

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other¹⁵ usage and possession is in violation of copyright laws

Hydroxide Etching of Si

- Several hydroxides are useful
 - KOH, NaOH, CeOH, RbOH, NH₄OH, TMAH: (CH₃)₄NOH
- Oxidations of silicon by hydroxyls to form a silicate Si + 2OH⁻ +4h⁺ → Si(OH)₂⁺⁺
- Reduction of wafer

 $2H_2O \rightarrow 4OH^- + 2H_2 + 4h^+$

• Silicate further reacts with hydroxyls to form a water soluble complex

 $Si(OH)_2^{++} + 4OH^- \rightarrow SiO_2(OH)_2^{2-} + 2H_2O$

• Overall redox reaction

 $Si + 2OH^- + 4H_2O \rightarrow Si(OH)_2^{++} + 2H_2 + 4OH^-$

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other 16 usage and possession is in violation of copyright laws

KOH Etching of Si (1)

- Typical and most used of the hydroxide etches
- Etch rate
 - \sim 1 um/min for (100) Si planes
 - Slow down for boron-doping levels above 2 x 10¹⁹ cm⁻³
 - \sim 140 nm/hr for silicon nitride
 - ~ 200 nm/min for oxide
- Anisotropy

 $(111):(110):(100) \approx 1:600:400$

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other¹⁷ usage and possession is in violation of copyright laws

KOH Etching of Si (2)

- Simple hardware
 - Hot plate & stirrer
 - Keep cover or use reflux condenser to keep propanol from evaporating
- Presence of alkali metal (potassium, K) makes this completely incompatible with MOS or CMOS processing
- Comparatively safer and non-toxic

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other¹⁸ usage and possession is in violation of copyright laws

KOH Etching of Si (3)

• Typical recipe and etch rate of KOH Si etching

Formulation	Temp °C	Etch rate (µm/min)	(100)/(111) Etch ratio	Masking films (etch rate)
KOH (44 g) Water, isopropanol (100 ml)	85	1.4	400:1	SiO_2 (1.4 nm/min) Si_3N_4 (negligible)
KOH (50 g) Water, isopropanol (100 ml)	50	1.0	400:1	SiO_2 (1.4 nm/min) Si_3N_4 (negligible)

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other¹⁹ usage and possession is in violation of copyright laws

TMAH Etching of Si (1)

- Tetra Methyl Ammonium Hydroxide: (CH₃)₄ NOH
- Etch rate: 0.5 ~ 1.5 um/min
- Etch rate falls off ten times at 10²⁰ cm⁻³ boron concentration
 - \rightarrow B solid solubility in Si: 2.5 x 10²⁰ cm⁻³
- Al etch rate 1 um/min → 1 nm/min, when pH 13→ pH 12 (for 22 wt% TMAH)
- MOS/CMOS compatible
 - No alkali metals: Li, Na, K, ...
 - Used in positive photoresist developers which do not use choline.
 - Does not significantly etch SiO₂ or Al! (Bond wire safe!)
- Anisotropy: (111):(100) ≈ 1:10 to 1:35

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other²⁰ usage and possession is in violation of copyright laws

TMAH Etching of Si (2)

- Hydroxide etches are generally safe and predictable, but they usually involve an alkali metal which makes them incompatible with MOS or CMOS processing.
- Ammonium hydroxide (NH₄OH) is one hydroxide which is free of alkali metal, but it is really ammonia which is dissolved into water. Heating to 90° C for etching will rapidly evaporate the ammonia from solution.
- Ballasting the ammonium hydroxide with a less volatile organic solves the problem:
 - Tetramethyl ammonium hydroxide: (CH₃)₄NOH
 - Tetraethyl ammonium hydroxide: (C₂H₅)₄NOH

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other usage and possession is in violation of copyright laws

TMAH Etching of Si (3)

• Selectivity of TMAH etchants

Selectivity of TMAH Etchants for Various Dielectrics versus (100) Silicon							
Dielectric	Selectivity 4 wt% TMAH, 80°C	Selectivity (Si-doped, 13.5g/l), 4 wt% TMAH, 80°C	Selectivity 20 wt% TMAH, 95°C				
Thermal Silicon Dioxide	5.3×10^3	34.7×10^3	5.2×10^3				
Low-Temperature Oxide (LTO)	1.3 x 10 ³	4.2×10^3	2.8 x 10 ³				
PECVD Oxide	1.4×10^3	4.3×10^3	No value given				
LPCVD Silicon Nitride	24.4×10^3	49.3 x 10 ³	38×10^3				
PECVD Silicon Nitride	9.2 x 10 ³	18.5 x 10 ³	3.6×10^3				

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other²² usage and possession is in violation of copyright laws

Ammonium Hydroxide Wet Etching

- NH₄OH (ammonium hydroxide)
- CMOS compatibility
- Several recipes
 - 9.7 wt% NH₄OH in H_2O
 - (110) silicon etch rate: 0.11um/min at 85 ~ 92 ℃
 - 1~18 wt% NH₄OH at 75 $^\circ\!\!\!C$
 - (100) max. etch rate: 30 um/h
 - Rough surface
- Disadvantage
 - Slow etch rate, hillock formation
 - Rapid evaporative losses of ammonia gas (noxious) when heated

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other²³ usage and possession is in violation of copyright laws

EDP Etching of Si (1)

- Ethylene Diamine Pyrocatechol
- Also known as Ethylene diamine-Pyrocatechol-Water (EPW)
- EDP etching is readily masked by SiO₂, Si₃N₄, Au, Cr, Ag, Cu, and Ta
 → But EDD can otch All
 - \rightarrow But EDP can etch Al!
- Anisotropy: (111):(100) ≈ 1:35
- EDP is very corrosive, very carcinogenic, and never allowed near mainstream electronic microfabrication.
- 50 times slowing of etch rate for > 7 x 10¹⁹ cm⁻³ boron doping

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other²⁴ usage and possession is in violation of copyright laws

EDP Etching of Si (2)

- Typical formulation
 - 1 L ethylene diamine, NH₂-CH₂-CH₂-NH₂
 - 160 g pyrocatechol, $C_6H_4(OH)_2$
 - 6 g pyrazine, $C_4H_4N_2$
 - 133 mL H₂O
- Ionization of ethylene diamine $NH_2(CH_2)_2NH_2 + H_2O \rightarrow NH_2(CH_2)_2NH_3 + + OH^-$
- Oxidation of Si and reduction of water

 $Si + 2OH^- + 4H_2O \rightarrow Si(OH)_6^{2-} + 2H_2$

• Chelation of hydrous silica

 $Si(OH)_6^{2-} + 3C_6H_4(OH)_2 \rightarrow Si(C_6H_4O_2)_3^{2-} + 6H_2O_2$

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other²⁵ usage and possession is in violation of copyright laws

EDP Etching of Si (3)

- Requires reflux condenser to keep volatile ingredients from evaporating.
- Completely incompatible with MOS or CMOS processing!
 - It must be used in a fume collecting bench by itself.
 - It will rust any metal in the nearby vicinity.
 - It leaves brown stains on surfaces that are difficult to remove.
- EDP has a faster etch rate on convex corners than other anisotropic etches
 - It is generally preferred for undercutting cantilevers.
 - It tends to leave a smoother finish than other etches, since faster etching of convex corners produces a polishing action.

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other²⁶ usage and possession is in violation of copyright laws

EDP Etching of Si (4)

• Typical recipe and etch rate of KOH Si etching

Formulation	Temp °C	Etch Rate (µm/min)	(100)/(111) Etch Ratio	Masking Films (etch rate)
Ethylene diamine (759ml) Pyrocatechol (120g) Water (100ml)	115	0.75	35:1	SiO2 (0.2 nm/min) Si3N4 (0.1 nm/min) Au, Cr, Ag, Cu, Ta (negligible)
Ethylene diamine (759ml) Pyrocatechol (120g) Water (240ml)	115	1.25	35:1	As above

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other²⁷ usage and possession is in violation of copyright laws

Hydrazine Etching of Si

- Hydrazine (N_2H_4) + water mixtures
- Anisotropic silicon etchants
- 100 ml N_2H_4 in 100 ml water at 100 °C: etch rate 2 um/min, no doping dependence, masked with silicon dioxide or aluminum
 - Heavily antimony doped wafer at 70 \sim 120 $^\circ\!\!\!C\colon 0.8~\sim$ 2 um/min
 - Moderately doped samples at 70 \sim 120 $^{\circ}\mathrm{C}$: 1.5 $\,\sim$ 3.3 um/min
- Hydrazine is very dangerous
 - A very powerful reducing agent (used for rocket fuel)
 - Flammable liquid
 - Hypergolic: $N_2H_4 + 2H_2O_2 \rightarrow N_2 + 4H_2O$ (explosively)
 - Pyrophoric: $N_2H_4 + O_2 \rightarrow N_2 + 4H_2O$ (explosively)
 - Flash point: 52 $^\circ$ C in air.

