Chapter 1-2: Embedded
Computing

Soo-lk Chae

High Performance Embedded Computing
© 2007 Elsevier

| Topics

= Design methodologies.
= Methodologies and standards.

© 2006 Elsevier

Design goals

Functional requirements: input/output
relations.

Non-functional requirements: cost,
performance, power, etc.

Some project goals may be difficult to
measure.

© 2006 Elsevier

Aspects of performance

Embedded system performance can be
measured in many ways:

o Average vs. worst/best-case.

o Throughput vs. latency.

o Peak vs. sustained.

© 2006 Elsevier

Energy/power

Energy consumption is important for battery
life.

Power consumption is important for heat
generation or for generator-powered systems
(vehicles).

© 2006 Elsevier

Cost

Manufacturing cost must be paid off across
all the systems.
o Hardest in small-volume applications.

Manufacturing cost is incurred for each
device.

Design cost is determined both by the labor
and by the equipment used to support the
designers: NRE

Lifetime costs include software and hardware
maintenance and upgrades.

© 2006 Elsevier

Other design attributes

Design time must be reasonable. May need
to finish by a certain date: time-to-market.

System must be reliability; reliability
requirements differ widely.

Quality includes reliability and other aspects:
usability, durability, etc.

o Difficult to measure

o User interface

© 2006 Elsevier 7

Design methodology

Design methodology: a procedure for creating an

Implementation from a set of requirements.

o Itis not simply an abstraction; it must be defined in terms of
available tools and resources.

Methodology is important in embedded computing:

o Must design many different systems.

o We may use same/similar components in many different
designs.

o Design time, results must be predictable.

© 2006 Elsevier 8

'Embedded system design challenges

= Design space is large and irregular. We don’t have synthesis
tools for many steps.

o Must rely on analysis and simulation for many design phases
= Can’t simulate everything.
o Limited time
o The cost of the server: significant portion of the design cost
o Cycle-accurate simulation is very slow
= Need to develop simulators as soon as possible

o Simulators must reflect the structure of the application-specific
designs
o System architects need tools to help them construct application-
specific simulators.
= Often need to start software development before hardware is
finished.

o To evaluate not just functionality but performance and power as
well.

© 2006 Elsevier 9

Moore’s Law

Gorden Moore (Intel Co-founder)

The number of transistors on a microprocessor would double approximately
every 18 months (1965)

Intel 4004 Intel 8086 Intel 80386 Intel Pentium Intel Pentium4
(1971) (1978) (1985) (1993) (2000)

Technology 10 um 3um 1.5um 0.8 um 0.13 um
Tr count 2,300 29K 275K 3.1M 42M
Op. Freq. 800 KHz 10 MHz 16 MHz 66 MHz 3.4 GHz

© 2006 Elsevier 10

I'TRS Roadmap

Moore’s law will be alive at least for 10 years

Table la Product Generations and Chip Size Model Technalogy Trend Targers—Near-rerm Years

Year of Production 2005 2006 2007 2008 2000 2010 211 2012 2013

DRAM ¥ Pitch (nm) {contacted) &0 0 <] > 57 50 45 40 ki 32

MPUVASTC Metal 1 (M1} 3% Pitch {nm) o 78 65 59 52 45 40 ki 32

MPU Printed Gate Length (vm) 77 54 45 42 38 34 30 27 24 21

MPU Physical Gate Lengrh (nm) 32 28 25 23 20 18 16 14 13
ST T o e o . o

-rt;;i?}—m‘ Operaring Powsr Printed Gate Length 76 &4 54 48 42 48 34 10 37
T s — — -

_rt;;iJClm1 Operaring Power Physical Gare Length 45 18 13 28 25 23 20 18 16

Flash ¥ Pitch (nm) (un-contacted Poly){f) 76 64 57 5 45 40 36 32 28

Table 1b Product Generations and Chip Size Model Techmology Trend Targets—Long-term Years

