
Chapter 1-2: Embedded
C iComputing

S Ik ChSoo-Ik Chae

High Performance Embedded Computing
© 2007 Elsevier 1

Topicsp

Design methodologies.

Methodologies and standards.g

© 2006 Elsevier 2

Design goalsg g

Functional requirements: input/output
relations.

Non-functional requirements: cost,
performance power etcperformance, power, etc.

Some project goals may be difficult to
meas remeasure.

© 2006 Elsevier 3

Aspects of performancep p

Embedded system performance can be
measured in many ways:

Average vs. worst/best-case.

Throughput vs. latency.Throughput vs. latency.

Peak vs. sustained.

© 2006 Elsevier 4

Energy/powergy/p

Energy consumption is important for battery
life.

Power consumption is important for heat
generation or for generator-powered systemsgeneration or for generator powered systems
(vehicles).

© 2006 Elsevier 5

Cost

M f t i t t b id ffManufacturing cost must be paid off across
all the systems.

Hardest in small-volume applications.

Manufacturing cost is incurred for each
device.
Design cost is determined both by the labor g y
and by the equipment used to support the
designers: NRE
Lifetime costs include software and hardware
maintenance and upgrades.

© 2006 Elsevier 6

pg

Other design attributesg

Design time must be reasonable. May need
to finish by a certain date: time-to-market.

System must be reliability; reliability
requirements differ widelyrequirements differ widely.

Quality includes reliability and other aspects:
sabilit d rabilit etcusability, durability, etc.
Difficult to measure

User interface

© 2006 Elsevier 7

Design methodologyg gy

Design methodology: a procedure for creating an
implementation from a set of requirements.

It is not simply an abstraction; it must be defined in terms of
available tools and resources.

Methodology is important in embedded computing:Methodology is important in embedded computing:
Must design many different systems.

We may use same/similar components in many differentWe may use same/similar components in many different
designs.

Design time, results must be predictable.g , p

© 2006 Elsevier 8

Embedded system design challengesy g g
Design space is large and irregular. We don’t have synthesis
tools for many steps.

M t l l i d i l ti f d i hMust rely on analysis and simulation for many design phases
Can’t simulate everything.

Limited timeLimited time
The cost of the server: significant portion of the design cost
Cycle-accurate simulation is very slow

N d t d l i l t iblNeed to develop simulators as soon as possible
Simulators must reflect the structure of the application-specific
designs
System architects need tools to help them construct application-
specific simulators.

Often need to start software development before hardware isOften need to start software development before hardware is
finished.

To evaluate not just functionality but performance and power as
well

© 2006 Elsevier 9

well.

Moore’s Law

Gorden Moore (Intel Co-founder)

The number of transistors on a microprocessor would double approximately
every 18 months (1965)

Intel 4004
(1971)

Intel 8086
(1978)

Intel 80386
(1985)

Intel Pentium
(1993)

Intel Pentium4
(2000)

Technology 1.5 um3 um 0.8 um 0.13 um10 um

275K29K 3.1 M 42MTr count

Op. Freq.

2,300

16 MHz10 MHz 66 MHz 3.4 GHz800 KHz

© 2006 Elsevier 10

ITRS Roadmapp
Moore’s law will be alive at least for 10 years

© 2006 Elsevier 11

Trends of Memory Size and Gate Sizey
Gate Logic: Average size of 4t gate = 320 F2

SRAM Cell: 140 F2

DRAM Cell: 8 F2

FLASH Cell: 4 F2

1억gates/cm2

© 2006 Elsevier 12

Time-To-Market / Time-In-Market/
Managing time-to-market is critical

Two year life-cycle products lost 34% of potential
revenue and 50% of profit if they are 3 months late

© 2006 Elsevier 13

Design complexity vs. designer productivityg p y g p y

58%

21%

Estimated by Sematech in mid-1990s.

