
Chapter 1-3: Embedded
C iComputing

Soo-Ik Chae

High Performance Embedded Computing
© 2007 Elsevier 1

Topicsp

Wh models of comp tation?Why models of computation?
Structural models.
Finite state machinesFinite-state machines.
Turing machines.
Petri netsPetri nets.
Control flow graphs.
Data flow models.
Task graphs.
Control flow models.

© 2006 Elsevier 2

Models of computationp

Models of computation define the basic
capabilities of an abstract computer

They affect programming style.

No one model of computation is good for allNo one model of computation is good for all
algorithms.

L t i diff t d lLarge systems may require different models
of computation for different parts.

Models must communicate compatibly.

© 2006 Elsevier 3

Why is MoC useful?y

It h l t d t d th i fIt help us to understand the expressiveness of
various programming languages.

Capability: can (cannot) do somethingCapability: can (cannot) do something
Implication of programming style:

Language stylesLanguage styles
Finite versus infinite state
Control versus data
Sequential versus parallel

Expressiveness
Heterogeneously programmed
Interoperability

© 2006 Elsevier 4

Finite state machine
Input current next output

State transition graph
and table are

i l t

0 s1 s2 0

1 s1 s1 0equivalent: 1 s1 s1 0

0 s2 s2 1

s1 s2
0/0

0/11/0

1 s2 s3 0

1/01/1

0 s3 s3 0

1 s3 s1 1
s3

1 s3 s1 1

© 2006 Elsevier 5
0/0

Finite state machine

Finite state machines
M = { I, O, S, Δ, T}, S: current state, Δ: states{ }

Moore and Mealy machines

Time: integer-valued, not real-valuedTime: integer valued, not real valued

Stream: a model of terminal behavior – sequential
behavior: a totally ordered set of symbolsbehavior: a totally ordered set of symbols

Finite state machine properties
Fi it t tFinite state.

Nondeterministic variant.

© 2006 Elsevier 6

Boolean Manipulation with OBDDsp

Ordered Binary Decision Diagrams

Data structure for representing Boolean functions

Efficient for many functions found in digital designs

Canonical representationp

Example: (x1 ∨ x2) &x3

Nodes represent variable tests

Branches represent variable values

x1

Branches represent variable values

Dashed for value 0

Solid for value 1

x2

x

0 1

x3

© 2006 Elsevier 7

0 1

Example OBDDsp

Constants Variable

Unique unsatisfiable function

Unique tautology
Treat variable
as function1

0

0 1

x

Odd ParityTypical Function

0 1

Linearx2 x2

x1

x2

x1 (x1 ∨ x2) &x4

No vertex labeled x3 Linear
representation

x3x3

independent of x3

Many subgraphs shared

x4

10

x4

0 1

x4

© 2006 Elsevier 8

Ordered binary decision diagram (OBDD)y g ()

Allow us to perform many checks that are
useful tests of the correctness of practical
systems

Building product machines which is easier to g p
express complex functions as systems of
communicating machines

Reachability – many bug manifest themselves as
inabilities to reach certain states in the machine.

© 2006 Elsevier 9

Nondeterministic FSM
Several transitions out of a state
f i i t

a

for a given input.
Equivalent to executing all
alternatives in parallel.

s1 s2
aalternatives in parallel.

Can allow ε moves---goes to next
state without input.

a

p
Interpretation

The machine nondeterministically
h i i h h fchoose a transition such that future

inputs will cause the machine to be in
the proper state
The machine follows all possible
transition simultaneously until future
inputs cause it prune some paths

© 2006 Elsevier 10

inputs cause it prune some paths.

Deterministic FSM from nondeterministic
FSM

a

Add states for the
various combinations s1 s2

a

of nondeterminism.

3

b

s4

c

s3

nondeterministic

s4

s1 s12
a

c
c

s3

b

s4

c

© 2006 Elsevier 11deterministic

Church-Turing Thesisg

Alan Turing invented Turing machines and
defined the notion of computable function via
these machines.

Alonzo Church invented a formal systemAlonzo Church invented a formal system
called the lambda calculus and defined the
notion of computable function via this systemnotion of computable function via this system.

It was proved that both models are equally
t i th th t th d fi thstrong in the sense that they define the same

class of computable functions.

© 2006 Elsevier 12

Turing machineg

Turing machine: general model of computing:

tape

1 0 1 0 10 1 0 1 1 0 11 0

program

headstate

program

© 2006 Elsevier 13

Turing machine stepsg p

1. Read the current square in the tape.

2. Erase the current square in the tape.q p

3. Consult its program to determine what to do
next Based on the current state and thenext. Based on the current state and the
symbol that was read, may write a new
s mbol and/or mo e the tapesymbol and/or move the tape.