Year af Production 2014 2015 2018 2007 JriIEY 20190 2020
DRAM % Pitch i) {contacted) 28 25 n || 6 4
MPUASIC Meral 1 (M1 % Pitch inm) 23 25 22 20 18 16 14
MPU Printed Gate Length {mm) 77 19 17 15 13 12 11 9
MPU Physical Gate Length fum) 11 10 9 8 7 6 6
ASIC Low Operating Power Printed Gare Lengrh pnm) 77 24 21 19 17 15 13 12
| ASIC Low Operating Power Physical Gare Length (nm) 14 13 11 10 9 B8 7
Flazh ¥: Pirch (nm) {un-contacted Poly)if 25 23 20 18 16 14 13

© 2006 Elsevier

11

Trends of Memory Size and Gate Size

Gate Logic: Average size of 4t gate = 320 F?

SRAM Cell: 140 F2
DRAM Cell: 8 F2
FLASH Cell: 4F2
Cell Size, Logic Gate(4t) Size
1.E+41

1% gates/cm?

—+— DRAM Cell Size (u2)

——Flash Cell Size (u2)
SLC{NEW)

Flash Eqv.bit Size(u2)
MLC(NEW)

Cell, Logic Gate Size

&-MPU SRAM Cell Size
(Bh(u2)

1603 = =S
- - S .

— _ T = MPU Gate Size {(4t){u2)

Mote for Flash. ~ SLC =

Single-Level-Cell Size

1.E-04 MLC =
2000 2005 2010 2015 2020 Multi-Level-Cell

e Yaar of Production o (Electrical Equivalent) Cell Size

2006 - 2020 ITRS Range

Time-To-Market / Time-In-Market

Managing time-to-market is critical

Two year life-cycle products lost 34% of potential
revenue and 50% of profit if they are 3 months late

—3

$99M Max Available Revenue

Revenue ($)

$62M Max Revenue
after Delayed Entry

] |
Time-to-Market ! Delay (3rrlm.)

<

Time (months)

PRODUCT LIFETIME - Iyr

© 2006 Elsevier 13

Design complexity vs. designer productivity

Logic transistors Designer productivity

per chip transistors per

(thousands) 58% person per month
0,000

1,000,000
Desigh complexi
100,000 lgﬁ V 10§0
10,000 10
[0)
1000 _alrx—A’ = 10
-

100 _\; - 5 g 5
_/_E - esigner productivit

I I I I
1980 1985 1990 19 2000 2005 010

Estimated by Sematech in mid-1990s.

© 2006 Elsevier 14

Design complexity vs. designer productivity

-

log # | Additional 5W required for HW
3 Vd 210 months
LoC SWiChip
Gates/Chip
Technology capabilities
GatesDay 236 months

HW design productivity
Filling with IP and memary

- | HW design productivity

e e wm = = == S sroductivity

2uf5 years
- =] for] [- = = P~
= &] S) 8 2 =
S S] 3 3 = =1 = T time
-— - - -— - o~ o~ o™~ ™~ ™~

Figure DESN3 Hardware and Software Design Gaps Versus Time’ From ITRS2007

© 2006 Elsevier 15

‘ Design Paradigm Shifts

Log #
transistors
4 Technology

Design
gap

Design
productivity

»
»

Time

Paradigms shifts in design methodology have been the
only escape from the design gap.