© 2006 Elsevier 14

Design complexity vs. designer productivityg p y g p y

From ITRS2007

© 2006 Elsevier 15

From ITRS2007

Design Paradigm ShiftsDesign Paradigm Shifts
Log #Log #

transistors
Technology

D i

Design
gap

paradigm paradigm
shiftsshifts

Design
productivity

Time

Paradigms shifts in design methodology have been the
only escape from the design gap.

© 2006 Elsevier 16

only escape from the design gap.

Levels of Abstraction
Transistor Level Gate Level RTL IP Reuse Platform Reuse

Transistor Model
Capacity Load

Transistor Model
Capacity Load

Gate Level Model
Capacity Load

Gate Level Model
Capacity Load

SDF
Wire Load

SDF
Wire Load

IP Blocks

IP Block Model
Communication Model

IP Blocks

IP Block Model
Communication Model

IP BlocksIP Blocks

IP Block Model
Communication Model

System Model
APIs

bs
tr

ac
t

bs
tr

ac
t

bs
tr

ac
t

ab
st

ra
ct

ab
st

ra
ct

RTL

ab
st

ra
ct

RTL

ab
st

ra
ct

ab
st

ra
ct

ab
st

ra
ct

ab
st

ra
ct

ab
st

ra
ct

ab
st

ra
ct

a
bs

tr
ac

t
a

bs
tr

ac
t

ababab

clustercluster clustercluster
cluster

RTL
Clusters

SW
Modelsclustercluster

RTL
Clusters

SW
Models

RTL
Clusters

SW
Models clustercluster

1980대초반1980대초반 1980대후반1980대후반 1990대초반1990대초반 1990대후반1990대후반1990대후반 2000대초반

S O Application APIGDSII, SPICE Net-list HDL Standard On-chip Buse

Interfaces

Application API

Hardware Platform

Ne Abstraction Le els Ne Design Lang ages

© 2006 Elsevier 17

New Abstraction Levels New Design Languages

State-of-the-art System Design Environmenty g

From ITRS 2007

© 2006 Elsevier 18

From ITRS 2007

Impact of design technology improvement p g gy p
on design productivity

From ITRS 2007

© 2006 Elsevier 19

System Design Costy g

From ITRS 2007

© 2006 Elsevier 20

Embedded computingp g

A partial answer to the design productivity
problem, since we move some of the design
tasks to software

But we also need to improve methodologiesBut we also need to improve methodologies
for embedded computing systems to ensure
we can continue to design platforms and loadwe can continue to design platforms and load
them with useful software.

© 2006 Elsevier 21

Design Methodologiesg g
It is jointly developed by the designers and design
technologiststechnologists.
It is the sequence of steps by which a design
process will reliably produce a design as close as p y p g
possible to the design target while maintaining
feasibility to the constraints.
Design methodology is distinct from design
techniques. All known design methodologies
combinecombine

Enforcement of system specifications and constraints via
top-down planning and searchg
With bottom-up propagation of constraints that stem from
physical laws, limits of design and manufacturing
technology and system cost limits

© 2006 Elsevier 22

technology, and system cost limits

Waterfall and spiral models for software

Two early models of software development.

© 2006 Elsevier 23

Waterfall model

Five major stepsFive major steps
Requirements
Specificationp
Architecture
Coding

fMaintenance: delivery and updates and fixes

Information flow: mostly top-down
U li ti d d i blUnrealistic and undesirable

In practice, designers can and should use
experience from design steps to go back rethinkexperience from design steps to go back, rethink
earlier decisions, and redo some work.

© 2006 Elsevier 24

Spiral modelp

It was a reaction to and a refinement of the waterfallIt was a reaction to and a refinement of the waterfall
model.
It envisions software design as an iterative processIt envisions software design as an iterative process
in which several versions of the system.

Prototypeyp
Initial design
Refined design

At each phase, designers go through a requirement-
specification-architecture-coding cycle.
E i f t h ld h l dExperience form one stage should help produce a
better design in the next design.