Dong-II "Dan" Cho

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2008. Any other 28 usage and possession is in violation of copyright laws

Amine Gallate Etching of Si

- Much safer than EDP
- Typical recipe
 - 100 g gallic acid
 - 305 mL ethanolamine
 - 140 mL H₂O
 - 1.3 g pyrazine
 - 0.26 mL FC-129 surfactant
- Anisotropy: (111):(100) ≈ 1:50 to 1:100
- Etch rate: ~1.7 um/min at 118° C

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other²⁹ usage and possession is in violation of copyright laws

Silicon Wet Etchants (1)

Comparison of Example Silicon Etchants									
	HNA (HF+HNO ₃ +Acetic Acid)	Alkali-OH	EDP (ethylene diamine pyrochat- echol)	TMAH (tetramethyl- ammonium hydroxide)	XeF ₂	SF ₆ Plasma	DRIE (Deep Reactive Ion Etch)		
Etch Type	wet	wet	wet	wet	dry 1	dry	dry		
Anisotropic?	no	yes	yes	yes	no	varies	yes		
Availability	common	common	moderate	moderate	limited	common	limited		
Si Etch Rate µm/min	1 to 3	1 to 2	1 to 30	≈ l	1 to 3	≈ 1	> 1		
Si Roughness	low	low	low	variable ²	high 3	variable	low		
Nitride Etch	low	low	low	1 to 10 nm/min	?	low	low		
Oxide Etch	10 to 30 nm/min	1 to 10 nm/min	1 to 80 nm/min	≈ 1 nm/min	low	low	low		
Al Selective	no	no	no 4	yes 5	yes	yes	yes		
Au Selective	likely	yes	yes	yes	yes	yes	yes		
p++ Etch Stop?	no (n slows)	yes	yes	yes	no	no (some dopant effects)	no		

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other³⁰ usage and possession is in violation of copyright laws

Silicon Wet Etchants (2)

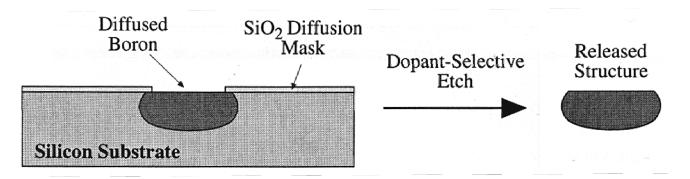
Comparison of Example Silicon Etchants									
	HNA (HF+HNO ₃ +Acetic Acid)	Alkali-OH	EDP (ethylene diamine pyrochat- echol)	TMAH (tetramethyl- ammonium hydroxide)	XeF ₂	SF ₆ Plasma	DRIE (Deep Reactive Ion Etch)		
Electrochemical Stop?	?	yes	yes	yes	no	no	no		
CMOS Compatible?6	no	no	yes	yes	yes	yes	yes		
Cost 7	low	low	moderate	moderate	moderate	high	high		
Disposal	low	easy	difficult	moderate	N/A	N/A	N/A		
Safety	moderate	moderate	low	high	moderate?	high	high		

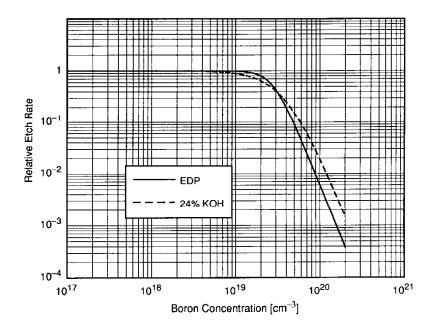
Ref.) Kurt E. Petersen, Proceedings of The IEEE, 70(5), pp. 420-457, 1982

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other³¹ usage and possession is in violation of copyright laws

Boron Etch Stop (1)

- Boron etch stop
 - 20 times slowing of etch rate for > 10^{20} cm⁻³ boron doping in KOH
 - 50 times slowing of etch rate for > 7 x 10^{19} cm⁻³ boron doping in EDP
 - Tensile stress (Boron atoms are smaller than silicon)
 - The extremely high boron concentrations are not compatible with standard CMOS or bipolar techniques




Illustration of the use of heavy boron doping with a dopant-selective etch to form free structures

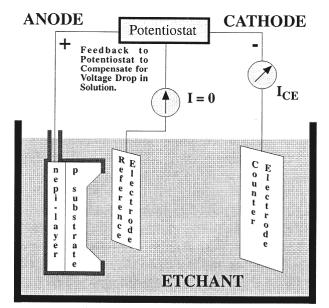
Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other³² usage and possession is in violation of copyright laws

Boron Etch Stop (2)

- Boron penetration
 - Excessive Boron doping affects IC.
 - Boron having high diffusion rate penetrates channel and gate oxide of IC.
 - In general IC MEMS, backside of substrate is wet-etched.
 - Extremely high boron doping of backside damages gate of IC, and then can be a representative cause of leak current.

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other³³ usage and possession is in violation of copyright laws

Electrochemical Etch Stop (1)


- Electrochemical wet etching
 - Appling external voltage → Implanting hole → Changing surface to hydroxide
 - Appling voltage through chemical
 - Cathode: Platinum electrode
 - Anode: Silicon
 - Hole is implanted to silicon positively charged → Silicon draws OH-of chemical → Oxidizing
 - HF added to chemical removes oxide of Si surface, then induces etching.
 - Etching effects electro polishing, because surface roughness is low.
 - Nitride or PR are used as etch mask.

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other³⁴ usage and possession is in violation of copyright laws

Electrochemical Etch Stop (2)

- Diode junction etch stop
 - P-type Si is etched away in echants (KOH, EDP, TMAH)
 - Formation of SiO₂ by anodic oxidation when the etchant reaches the junction
 - Etch-rate drop equivalent to the selectivity over SiO₂

A standard three-electrode system for diode junction etch stop

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other³⁵ usage and possession is in violation of copyright laws

Electrochemical Etch Stop (3)

- Diode junction etch stop mechanism
 - Reverse voltage at Diode \rightarrow No voltage at P-type silicon
 - Exposure to etchant \rightarrow Etching
 - N-type is exposed \rightarrow Making hydroxide \rightarrow Stop etching
 - Possible to control thickness exactly

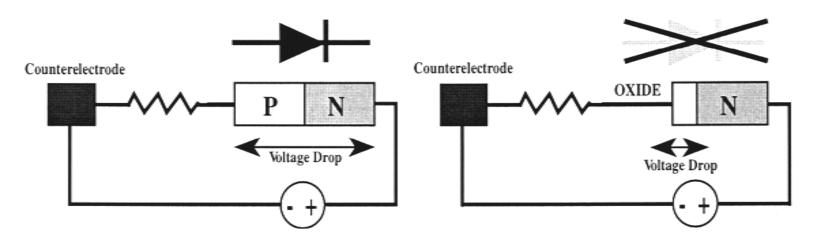
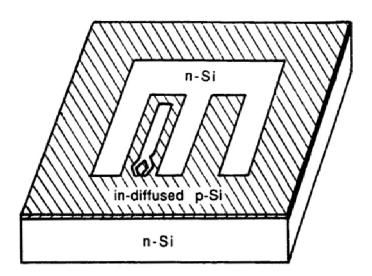
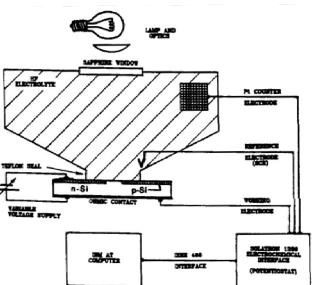


Illustration of diode junction etching



Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other³⁶ usage and possession is in violation of copyright laws

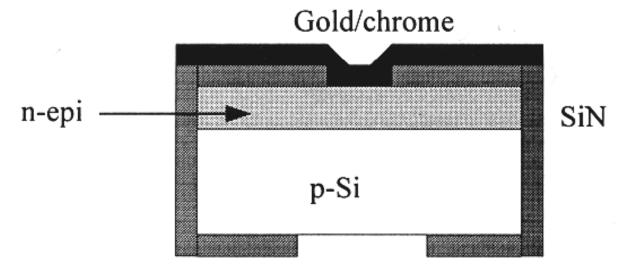

Electrochemical Etch Stop (4)