© 2006 Elsevier 16

‘ Levels of Abstractlon

Transistor Level Gate Level RTL IP Reuse Platform Reuse
Transistor Model Gate Level Model SDF c % System MAOgﬁSI
Capacity Load Capacity Load Wire Load ommunication Mode ars
IP Blocks
> o -
A » » RTL
g 8 g
- 7 = =
2]
Qo
@

cluster c|uster
cluster

GDSIlI, SPICE Net-list

HDL ! standard On-chip Buse Application API
: Interfaces Hardware Platform

New Abstraction Levels = New Design Languages

© 2006 Elsevier 17

State-of-the-art System Design Environment

Specification
Architecture Testbench
Partitioning
Software £ \ " ’ Software
P ——r= o Description e T e
Sensorf
Actuator
Sensor/
Actuator
‘ Synthesis

Formal Verification
o available

partially available

Mixed-Signal-Simulation
B missing Mask set

analog digital

Figure DESN2 The V-Cycle for Design SysremAr'c;’rffecrr;r'e4 From ITRS 2007

© 2006 Elsevier 18

‘ Impact of design technology improvement

on design productivity s 2007

Very large block reuse 2007 +200% 600K B N e e T
Verification
. Many identical cores provide specialized
Homogeneous parallel 2009 +100% HW 1200K C]l[;pr‘(_‘_:lrcmb’ED processing around a main processor.
processing +100% SW V;?ﬁg:a?;n which allows for performance. power
efficiency. and high reuse
Chip/circuit/PD Like RTL verification tool suite, but also with
Intelligent test bench 2011 37.5% 1650K Verificati automation of the Verification
canon Partitioning step
Chip and
Concurrent software o Electronic System | Enables compilation and SW development in
compiler 2013 200% SW 1650K Design and highly parallel processing SOCs
Verification
Svetem Electroni Each of the specialized cores around the main
Heterogeneous massive 2015 +100% HW 3300K YSD e :mc processor 15 not 1denticzl from the
parallel processing +100% SW V;z}ig:a?;m programmung and implementation
standpoint
+100% HW System Electronic | Automates true eiecironic system design on-
Transactional Mcmory 2017 +100ﬂ; W 6600K Design and and off-chip for the first time, including
Verification heterogeneous technologies (Phase 1)
60% HW System Electronic | Automates true electronic system design on-
System-level DA 2019 38% SW 10553TK Design and and off-chup for the first time, including
¢ Verification heterogeneous technologies (Phase 2)
200% HW System Electronic | Automates true electronic system design on-
Executable specification 2021 +200‘;i: - 31671K Design and and off-chip for the first time, including
Verification heterogeneous technologies (Phase 3)
© 2006 Elsevier 19
=
From ITRS 2007 2
2 -
— = o
= o = -~ E S
w =% — —
2 - Z E & g (e B
I I L > I I [=
IE g % = |8 E =]
m | & k] | = 8 - 2 &
- - £ 5 & 2 & =
{3 = = 0= | 8 b - 5
= | o = 8 = - 2 i =
= L a =] £ = L []
120 ; - 1 - ;
w
| Design cost ($M)
20 - i

-]
&

B &

(=}

2007 M08 08 2MD AHM1 M2 23 M4 205 2006 2017 2AME HM9 N0 N1 H2?
m olal HW Engineering Uosts + EDA ool Cosks u lotal W Engineering Costs + ESDA ool Costs

Figure DESN1 Impact of Design Technology on SOC Consumer Portable Implementation Cost

© 2006 Elsevier 20

Embedded computing

A partial answer to the design productivity
problem, since we move some of the design
tasks to software

But we also need to improve methodologies
for embedded computing systems to ensure
we can continue to design platforms and load
them with useful software.

© 2006 Elsevier 21

Design Methodologies

It is jointly developed by the designers and design
technologists.

It is the sequence of steps by which a design
process will reliably produce a design as close as
possible to the design target while maintaining
feasibility to the constraints.

Design methodology is distinct from design
techniques. All known design methodologies
combine

o Enforcement of system specifications and constraints via
top-down planning and search

o With bottom-up propagation of constraints that stem from
physical laws, limits of design and manufacturing
technology, and system cost limits

© 2006 Elsevier 22

Waterfall and spiral models for software

Two early models of software development.