© 2006 Elsevier 25

Hardware designg

The methodologies for hardware design tend to useThe methodologies for hardware design tend to use
a wider variety of tools since hardware design
makes more use of synthesis and simulation tools.y
A simplified version of the hardware design flow

Figure 1-14: next pageg p g
Extensive use of several techniques that are not frequently
used in software design.
Search based synthesis algorithmSearch-based synthesis algorithm
Wirling models
Estimation algorithmsEstimation algorithms

Strict cycle-time requirements, power budgets, and
area budgets.

© 2006 Elsevier 26

g

Hardware design flowg

delay: # of logic levelsdelay: # of logic levels

© 2006 Elsevier 27

Modeling in hardwareg

Technology databases capture
manufacturing process information.

Cell libraries describe the primitive cells used
to compose designsto compose designs.

Logic synthesis systems use routability and
timing modelstiming models.

© 2006 Elsevier 28

Embedded system design flowsy g

E b dd d t ft tEmbedded system: software components +
hardware components
An embedded system design methodology makesAn embedded system design methodology makes
use of the best of both hardware and software
traditions.traditions.
Co-design flows: emphasizes the importance of
current designsg

Figure 1-15: a generic co-design methodology from a given
executable specification

© 2006 Elsevier 29

Hardware/software co-design flow/ g

© 2006 Elsevier 30

Platform-based designg

A common approach to
designing SoCs

Platform includes hardwarePlatform includes hardware,
supporting software.

Two stage process:g p
Design the platform.

Use the platform for
d i i d i tidesigning a derivative.

Platform can be reused to
host many different systems.

Derivative design

host many different systems.

© 2006 Elsevier 31

Platform design phasesg p

Transform s stem req irements and soft areTransform system requirements and software
models into detailed requirements.

Use profiling and analysis tools to measure existing p g y g
executable specifications.

Explore the design space manually or automatically
by evaluating design alternativesby evaluating design alternatives
Develop a hardware platform by optimizing the
system architecture based on the results of y
architecture simulation and other steps.
Develop its software platform (hardware abstraction
layers (HAL) and other software such as OS portslayers (HAL) and other software such as OS ports,
communications, API, debugging).

© 2006 Elsevier 32

Programming platformsg g p

Programming en ironment (compilers editorsProgramming environment (compilers, editors.
Debuggers, simulators) in a single graphic user
interface is available for a single CPU.g
The programming environment must be customized
to the platform:

M lti l CPUMultiple CPUs.
Specialized memory.
Specialized I/O devices.p

Libraries are often used to glue together processors
on platforms.
D b i i t f lti lDebugging environments for multiple processors are
a particular challenge.

© 2006 Elsevier 33

Standards-based design methodologiesg g
Standards

bl d d l k d i bilienable products and create large markets due to inter-operability

Large market (several millions chips) justify SoC developments.

The designers have much less control over the specificationThe designers have much less control over the specification

Many standards define that certain operation must be performed ,
but they do not specify how they are to be performed. (예, ME)

Standards tend to become more complex over time.

Standards generally allow products to be differentiated.
Different implementations of operations so long as I/O behaviorDifferent implementations of operations, so long as I/O behavior
is maintained.

User interface is often not standardized.

Standard may dictate certain non-functional requirements (power
consumption), implementation techniques.

© 2006 Elsevier 34

Reference implementationsp
Standard bodies typically provide a reference implementation.
Executable program that complies with the I/O behavior of theExecutable program that complies with the I/O behavior of the
standard.

May be written in a variety of language.
Often in C or in Java

In some cases, the reference implementation is the most
complete description of the standard.complete description of the standard.
Reference implementation is often not well-suited to embedded
system implementation:

Ti i t d t dTime-consuming to understand
Cannot be used as-is
Single process.g
Infinite memory.
Non-real-time behavior.