- Photo-assisted electrochemical etch stop
 - An n-type silicon region on a wafer may be selectively etched in an HF solution by illustrating and applying a reverse bias across a p-n junction

 \rightarrow the p-type layer cathodic and the n-type layer anodic

Schematic of the spatial geometry of the indiffused p-Si layer in to n-Si used to form cantilever beam structures

Schematic of the photoelectrochemical etching experimental apparatus



Dong-II "Dan" Cho

Nano/Micro Systems & Controls Lab. 37

Electrochemical Etch Stop (5)

- Electrodeless etch-stop
 - Dose not require external contacts or power source
 - The passivation voltage is generated internally in a Au/Cr/n-Si/TMAH cell.
 - The etch stop is effective for both p- and n- type silicon

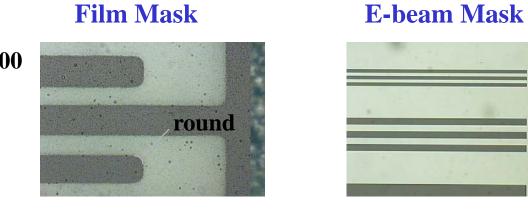
Test-wafers with SiN on the sides and gold/chrome on the front.

Wet Etch Mask (1)

- Mask materials
 - Silicon dioxide
 - Thermal film is the best.
 - CVD films etch 30 % faster
 - Sputter film is poor
 - Silicon nitride
 - CVD films are the best
 - Sputter film is poor
 - Gold, chromium, platinum, silver, copper, tantalum
 - resist against KOH and EDP

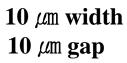
Wet Etch Mask (2)

- Etching Masks: Mask Qualities vs. Etching Properties
 - Mask qualities on etching properties
 - Resolution, CD tolerance, edge sharpness
 - Roughness on vertical sidewall profile
 - Result in selectivity


	Film Mask	E-beam mask
resolution	50 µm	1 ,2m
tolerance	7-8 µm	0.2 Jum
cost	25 \$	1400 \$
contrast	bad	excellent
cleaning	No	Yes
# of usage	saveral	unlimited if cleaned
hardness	flexible	hard

Nano/Micro Systems & Controls Lab.

Wet Etch Mask (3)


Etching masks: comparison of mask properties

 $7\mu m$

×100

100 μ m width 50 μm gap

×500

Dong-II "Dan" Cho Nano/Micro Systems & Controls Lab. This material is intended for students in 4541.844 class in the Spring of 2008. Any other 41 usage and possession is in violation of copyright laws

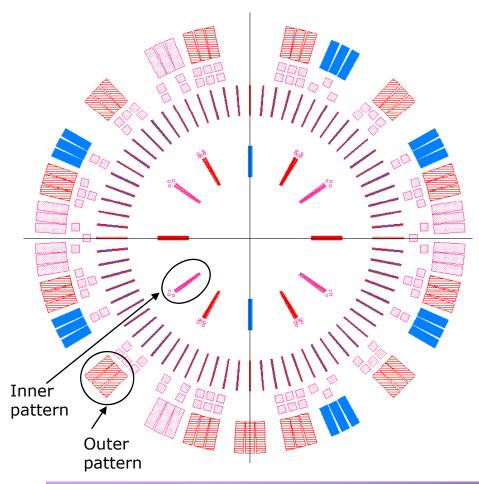
Wet Etch Mask (4)

 Etching masks: fabricated structures using different Mask

Film mock

r IIIII IIIask	L-Dealli mask
	0032 10KU K2 3 0 10 m WD34
100 µm width	10 µm width
50 μ m gap	10 µm gap
75 µm width	8 μm width
75 μ m gap	12 μ m gap
	100 μm width 50 μm gap 75 μm width

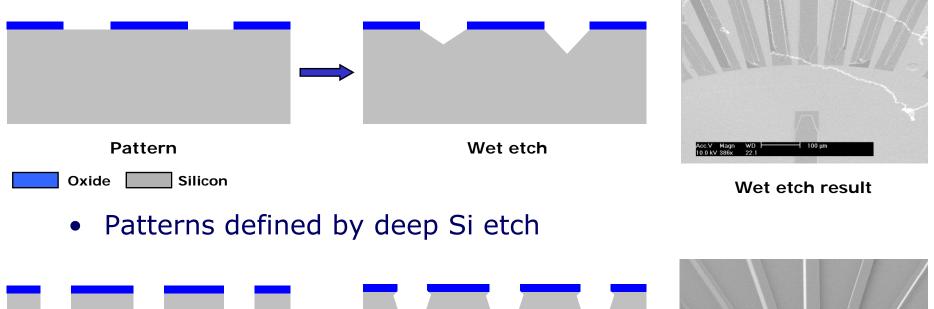
F-hoom mock

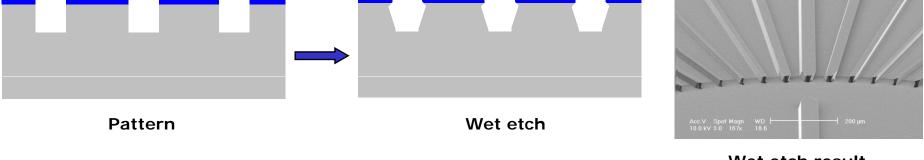

90

Selectivity 45

Wet Etch Test Pattern (1)

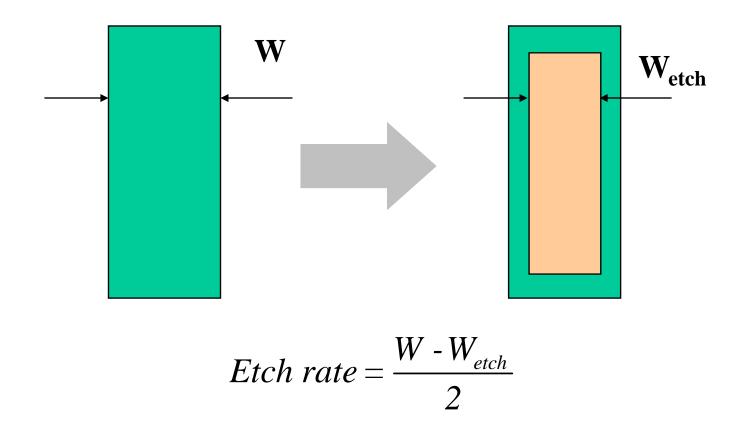
• Wagon wheel pattern mask



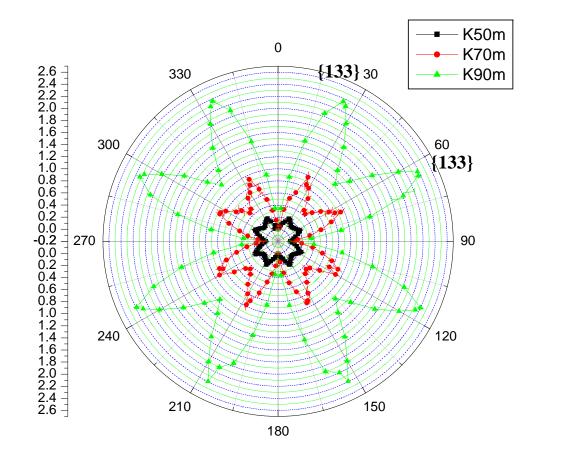

- Wagon wheel pattern
 - Size: 50 μm x 400 μm
 - Pattern repeated every 5 degree
 - Inner pattern
 - : Pattern width 5 μm
 - : Observation of slow etch rate
 - Outer pattern
 - : Pattern width 300 μm
 - : Observation of fast etch rate

Wet Etch Test Pattern (2)