[1

ﬁ Prototype
Requirements
\\) Initial design

Specification
D Refined design
Architecture

Requirements >
\Czl?ng >
\M;I}enance) \ Architecture
Coding
Waterfall Spiral
© 2006 Elsevier 23
Waterfall model

Five major steps

o Requirements

o Specification

o Architecture

o Coding

o Maintenance: delivery and updates and fixes

Information flow: mostly top-down
o Unrealistic and undesirable

In practice, designers can and should use
experience from design steps to go back, rethink
earlier decisions, and redo some work.

© 2006 Elsevier 24

Spiral model

It was a reaction to and a refinement of the waterfall
model.

It envisions software design as an iterative process
iIn which several versions of the system.

o Prototype

o Initial design

o Refined design

At each phase, designers go through a requirement-
specification-architecture-coding cycle.

Experience form one stage should help produce a
better design in the next design.

© 2006 Elsevier 25

Hardware design

The methodologies for hardware design tend to use
a wider variety of tools since hardware design
makes more use of synthesis and simulation tools.

A simplified version of the hardware design flow

o Figure 1-14: next page

o Extensive use of several techniques that are not frequently
used in software design.

o Search-based synthesis algorithm

o Wirling models

o Estimation algorithms

Strict cycle-time requirements, power budgets, and
area budgets.

© 2006 Elsevier 26

Hardware design flow

Register-transfer
specification

delay: # of logic levels

State assignment,
minimization, etc.

!

Y —~ Routability model
"] Technology-independent | g~
Cell ~ logic synthesis ™ ——. Timing analysis
library e +
— ~ _ — Wiring model
Technology-dependent L&~
T . .
- = _ | logic synthesis ™ ——. Timing analysis
T - -
Technology +
database
—_— Place - — — — — — Timing analysis
and route
© 2006 Elsevier 27

Modeling in hardware

Technology databases capture
manufacturing process information.

Cell libraries describe the primitive cells used
to compose designs.

Logic synthesis systems use routability and
timing models.

© 2006 Elsevier 28

Embedded system design flows

Embedded system: software components +
hardware components

An embedded system design methodology makes
use of the best of both hardware and software
traditions.

Co-design flows: emphasizes the importance of
current designs

o Figure 1-15: a generic co-design methodology from a given
executable specification

© 2006 Elsevier 29

Hardware/software co-design flow

System
analysis

'

Software/hardware _ ___ Performance, power
partitioning analysis

Architecture

Hardware Hardware Software Software
modules implementation implementation modules
\ Y /

Integration
and debugging

© 2006 Elsevier 30

Platform-based design

A common approach to -

. . System Customization
deS|gn|ng SoCs requirements needs
Platform includes hardware,

. Platform
supporting software. design

Two stage process:
o Design the platform.
o Use the platform for
designing a derivative. requirements
Platform can be reused to

host many different systems.

© 2006 Elsevier 31

Platform

Derivative design
use

Platform design phases

Transform system requirements and software

models into detailed requirements.

o Use profiling and analysis tools to measure existing
executable specifications.

Explore the design space manually or automatically
by evaluating design alternatives

Develop a hardware platform by optimizing the
system architecture based on the results of
architecture simulation and other steps.

Develop its software platform (hardware abstraction
layers (HAL) and other software such as OS ports,
communications, API, debugging).

© 2006 Elsevier 32

Programming platforms

Programming environment (compilers, editors.
Debuggers, simulators) in a single graphic user
interface is available for a single CPU.

The programming environment must be customized
to the platform:

o Multiple CPUs.

o Specialized memory.

o Specialized 1/0 devices.

Libraries are often used to glue together processors
on platforms.

Debugging environments for multiple processors are
a particular challenge.

© 2006 Elsevier 33

Standards-based design methodologies

Standards

o enable products and create large markets due to inter-operability
o Large market (several millions chips) justify SoC developments.
o The designers have much less control over the specification
a

Many standards define that certain operation must be performed ,
but they do not specify how they are to be performed. (0il, ME)

o Standards tend to become more complex over time.
Standards generally allow products to be differentiated.

o Different implementations of operations, so long as I/O behavior
IS maintained.

o User interface is often not standardized.

