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Topics

Why models of computation?
Structural models.
Finite-state machines.
Turing machines.

Petri nets.

Control flow graphs.

Data flow models.

Task graphs.

Control flow models.
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Models of computation

Models of computation define the basic
capabilities of an abstract computer

o They affect programming style.

No one model of computation is good for all
algorithms.

Large systems may require different models
of computation for different parts.
o Models must communicate compatibly.
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Why 1s MoC usetul?

It help us to understand the expressiveness of
various programming languages.

o Capability: can (cannot) do something

o Implication of programming style:

Language styles

o Finite versus infinite state

o Control versus data

o Sequential versus parallel

Expressiveness
o Heterogeneously programmed
o Interoperability
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Finite state machine

Input current next output

State transition graph 0lsl |s2 |0

and table are

equivalent: 1|sl |s1]0
0 |s2 |s2 |1
1(s2 |s3 1|0

1/0 0/1

0 [s3 |s3 |0
1|s3 |s1|1
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Finite state machine

Finite state machines

aM={lI,0, S, A, T}, S: current state, A: states
o Moore and Mealy machines

o Time: integer-valued, not real-valued

o Stream: a model of terminal behavior — sequential
behavior: a totally ordered set of symbols

Finite state machine properties
o Finite state.
o Nondeterministic variant.
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Boolean Manipulation with OBDDs

o Ordered Binary Decision Diagrams
o Data structure for representing Boolean functions

o Efficient for many functions found in digital designs
o Canonical representation

Example:
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(X1 v %) &X3
m Nodes represent variable tests
m Branches represent variable values

Dashed for value O
Solid for value 1

Example OBDDs

Constants

0

1

Unique unsatisfiable function

Unique tautology

Typical Function

W (X1 Vv X)) &X,
B No vertex labeled x,
® independent of x,

B Many subgraphs shared
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Variable

Q

0

1

Treat variable
as function

Odd Parity

Linear
representation




Ordered binary decision diagram (OBDD)

Allow us to perform many checks that are
useful tests of the correctness of practical
systems

o Building product machines which is easier to
express complex functions as systems of
communicating machines

o Reachability — many bug manifest themselves as
inabilities to reach certain states in the machine.
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Nondeterministic FSM
Several transitions out of a state 2
for a given input.

o Equivalent to executing all s1 =@
alternatives in parallel. a

Can allow € moves---goes to next
state without input.

Interpretation

o The machine nondeterministically
choose a transition such that future
inputs will cause the machine to be in
the proper state

o The machine follows all possible
transition simultaneously until future
Inputs cause it prune some paths.
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Deterministic FSM from nondeterministic
FSM

Add states for the
various combinations
of nondeterminism.
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Church-Turing Thesis

Alan Turing invented Turing machines and
defined the notion of computable function via
these machines.

Alonzo Church invented a formal system
called the lambda calculus and defined the
notion of computable function via this system.

It was proved that both models are equally
strong in the sense that they define the same
class of computable functions.
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‘ Turing machine

= Turing machine: general model of computing:

tape

program
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‘ Turing machine steps

1. Read the current square in the tape.
>, Erase the current square in the tape.

3. Consult its program to determine what to do
next. Based on the current state and the
symbol that was read, may write a new
symbol and/or move the tape.

2. Change its state as described by the
program.
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Turing machine properties

Example program:

o If (state = 2 and cell = 0):
print 0, move left, state =
4,

o If (state = 2 and cell = 1):

print 1, move left, state =
3.
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Can be implemented on
many physical devices.

Turing machine is a
general model of
computability.

Can be extended to
probabilistic behavior.

Turing machine properties

Infinite tape = infinite state machine.

Basic model of computability.
o Lambda calculus is an alternative model.

o Other models of computin

g can be shown to be

equivalent/proper subset of Turing machine.
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Control flow graph

= CFG is a finite-state
model of computation.

= Commonly used to
model program
structure.
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CDFG properties

= Finite state model.
= Single thread of control.

= Additional data flow models which describe
the operation of unconditional nodes

= Can handle subroutines.
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DFG

Tree structure
o Nodes: data operations
o Edges: data dependency
o Sources: Input
o Sinks: output

Basic DFG are commonly used in compilers

Finite state model.
o It describes parallelism in that it defines only a partial order
on the operation in the graph.
o Any order of operation that satisfies the data
dependencies is acceptable.
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Data flow graph

Partially-ordered computations:
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DFG

We can use streams to model the behavior of
the DFG.

The node in the DFG use firing rules to
determine their behavior.

o Standard data flow firing rule: consume a token
and generate a token

o A conditional node with (n+1) terminals: n data
input dO, d1, .. And a control input k. When k=1,
d1 is consumed and transferred to the output.

© 2006 Elsevier 21

DFG

We can use streams to model the behavior of
the DFG.

The node in the DFG use firing rules to
determine their behavior.

o Standard data flow firing rule: consume a token
and generate a token

o A conditional node with (n+1) terminals: n data
input dO, d1, .. And a control input k. When k=1,
d1 is consumed and transferred to the output.
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Data flow streams

Captures seguence but not time.