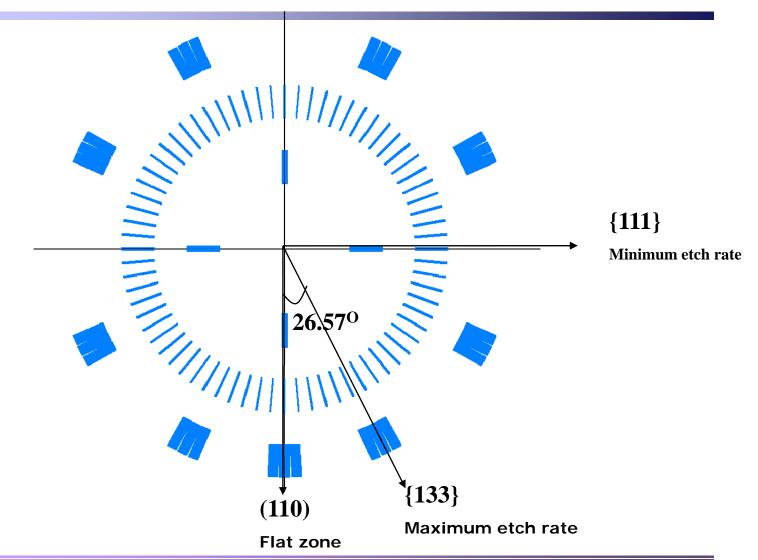
• Patterns defined by only photolithography



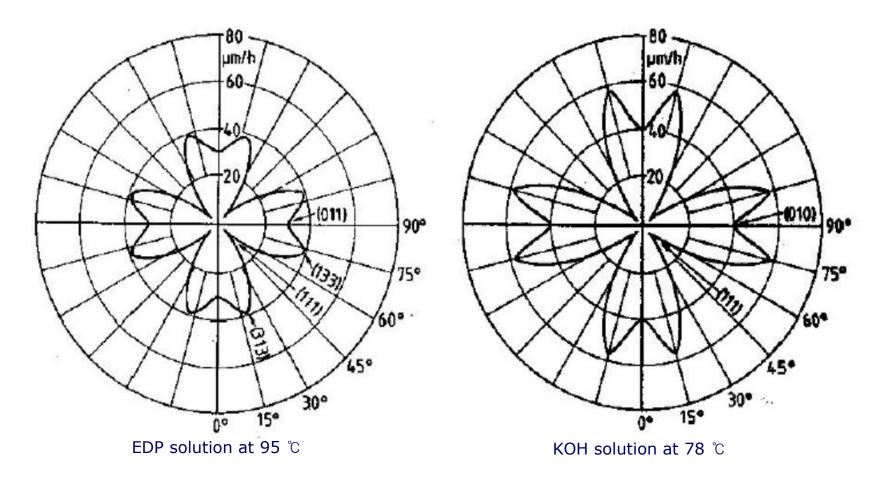
Wet etch result


Wet Etch Test Pattern (3)

• Wet etch rate inspection

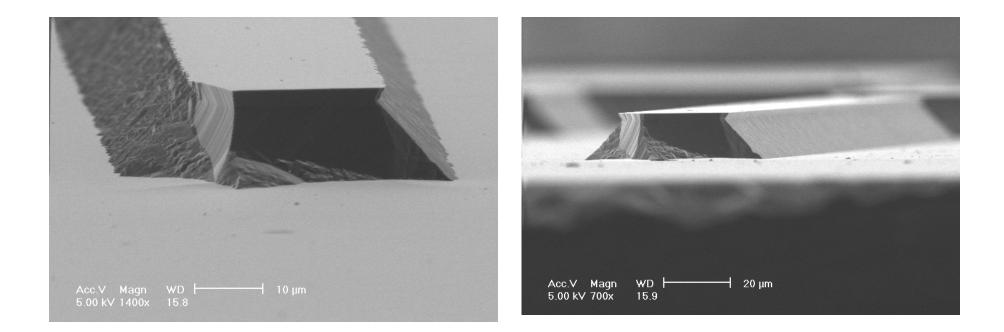

(100) Si Wet Etch (1)

40wt % KOH K50m: 50 ℃ K70m: 70 ℃ K90m: 90 ℃



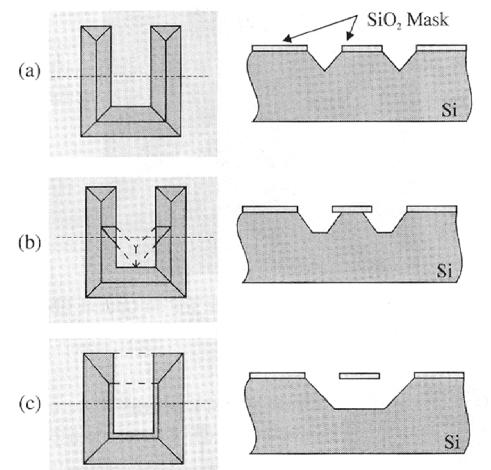
(100) Si Wet Etch (2)

(100) Si Wet Etch (3)

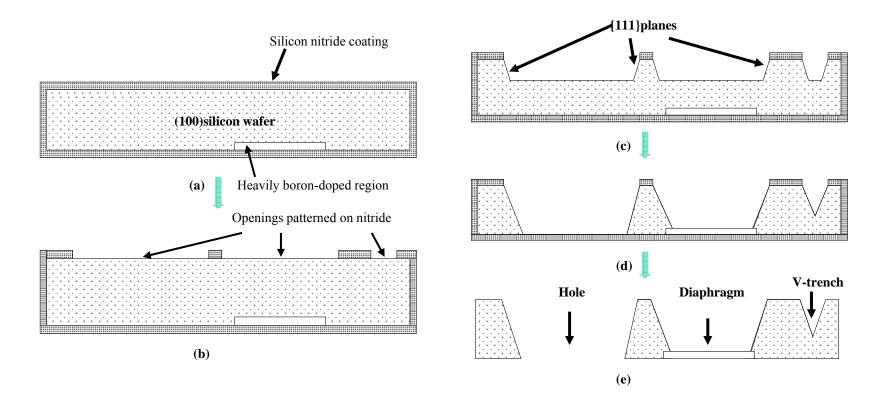


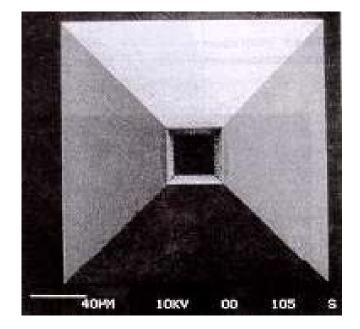
Ref.) H. Seidel, J. of Electrochemical Society, 137(11), pp. 3613-3632, 1990

(100) Si Wet Etch (4)

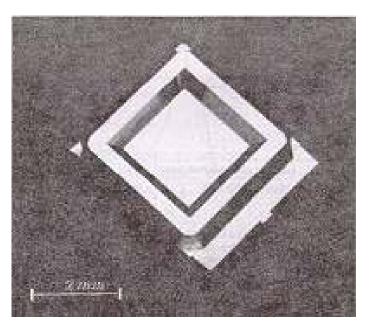

• SEM view: (100) wafer, KOH 40%, 50℃

(100) Si Wet Etch (5)


• Micromachining of (100) wafer

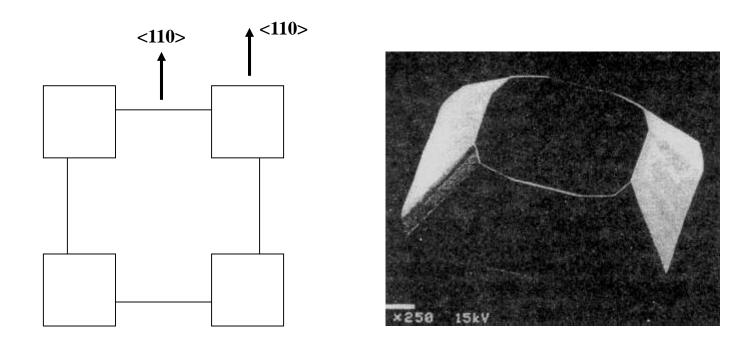

(100) Si Wet Etch (6)

• Anisotropic Silicon Etching



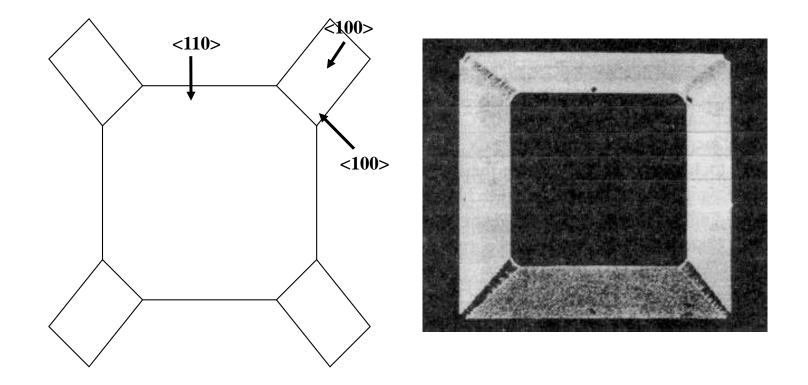
(100) Si Wet Etch (7)