Standard may dictate certain non-functional requirements (power
consumption), implementation techniques.

© 2006 Elsevier 34

Reference implementations

Standard bodies typically provide a reference implementation.

Executable program that complies with the I/O behavior of the
standard.

o May be written in a variety of language.
o Oftenin C orin Java

In some cases, the reference implementation is the most
complete description of the standard.

Reference implementation is often not well-suited to embedded
system implementation:

o Time-consuming to understand
Cannot be used as-is

Single process.

Infinite memory.

Non-real-time behavior.

0o 0 0o O

© 2006 Elsevier 35

Reference implementations

The code must be often restructured in many
ways
o Eliminating features that will not be implemented

o Replacing heap allocation with custom memory
management

o Improving cache utilization, functions, inlining, and
many other tasks.

© 2006 Elsevier 36

Designing standards-based systems

Design the unspecified parts of the implementation

Implement system components not specified by
the standard such as user interface.

Optimized the reference implementation by
performing platform-independent optimizations.

Analyze and profile the optimized version of
reference implementation.

Design hardware platform.

Optimize system software based on platform.
Further optimize platform.

Test for conformity to standard.

© 2006 Elsevier 37

H.264/AVC

Implements video coding for a wide range of
applications:

o Broadcast and videoconferencing.

o Cell phone-sized screens to HDTV.

Video codec reference implementation
contains 120,000 lines of C code.

720p high-profile H.264 Codec
o 20 ~ 100 Gips (estimated)

© 2006 Elsevier 38

Design verification and validation

Testing exercises an implementation by supplying
iInputs and testing outputs.

Validation compares the implementation to the initial

specification or requirements.

o You built the right thing, which refers back to the user's
needs..

Verification may be performed at any design stage;

compares design at one level of abstraction to

another.

o You built the thing right, which checks that the written

requirements for both as well as formal procedures or
protocols for determining compliance.

© 2006 Elsevier 39

Where do bugs come from?

Incorrect specifications
Misinterpretation of specifications
Misunderstandings between designers
Missed cases

Protocol non-conformance

Resource conflicts

Cycle-level timing errors

© 2006 Elsevier 40

Design verification techniques

Simulation uses an executable model

o relies on inputs.

Formal methods generate a (possibly specialized) proof.
o Equivalence checking

o Model checking: description of properties are tested

o Theorem proving

Semi-formal

o Simulation-based and simulation-assisted

o Symbolic simulation

o Directed model checking

Manual methods, such as design reviews, catch design errors
informally.

© 2006 Elsevier 41

A methodology of methodologies

Embedded systems include both hardware
and software.

o HW, SW have their own design methodologies.
Embedded system methodologies control the
overall process, HW/SW integration, etc.

o Must take into account the good and bad points of
hardware and software design methodologies
used.

© 2006 Elsevier 42

Usetul methodologies for ESD

Software performance analysis: Section 3.4

o Executable specification

Architectural optimization.

o Single CPU : chapter 3

o Multiple processors: chapter 5

Hardware/software co-design: chapter 7

On-chip Network design:

o On-chip networks: section 5.6

o Multi-chip networks: section 5.8

Software verification: section 4.5

Software tool generation:

o Compiler generation for configurable processors: section 2.9
o Software generation for multiprocessors: section 6.3

© 2006 Elsevier 43

Joint algorithm and architecture
development

Some algorithm design is necessarily performed before platform
design.

Algorithm => software

o Algorithm design: specific domain (signal processing, network)
o Software design: general

o ESD Goal: Designing an efficient, compact software

Algorithm development can be informed by platform architecture
design.

o Performance/power/cost trade-offs.

o Design trends over several generations.

Algorithm designers can develop software

o With functional simulators that run as fast as possible

o Fast turnaround of compilation and simulation is very important to
successful software development

© 2006 Elsevier 44