Totally-ordered set of values.

o New values are appended at the end as they
appear.

May be infinite.

@

881-38 284/AL8
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Firing rules

A node may have one or more firing rules.

Firing rules determine when tokens are
consumed and produced.

o Firing consumes a set of tokens at inputs,
generates token at output.
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Example firing rules

Basic rule fires when
tokens are available at
all inputs:

2.
@—»C
b/
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Conditional firing rule
depends on control
input:

a
b*D
T

Data flow graph prop

Finite state model.
Basic data flow graph is

erties

acyclic.

Scheduling provides a total ordering of

operations.
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Synchronous data flow

Lee/Messerschmitt: Relate data flow graph
properties to schedulability.

o Synchronous communication between data flow
nodes.

o Nodes may communicate at multiple rates.
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SDF notation

Nodes may have
rates at which data
are produced nor
consumed.

Edges may have @ : 5 ZD

delays.
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'SDF example

= This graph has consistent sample rates:

separate
outputs
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| Delays in SDF graphs

= Delays do not change rates, only the amount of data
stored in the system.

= Changes system start-up.

OO

0
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Kahn process network

Process has unbounded FIFO at each input:

channel : process

Each channel carries a possibly infinite sequence
or stream.
A process maps one or more input sequences to
one or more output sequences.

o Block read / nonblocking write
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Properties of processes

x=(xﬁ: XI: e Xp) €SP
XX if X, c X, for each |

p-tuple of sequences
ordered set of seq.
set of p-tuple of sequences v={X,, X, ...}
functional process F:5°P>38"

32
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Properties of processes

Processes are usually required to be
continuous: least upper boundedness can be
moved across function boundary.

Monotonicity:
o0 X< X =>F(X) c F(X)
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Least fixed point semantics

I Let X'be the set of all sequences.

I A network is a mapping F from the sequences to the
sequences (where [ represents the input sequence):

X=FX 1)

I The behavior of the network is defined as the unique
least fixed point of the equation (LFP).

I If Fis continuous then the least fixed point exists
LFP=LUB({F' (L, 1):n>0})
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Least fixed point semantics

Start with the empty sequence.
Apply the (monotonic) function.

O
O
o Apply the function again to the result.
o Repeat forever.

The result “converges” to the least fixed point.
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 Network propetrties

= A network of monotonic processes is a
monotonic process.
o Even in the presence of feedback loops.

= Can add nondeterminism in several ways:
o allow process to test for emptiness;
o allow process to be internally nondeterminate;

o allow more than one process to consume data
from a channel,

o etc.
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‘ Parallelism and Communication

= Parallelism in hardware must be matched by
parallelism in the programs

= Parallel algorithm describe time as partially ordered

o As we bind operations to the architecture, the description
Is changed to a totally ordered description.

o Some operations may be left partially ordered to be
managed by the operating system.
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Processor graph
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Task graph
© O ?
@

= Task graph is a simple model of parallelism

o Nodes: processes or tasks

o Edges: data dependencies

= Used to model multi-rate systems.
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Task graph properties

= Not a Turning machine.

o No branching behavior.

o May be extended to provide conditionals.
= Possible models of execution time:

o Constant.

o Min-max bounds.

o Statistical.

= Can model late arrivals, early departures by adding
dummy processes.
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Petr1 net

Parallel model of computation: Equivalent with Turing machines
It is a weighted, directed bipartite graph

Place

Transition

Arc

a
a
(]
o Token

place

token transition
Q/ arc
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Firing rule

A transition is enabled if each place at its
Inputs have at least one token.

o Enabled transitions may fir but are not required
to do so.

o A transition doesn’t have to fire right away.

Firing a transition removes tokens from inputs
and adds a token to each output place.

In general, may require multiple tokens to
enable, which is specified by the weight of
each incoming arc
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Properties ot Petrt nets

Turing complete.

Arbitrary number of tokens.
o Nondeterministic behavior.
o Naturally model parallelism.
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Communication styles

Useful parallelism necessarily involves
communication between the parallel
components of the system.

Two types ] : -
o Buffered M1 M2
o Unbuffered )

Two communicating FSMs

o The first step in analyzing the behavior of such
networks of FSMs is often to form the equivalent
product machine.
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Communication

Synchronous vs. asynchronous

Blocking vs. nonblocking

In blocking communication

o The sender blocks or waits until the receiver has the data.
In non-blocking communication,

o If there is no buffer and the receiver is not ready, the
sender will drop the data

o Adding a buffer allows the sender to move on even if the
receiver is not ready , assuming that the buffer is not fill.

o An infinite-size buffer allows unlimited non-blocking
communication.

Buffer sizing is important
o data rate control with full and empty signals.

© 2006 Elsevier 45

Source and Uses of Parallelism

Parallelism can be found at many different levels of
abstraction.
Instruction-level parallelism

o Itis not visible in the source code and so cannot be
manipulated by the programmer

Data-level parallelism

o It can be found in a basic block of a program, especially in
a nest of loops

Task-level parallelism

o particularly important in embedded system because the
system often perform several different types of
computation on data streams.
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