Nozzle

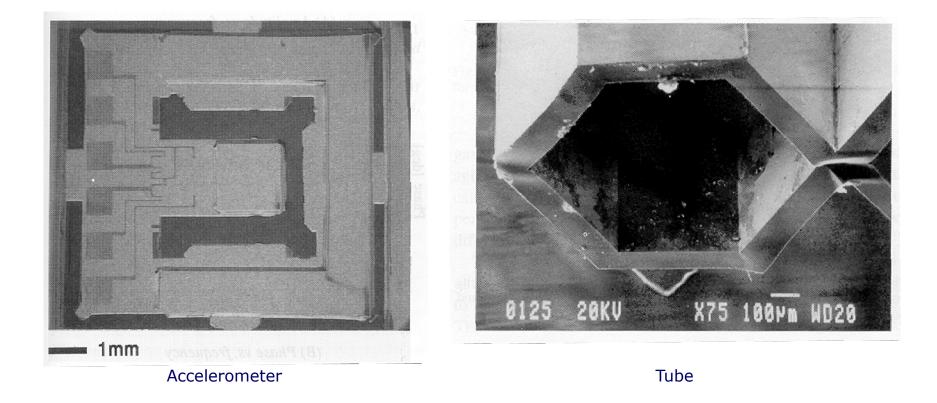


Diaphragm

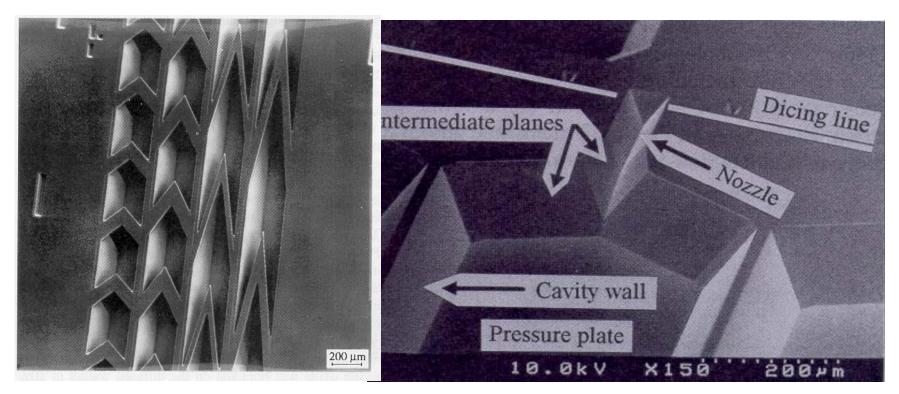
(100) Si Wet Etch (8)


- Rectangular corner compensation for mesa structure fabrication
 - Mask layout of compensation pattern for preventing undercut

(100) Si Wet Etch (9)


• 45° rotated rectangular corner compensation for mesa structure fabrication

(100) Si Wet Etch (10)


• Application examples (1)

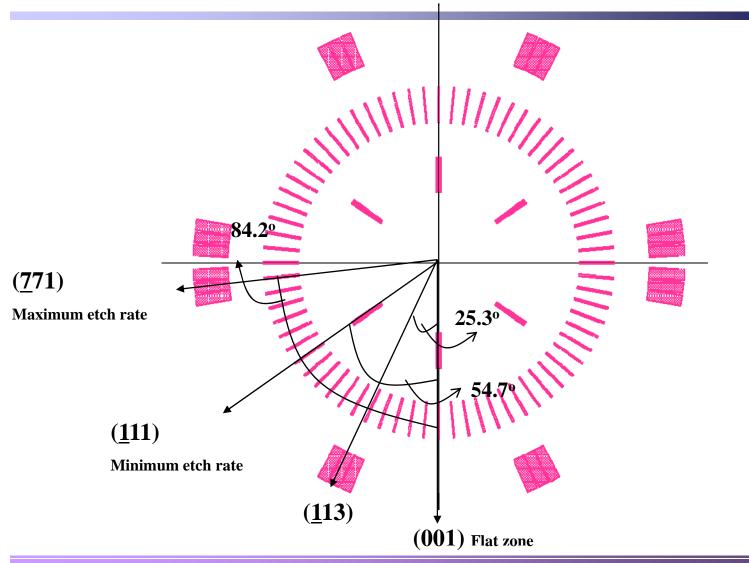
(100) Si Wet Etch (11)

• Application examples (2)

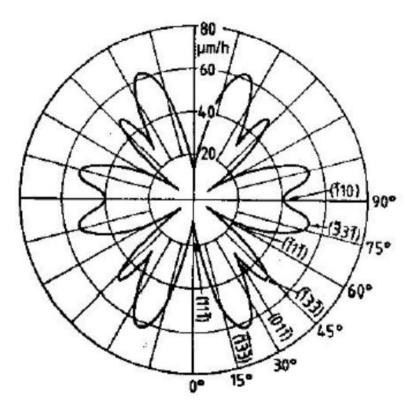


Holding structure over v-grooves

Ink jet printer nozzle

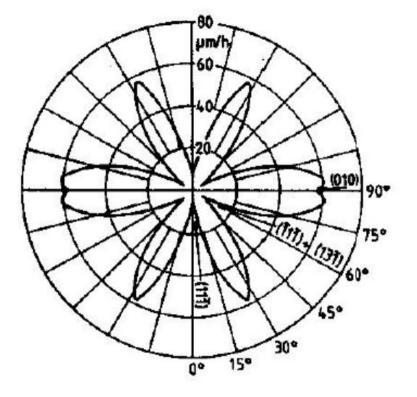


(110) Si Wet Etch (1)



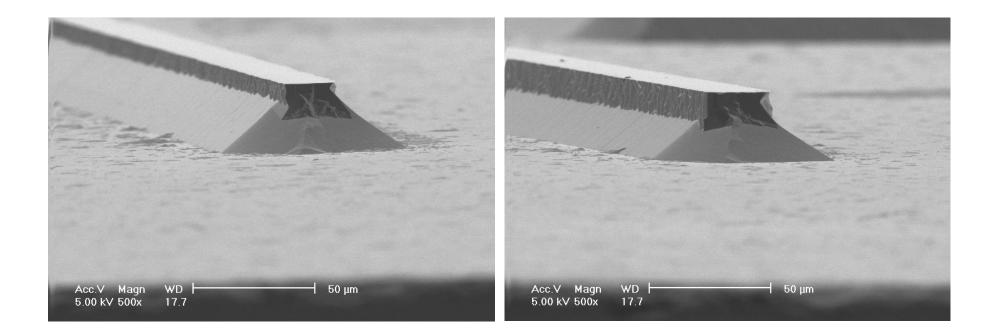
(110) Si Wet Etch (2)

(110) Si Wet Etch (3)