© 2006 Elsevier 35

Reference implementationsp

The code must be often restructured in many
waysways

Eliminating features that will not be implemented

R l i h ll i i hReplacing heap allocation with custom memory
management

Improving cache utilization, functions, inlining, and
many other tasks.

© 2006 Elsevier 36

Designing standards-based systemsg g y

1. Design the unspecified parts of the implementation
2. Implement system components not specified by

the standard such as user interface.
3. Optimized the reference implementation by

performing platform-independent optimizations.
A l d fil th ti i d i f4. Analyze and profile the optimized version of
reference implementation.

5 Design hardware platform5. Design hardware platform.
6. Optimize system software based on platform.

Further optimize platform7. Further optimize platform.
8. Test for conformity to standard.

© 2006 Elsevier 37

H.264/AVC/

Implements video coding for a wide range of
applications:

Broadcast and videoconferencing.

Cell phone-sized screens to HDTV.Cell phone sized screens to HDTV.

Video codec reference implementation
contains 120 000 lines of C codecontains 120,000 lines of C code.

720p high-profile H.264 Codec
20 ~ 100 Gips (estimated)

© 2006 Elsevier 38

Design verification and validationg

Testing exercises an implementation by supplying
inputs and testing outputs.inputs and testing outputs.
Validation compares the implementation to the initial
specification or requirements.

You built the right thing, which refers back to the user's
needs..

Verification may be performed at any design stage;Verification may be performed at any design stage;
compares design at one level of abstraction to
another.

You built the thing right which checks that the writtenYou built the thing right, which checks that the written
requirements for both as well as formal procedures or
protocols for determining compliance.

© 2006 Elsevier 39

Where do bugs come from?g

Incorrect specifications

Misinterpretation of specificationsp p

Misunderstandings between designers

Mi dMissed cases

Protocol non-conformance

Resource conflicts

Cycle level timing errorsCycle-level timing errors

…

© 2006 Elsevier 40

Design verification techniquesg q

Si l ti t bl d lSimulation uses an executable model
relies on inputs.

Formal methods generate a (possibly specialized) proof.g (p y p) p
Equivalence checking
Model checking: description of properties are tested
Th iTheorem proving

Semi-formal
Simulation-based and simulation-assisted
Symbolic simulation
Directed model checking

Manual methods such as design reviews catch design errorsManual methods, such as design reviews, catch design errors
informally.

© 2006 Elsevier 41

A methodology of methodologiesgy g

Embedded systems include both hardware
and software.

HW, SW have their own design methodologies.

Embedded system methodologies control theEmbedded system methodologies control the
overall process, HW/SW integration, etc.

Must take into account the good and bad points ofMust take into account the good and bad points of
hardware and software design methodologies
usedused.

© 2006 Elsevier 42

Useful methodologies for ESDg

Software performance analysis: Section 3.4
Executable specification

Architectural optimization.
Single CPU : chapter 3Single CPU : chapter 3
Multiple processors: chapter 5

Hardware/software co-design: chapter 7
On-chip Network design:

On-chip networks: section 5.6
Multi chip networks: section 5 8Multi-chip networks: section 5.8

Software verification: section 4.5
Software tool generation:

Compiler generation for configurable processors: section 2.9
Software generation for multiprocessors: section 6.3

© 2006 Elsevier 43

Joint algorithm and architecture J g
development

Some algorithm design is necessarily performed before platformSome algorithm design is necessarily performed before platform
design.
Algorithm => software

Al ith d i ifi d i (i l i t k)Algorithm design: specific domain (signal processing, network)
Software design: general
ESD Goal: Designing an efficient, compact software

Algorithm development can be informed by platform architecture
design.

Performance/power/cost trade-offs.
Design trends over several generations.

Algorithm designers can develop software
With functional simulators that run as fast as possibleWith functional simulators that run as fast as possible
Fast turnaround of compilation and simulation is very important to
successful software development

© 2006 Elsevier 44