4. Change its state as described by the
program.

© 2006 Elsevier 14

Turing machine propertiesg p p

Example program:
If (state = 2 and cell = 0):
print 0 move left state

Can be implemented on
many physical devices.

print 0, move left, state =
4.

If (state = 2 and cell = 1):

Turing machine is a
general model of

t bilitIf (state 2 and cell 1):
print 1, move left, state =
3.

computability.

Can be extended to
b bili ti b h iprobabilistic behavior.

© 2006 Elsevier 15

Turing machine propertiesg p p

Infinite tape = infinite state machine.

Basic model of computability.p y
Lambda calculus is an alternative model.

Other models of computing can be shown to beOther models of computing can be shown to be
equivalent/proper subset of Turing machine.

© 2006 Elsevier 16

Control flow graphControl flow graph x = a

CFG is a finite-state
model of computation. i = 0?

Commonly used to
model program
t tstructure.

x = a - b

y = c + d

© 2006 Elsevier 17

CDFG propertiesp p

Finite state model.

Single thread of control.g

Additional data flow models which describe
the operation of unconditional nodesthe operation of unconditional nodes

Can handle subroutines.

© 2006 Elsevier 18

DFG

Tree structure
Nodes: data operations

Edges: data dependency

Sources: Input

Si k t tSinks: output

Basic DFG are commonly used in compilers

Finite state model.
It describes parallelism in that it defines only a partial order
on the operation in the graphon the operation in the graph.

Any order of operation that satisfies the data
dependencies is acceptable.

© 2006 Elsevier 19

dependencies is acceptable.

Data flow graphg p

Partially-ordered computations:

*
+ -

+ -, *

+, -, *

*

-, +, *

*

© 2006 Elsevier 20

DFG

We can use streams to model the behavior of
the DFG.

The node in the DFG use firing rules to
determine their behaviordetermine their behavior.

Standard data flow firing rule: consume a token
and generate a tokenand generate a token

A conditional node with (n+1) terminals: n data
input d0 d1 And a control input k When k=1input d0, d1, .. And a control input k. When k=1,
d1 is consumed and transferred to the output.

© 2006 Elsevier 21

DFG

We can use streams to model the behavior of
the DFG.

The node in the DFG use firing rules to
determine their behaviordetermine their behavior.

Standard data flow firing rule: consume a token
and generate a tokenand generate a token

A conditional node with (n+1) terminals: n data
input d0 d1 And a control input k When k=1input d0, d1, .. And a control input k. When k=1,
d1 is consumed and transferred to the output.

© 2006 Elsevier 22

Data flow streams

Captures sequence but not time.

Totally-ordered set of values.y
New values are appended at the end as they
appear.appear.

May be infinite.

++

88 -23 7 44 9 -28-44 88 -23 7 44 9

© 2006 Elsevier 23

Firing rulesg

A node may have one or more firing rules.

Firing rules determine when tokens are g
consumed and produced.

Firing consumes a set of tokens at inputsFiring consumes a set of tokens at inputs,
generates token at output.

© 2006 Elsevier 24

Example firing rulesp g

Basic rule fires when
tokens are available at

ll i t

Conditional firing rule
depends on control
i tall inputs: input:

a
a

+

a

b

c b
b

T

© 2006 Elsevier 25

Data flow graph propertiesg p p p

Finite state model.

Basic data flow graph is acyclic.g p y

Scheduling provides a total ordering of
operationsoperations.

© 2006 Elsevier 26

Synchronous data flowy

Lee/Messerschmitt: Relate data flow graph
properties to schedulability.

Synchronous communication between data flow
nodes.

Nodes may communicate at multiple rates.

© 2006 Elsevier 27

SDF notation

Nodes may have
rates at which data
are produced nor
consumed. 1 2

Edges may have
delays

+ -
1 2

5

delays.

© 2006 Elsevier 28

SDF examplep

This graph has consistent sample rates:

2 1
separate
outputs

+ +

1 1

outputs

+1 2

© 2006 Elsevier 29

Delays in SDF graphsy g p

Dela s do not change rates onl the amo nt of dataDelays do not change rates, only the amount of data
stored in the system.
Changes system start-up.Changes system start up.