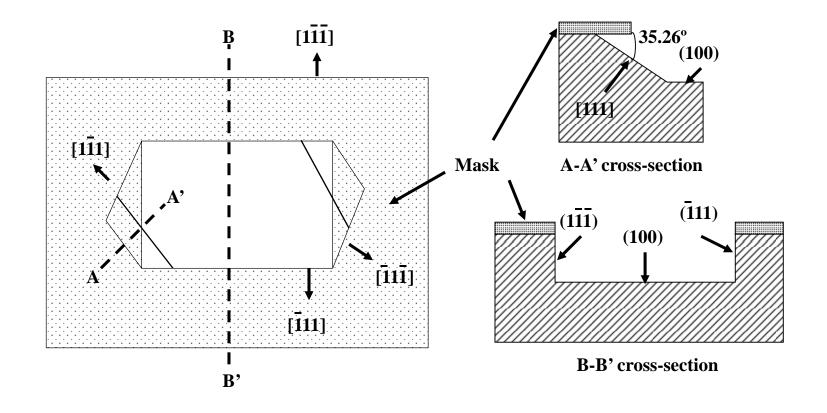


EDP solution at 95 $\,^\circ\!\!\!{\rm C}$

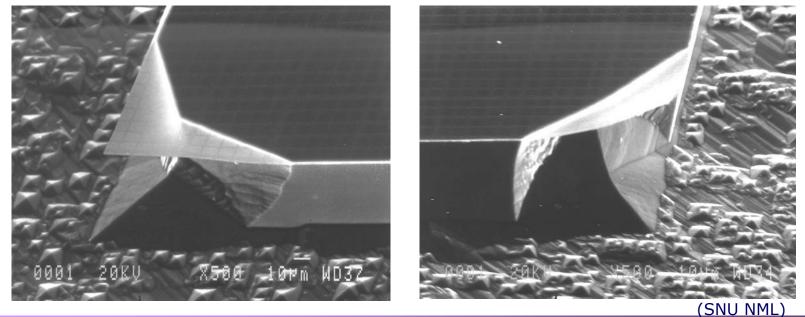
KOH solution at 78 °C


Ref.) H. Seidel, J. of Electrochemical Society, 137(11), pp. 3613-3632, 1990

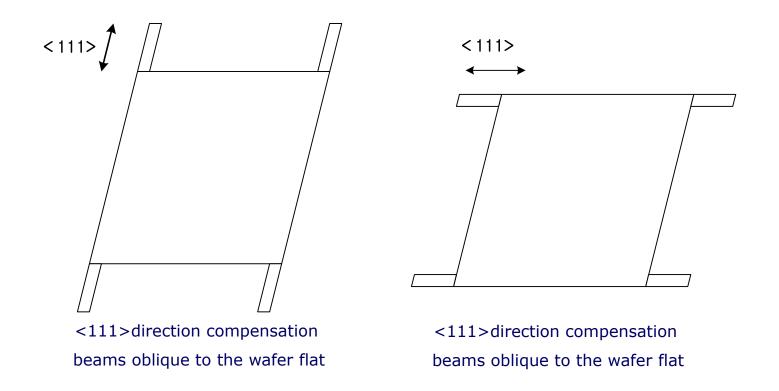
(110) Si Wet Etch (4)


• SEM view: (110) wafer, KOH 40%, 50℃

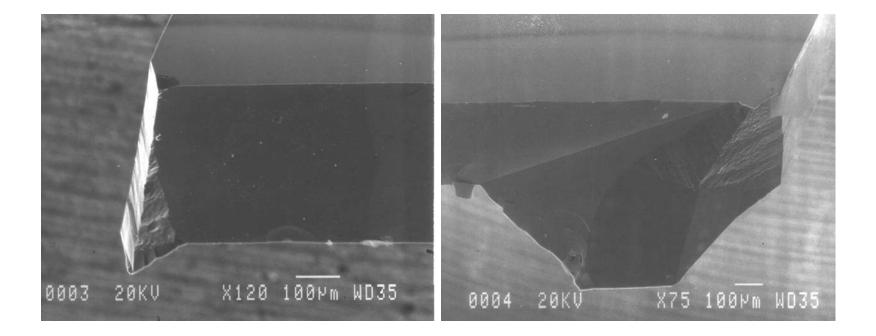
(110) Si Wet Etch (5)


• Top and cross-sectional view of wet etched (110) silicon wafer

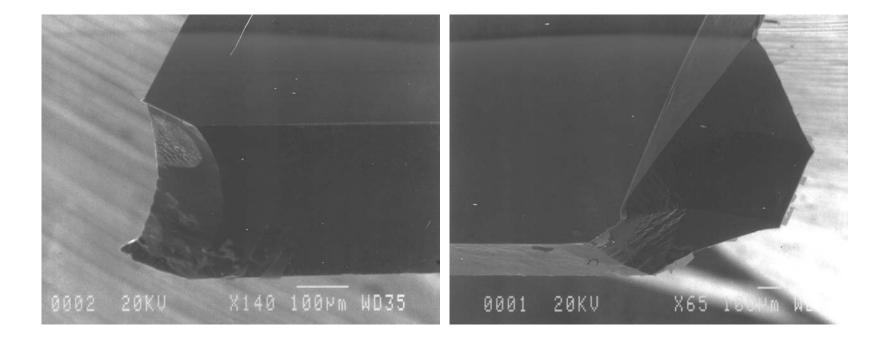
(110) Si Wet Etch (6)


- Convex corners
 - The planes that emerge under convex corners are not compatible with the planes that we find in the etch rate minima.
- Acute and obtuse convex corners of parallelogram
 - Need compensation pattern for undercut and residues

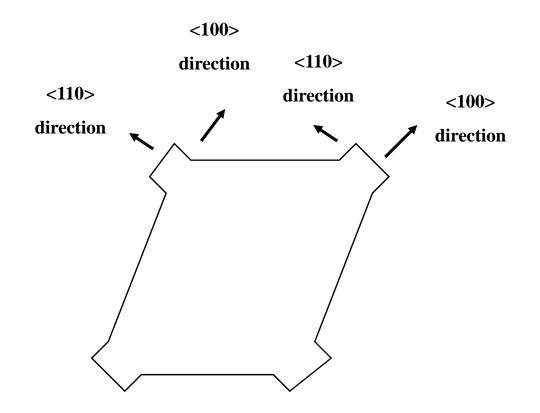
(110) Si Wet Etch (7)


• Compensation pattern design using <111> beam

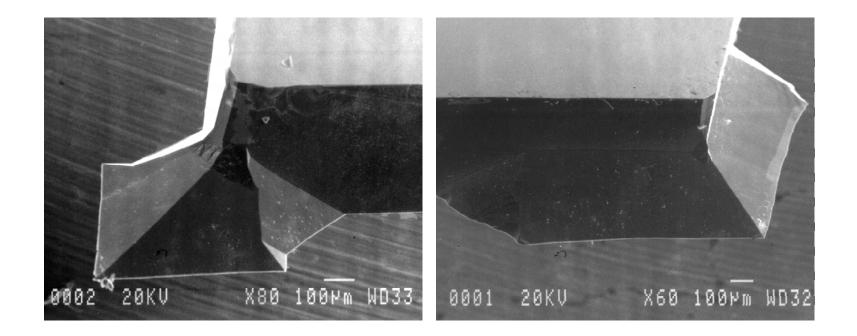
(110) Si Wet Etch (8)


- Compensation results
 - Good compensation effects on acute corners
 - Need other compensation pattern on convex corners

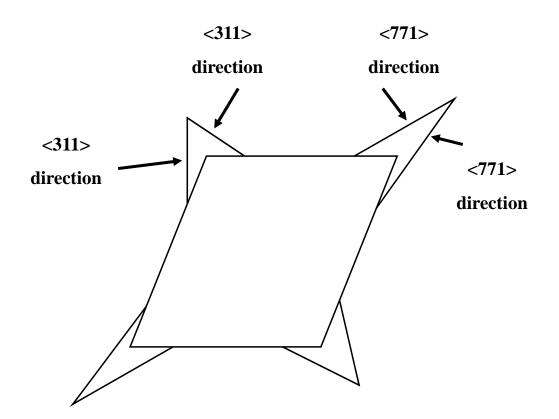
(110) Si Wet Etch (9)


- Compensation results
 - Good compensation effects on acute corners
 - Need other compensation pattern on convex corners

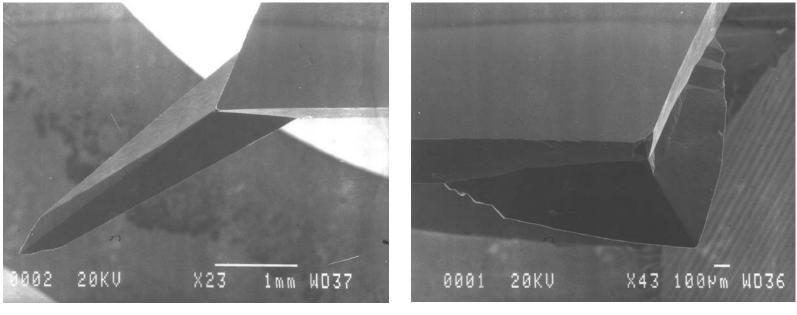
(110) Si Wet Etch (10)


• Rectangular compensation pattern design

(110) Si Wet Etch (11)

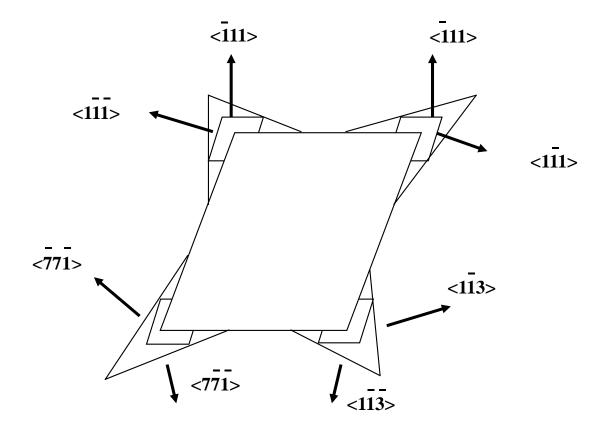

- Compensation results
 - Large residues remain

(110) Si Wet Etch (12)