+ -
1 2

50

© 2006 Elsevier 30

Kahn process networkp

Process has unbounded FIFO at each input:

processchannel processchannel

Each channel carries a possibly infinite sequence p y q
or stream.

A process maps one or more input sequences to p p p q
one or more output sequences.

Block read / nonblocking write

© 2006 Elsevier 31

Properties of processesp p

© 2006 Elsevier 32

Properties of processesp p

Processes are usually required to be
continuous: least upper boundedness can be
moved across function boundary.

Monotonicity:Monotonicity:
X ⊆ X’ => F(X) ⊆ F(X’)

© 2006 Elsevier 33

Least fixed point semanticsp

© 2006 Elsevier 34

Least fixed point semanticsp

© 2006 Elsevier 35

Network propertiesp p

A network of monotonic processes is a
monotonic process.

Even in the presence of feedback loops.

Can add nondeterminism in several ways:Can add nondeterminism in several ways:
allow process to test for emptiness;

allo process to be internall nondeterminateallow process to be internally nondeterminate;

allow more than one process to consume data
f h lfrom a channel;

etc.

© 2006 Elsevier 36

Parallelism and Communication

P ll li i h d t b t h d bParallelism in hardware must be matched by
parallelism in the programs
Parallel algorithm describe time as partially orderedParallel algorithm describe time as partially ordered

As we bind operations to the architecture, the description
is changed to a totally ordered description.g y p
Some operations may be left partially ordered to be
managed by the operating system.

© 2006 Elsevier 37

Processor graphProcessor graph

M1

L1
M2

L2

M M
L3

M3 M4

© 2006 Elsevier 38

Task graph τ1
τ2Task graph

P1 P2 P4

P3 P5

Task graph is a simple model of parallelism

Nodes: processes or tasksNodes: processes or tasks

Edges: data dependencies

Used to model multi-rate systems.

© 2006 Elsevier 39

Task graph propertiesg p p p

N t T i hiNot a Turning machine.
No branching behavior.
May be extended to provide conditionalsMay be extended to provide conditionals.

Possible models of execution time:
ConstantConstant.
Min-max bounds.
Statistical.

Can model late arrivals, early departures by adding
dummy processes.

© 2006 Elsevier 40

Petri net
Parallel model of computation: Equivalent with Turing machines
It is a weighted, directed bipartite graphg , p g p

Place
Transition
ArcArc
Token

place

token transition

arc

© 2006 Elsevier 41

Firing ruleg

A t iti i bl d if h l t itA transition is enabled if each place at its
inputs have at least one token.

Enabled transitions may fir but are not required
to do so.
A t iti d ’t h t fi i htA transition doesn’t have to fire right away.

Firing a transition removes tokens from inputs
d dd t k t h t t land adds a token to each output place.

In general, may require multiple tokens to
enable, which is specified by the weight of
each incoming arc

© 2006 Elsevier 42

Properties of Petri netsp

Turing complete.

Arbitrary number of tokens.y
Nondeterministic behavior.

Naturally model parallelismNaturally model parallelism.

© 2006 Elsevier 43

Communication stylesy

Useful parallelism necessarily involves
communication between the parallel p
components of the system.
Two typesyp

Buffered
Unbuffered

M1 M2

Unbuffered

Two communicating FSMs
The first step in analyzing the behavior of suchThe first step in analyzing the behavior of such
networks of FSMs is often to form the equivalent
product machine.

© 2006 Elsevier 44

p

Communication

S nchrono s s as nchrono sSynchronous vs. asynchronous
Blocking vs. nonblocking
In blocking communicationIn blocking communication

The sender blocks or waits until the receiver has the data.
In non-blocking communication,g ,

If there is no buffer and the receiver is not ready, the
sender will drop the data
Adding a buffer allows the sender to move on even if theAdding a buffer allows the sender to move on even if the
receiver is not ready , assuming that the buffer is not fill.
An infinite-size buffer allows unlimited non-blocking
communicationcommunication.

Buffer sizing is important
data rate control with full and empty signals.

© 2006 Elsevier 45

p y g

Source and Uses of Parallelism

P ll li b f d t diff t l l fParallelism can be found at many different levels of
abstraction.
Instruction level parallelismInstruction-level parallelism

It is not visible in the source code and so cannot be
manipulated by the programmerp y p g

Data-level parallelism
It can be found in a basic block of a program, especially in
a nest of loops

Task-level parallelism
ti l l i t t i b dd d t b thparticularly important in embedded system because the

system often perform several different types of
computation on data streams.

© 2006 Elsevier 46