• Triangular compensation pattern design

(110) Si Wet Etch (13)

- Compensation results
 - Very large unwanted residues at the bottom
 - Features sharp corners at the top of the structures


Etch front place : 311

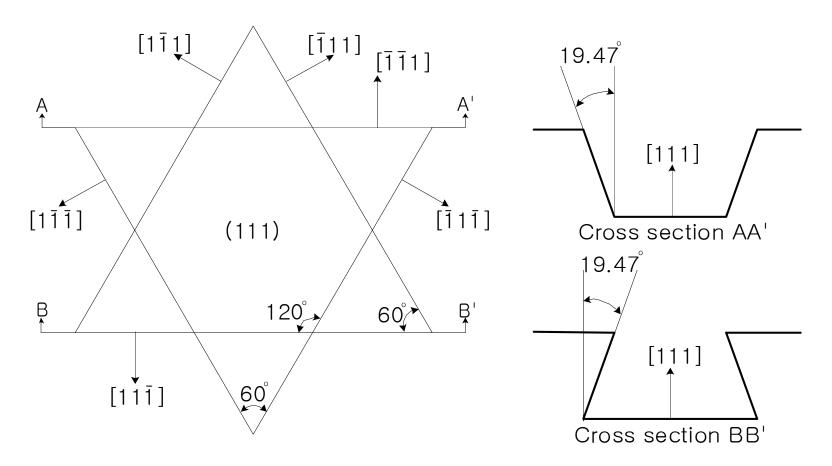
Etch front place : 771

(110) Si Wet Etch (14)

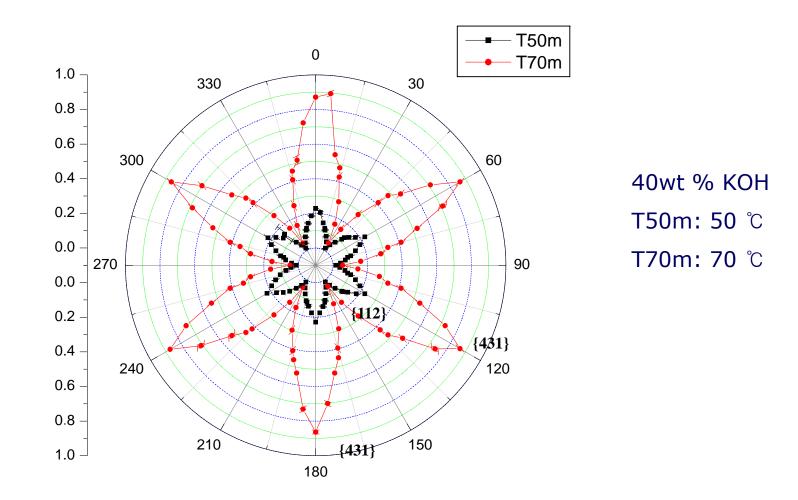
• Rhombic compensation pattern design

(110) Si Wet Etch (15)

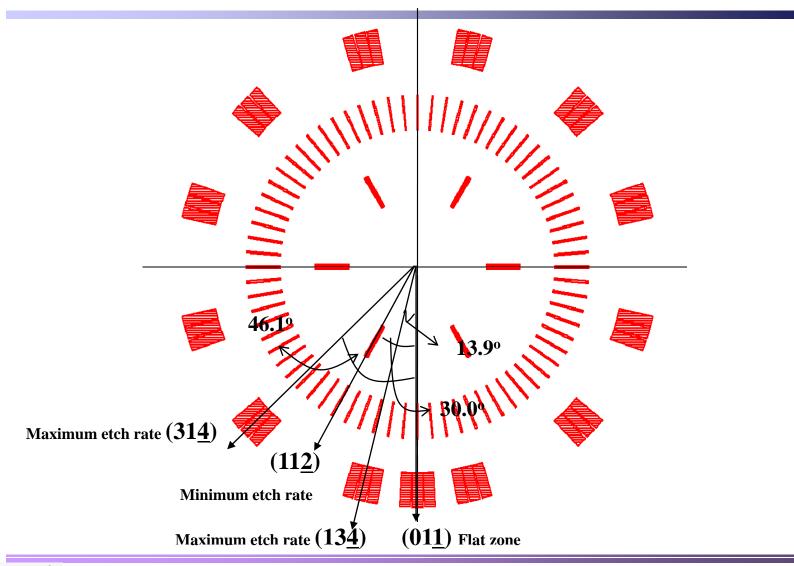
- Compensation results
 - Good compensation effects on both corners
 - Very small unwanted residues at the bottom
 - Features relatively sharp corners at the top



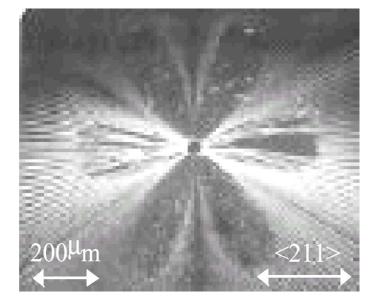
Dong-II "Dan" Cho Nano/Micro Systems & Controls Lab. This material is intended for students in 4541.844 class in the Spring of 2008. Any other⁷¹ usage and possession is in violation of copyright laws


(111) Si Wet Etch (1)

• Crystallography of Si (111)

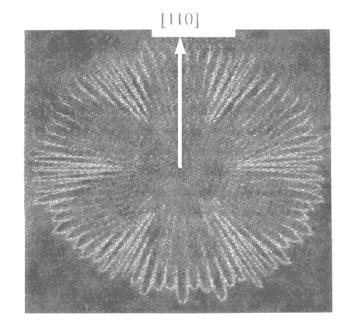

(111) Si Wet Etch (2)

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other⁷³ usage and possession is in violation of copyright laws


(111) Si Wet Etch (3)

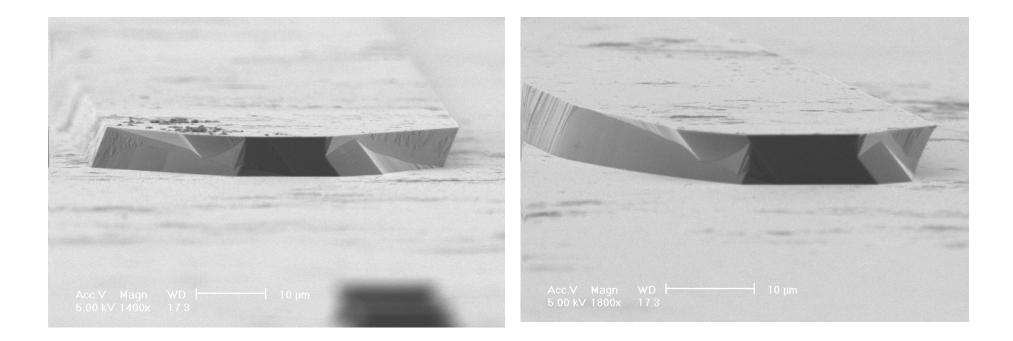
Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other 14 usage and possession is in violation of copyright laws

(111) Si Wet Etch (4)


22 wt% TMAH at 80℃

Ref) M. Sekimura, MEMS99, 1999

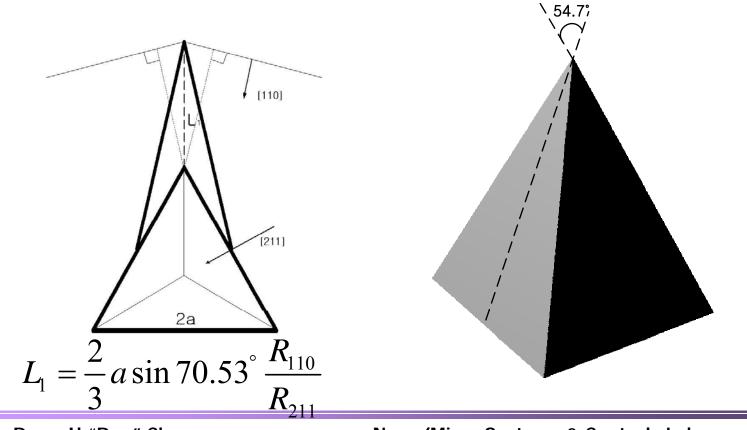
Ref) B.C.S. Chou, C-N. Chen, and J-S. Shie, Sensors and Actuators A, vol. 75, 1999


Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other⁷⁵ usage and possession is in violation of copyright laws

KOH at 80 ℃

(111) Si Wet Etch (5)

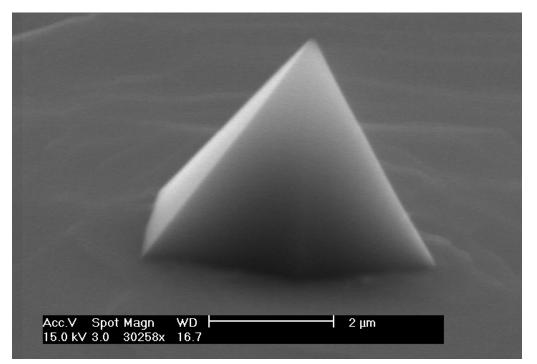
• SEM view: (111) wafer, TMAH 10%, 50℃



Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other ⁷⁶ usage and possession is in violation of copyright laws

(111) Si Wet Etch Application (1)

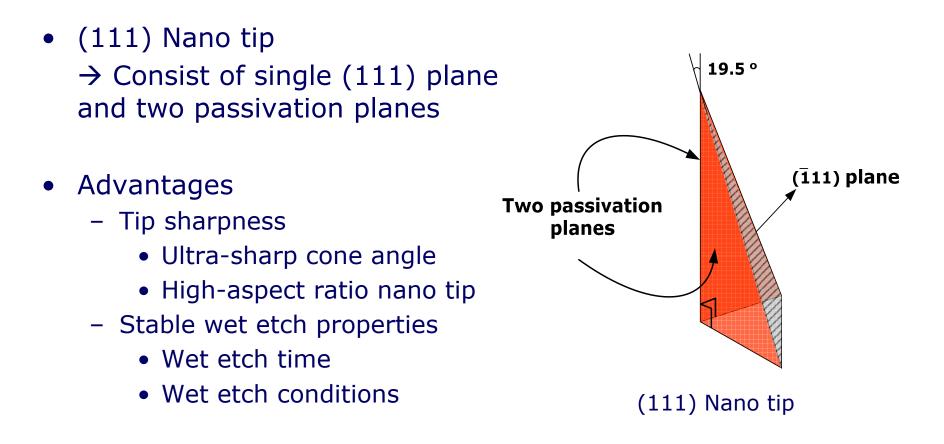
- 3 {111}-faceted tip
 - Very sharp tip with 54.7 $^{\circ}$
 - Convex compensation design


Υ

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other ⁷⁷ usage and possession is in violation of copyright laws

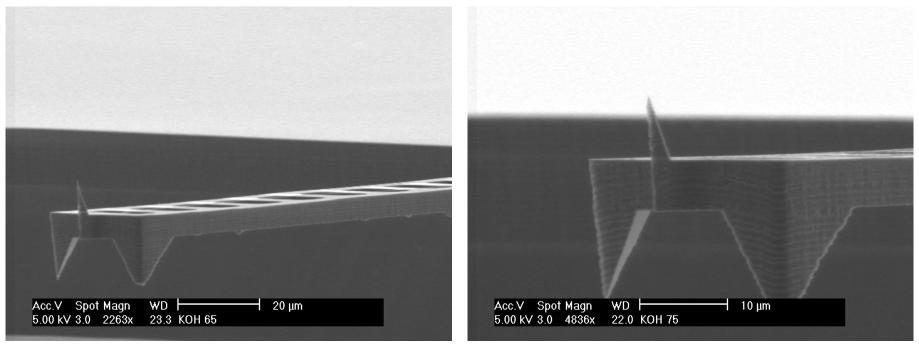
(111) Si Wet Etch Application (2)

- 3 {111}-faceted tip (composed of (111),(111),(111)))
 - Wet etch time: 3 min
 - Tip height: 5 µm



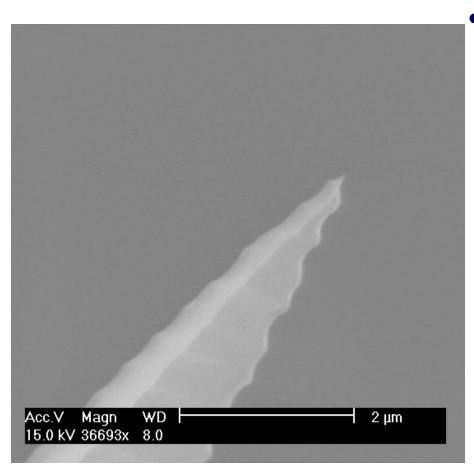
3 {111}-faceted tip

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other⁷⁸ usage and possession is in violation of copyright laws


(111) Si Wet Etch Application (3)

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other⁷⁹ usage and possession is in violation of copyright laws

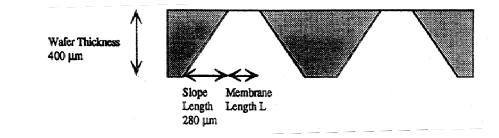
(111) Si Wet Etch Application (4)


Single nano tip

Tip height: 10 µm

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other usage and possession is in violation of copyright laws

(111) Si Wet Etch Application (5)


- Specification of nano tip
 - Cantilever
 - Thickness: 8 µm
 - Length: 250 µm
 - Width: 30 µm
 - Pitch: 200 µm
 - Nano tip
 - Height: 10 µm
 - Aspect ratio: 3:1
 - Tip radius: 10 nm
 - Total cone angle: 19.5 $^{\circ}$

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other sugar and possession is in violation of copyright laws

Limitation of Wet Etch

- Processing yield: dependent with etch stop method
 - Time etch stop is simple but not reliable
 - Electrochemical etch stop is reliable but complex
- Limited Geometry Freedom (Crystal-direction Dependence)
- Extensive Real Estate Consumption & Large Dimension

- Corner Compensation
- However, for nozzles & grooves, proven mass production method (e.g. injector nozzles, ink jet printer nozzles, pressure sensors, ...)

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other⁸² usage and possession is in violation of copyright laws

Reference

- K. R. Williams, and R. S. Muller, "Etch Rate for Micromachining Processing," Microelectromechanical Systems, Journal of, Vol. 5, No. 4, pp. 256-269, 1996
- K. R. Williams, K. Gupta, and M. Wasilik, "Etch rates for micromachining processing-Part II," Microelectromechanical Systems, Journal of, Vol. 12, No. 6, pp. 761-778, 2003
- S. Lee, S. Park, and D. Cho, "The Surface/Bulk Micromachining (SBM) process: anew method for fabricating released microelectromechanical systems in single crystal silicon," *J. Microelectromechanical Syst.*, to appear Sept. 1999
- Kim, B. and Cho, D., "Aqueous KOH Etching of (110) Silicon-Etch Characteristics and Compensation Methods for Convex Corners," *J. of Electrochemical Society*, 145(7), pp. 2499-2507, July 1998
- H. Seidel, "Anisotropic Etching of Crystalline Silicon in Alkaline Solution," *J. of Electrochemical Society*, 137(11), pp. 3613-3632, Nov. 1990

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other usage and possession is in violation of copyright laws

Reference

- Kurt E. Petersen, "Silicon as a Mechanical Material," Proceedings of The IEEE, 70(5), pp. 420-457, May 1982
- Melissa A. Hines, "Understanding the Evolution of Silicon Surface Morphology during Aqueous Etching," Sensors and Materials, 13(5), pp. 247-258, 2001
- Paik S., "Characteristics of (111)-oriented Silicon in Aqueous TMAH and its Applications ", MS Thesis, Seoul National University, 2001.
- Marc J. Madou, "Fundamentals of MICROFABICATION 2nd edition," CRC Press, 1997.
- J. D. Lee, "Silicon Integrated Circuit microfabrication technology 2nd edition," Daeyoungsa, 1997.
- Gregory T. A. Kovacs, "Micromachined Transducers Sourcebook 1st edition," McGraw-Hill Science/Engineering/Math, 1998.
- S.M. Sze, "Semiconductor sensors," JOHN WILEY & SONS, INC., 1994

Dong-II "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2008. Any other ⁸⁴ usage and possession is in violation of copyright laws