Chapter 1-3: Embedded
Computing

Soo-lk Chae

High Performance Embedded Computing
© 2007 Elsevier

Topics

Why models of computation?
Structural models.
Finite-state machines.
Turing machines.

Petri nets.

Control flow graphs.

Data flow models.

Task graphs.

Control flow models.

© 2006 Elsevier

Models of computation

Models of computation define the basic
capabilities of an abstract computer

o They affect programming style.

No one model of computation is good for all
algorithms.

Large systems may require different models
of computation for different parts.
o Models must communicate compatibly.

© 2006 Elsevier

Why 1s MoC usetul?

It help us to understand the expressiveness of
various programming languages.

o Capability: can (cannot) do something

o Implication of programming style:

Language styles

o Finite versus infinite state

o Control versus data

o Sequential versus parallel

Expressiveness
o Heterogeneously programmed
o Interoperability

© 2006 Elsevier

Finite state machine

Input current next output

State transition graph 0lsl |s2 |0

and table are

equivalent: 1|sl |s1]0
0 |s2 |s2 |1
1(s2 |s3 1|0

1/0 0/1

0 [s3 |s3 |0
1|s3 |s1|1

© 2006 Elsevier

Finite state machine

Finite state machines

aM={lI,0, S, A, T}, S: current state, A: states
o Moore and Mealy machines

o Time: integer-valued, not real-valued

o Stream: a model of terminal behavior — sequential
behavior: a totally ordered set of symbols

Finite state machine properties
o Finite state.
o Nondeterministic variant.

© 2006 Elsevier 6

Boolean Manipulation with OBDDs

o Ordered Binary Decision Diagrams
o Data structure for representing Boolean functions

o Efficient for many functions found in digital designs
o Canonical representation

Example:

© 2006 Elsevier

(X1 v %) &X3
m Nodes represent variable tests
m Branches represent variable values

Dashed for value O
Solid for value 1

Example OBDDs

Constants

0

1

Unique unsatisfiable function

Unique tautology

Typical Function

W (X1 Vv X)) &X,
B No vertex labeled x,
® independent of x,

B Many subgraphs shared

© 2006 Elsevier

Variable

Q

0

1

Treat variable
as function

Odd Parity

Linear
representation

Ordered binary decision diagram (OBDD)

Allow us to perform many checks that are
useful tests of the correctness of practical
systems

o Building product machines which is easier to
express complex functions as systems of
communicating machines

o Reachability — many bug manifest themselves as
inabilities to reach certain states in the machine.

© 2006 Elsevier 9

Nondeterministic FSM
Several transitions out of a state 2
for a given input.

o Equivalent to executing all s1 =@
alternatives in parallel. a

Can allow € moves---goes to next
state without input.

Interpretation

o The machine nondeterministically
choose a transition such that future
inputs will cause the machine to be in
the proper state

o The machine follows all possible
transition simultaneously until future
Inputs cause it prune some paths.

© 2006 Elsevier 10

Deterministic FSM from nondeterministic
FSM

Add states for the
various combinations
of nondeterminism.

© 2006 Elsevier determlnlsnc 11

Church-Turing Thesis

Alan Turing invented Turing machines and
defined the notion of computable function via
these machines.

Alonzo Church invented a formal system
called the lambda calculus and defined the
notion of computable function via this system.

It was proved that both models are equally
strong in the sense that they define the same
class of computable functions.

© 2006 Elsevier 12

‘ Turing machine

= Turing machine: general model of computing:

tape

program

© 2006 Elsevier 13

‘ Turing machine steps

1. Read the current square in the tape.
>, Erase the current square in the tape.

3. Consult its program to determine what to do
next. Based on the current state and the
symbol that was read, may write a new
symbol and/or move the tape.

2. Change its state as described by the
program.

© 2006 Elsevier 14

Turing machine properties

Example program:

o If (state = 2 and cell = 0):
print 0, move left, state =
4,

o If (state = 2 and cell = 1):

print 1, move left, state =
3.

© 2006 Elsevier

Can be implemented on
many physical devices.

Turing machine is a
general model of
computability.

Can be extended to
probabilistic behavior.

Turing machine properties

Infinite tape = infinite state machine.

Basic model of computability.
o Lambda calculus is an alternative model.

o Other models of computin

g can be shown to be

equivalent/proper subset of Turing machine.

© 2006 Elsevier

16

Control flow graph

= CFG is a finite-state
model of computation.

= Commonly used to
model program
structure.

© 2006 Elsevier

17

CDFG properties

= Finite state model.
= Single thread of control.

= Additional data flow models which describe
the operation of unconditional nodes

= Can handle subroutines.

© 2006 Elsevier

18

DFG

Tree structure
o Nodes: data operations
o Edges: data dependency
o Sources: Input
o Sinks: output

Basic DFG are commonly used in compilers

Finite state model.
o It describes parallelism in that it defines only a partial order
on the operation in the graph.
o Any order of operation that satisfies the data
dependencies is acceptable.

© 2006 Elsevier 19

Data flow graph

Partially-ordered computations:

© 2006 Elsevier

20

DFG

We can use streams to model the behavior of
the DFG.

The node in the DFG use firing rules to
determine their behavior.

o Standard data flow firing rule: consume a token
and generate a token

o A conditional node with (n+1) terminals: n data
input dO, d1, .. And a control input k. When k=1,
d1 is consumed and transferred to the output.

© 2006 Elsevier 21

DFG

We can use streams to model the behavior of
the DFG.

The node in the DFG use firing rules to
determine their behavior.

o Standard data flow firing rule: consume a token
and generate a token

o A conditional node with (n+1) terminals: n data
input dO, d1, .. And a control input k. When k=1,
d1 is consumed and transferred to the output.

© 2006 Elsevier 22

Data flow streams

Captures seguence but not time.

Totally-ordered set of values.

o New values are appended at the end as they
appear.

May be infinite.

@

881-38 284/AL8

© 2006 Elsevier 23

Firing rules

A node may have one or more firing rules.

Firing rules determine when tokens are
consumed and produced.

o Firing consumes a set of tokens at inputs,
generates token at output.

© 2006 Elsevier 24

Example firing rules

Basic rule fires when
tokens are available at
all inputs:

2.
@—»C
b/

© 2006 Elsevier

Conditional firing rule
depends on control
input:

a
b*D
T

Data flow graph prop

Finite state model.
Basic data flow graph is

erties

acyclic.

Scheduling provides a total ordering of

operations.

© 2006 Elsevier

26

Synchronous data flow

Lee/Messerschmitt: Relate data flow graph
properties to schedulability.

o Synchronous communication between data flow
nodes.

o Nodes may communicate at multiple rates.

© 2006 Elsevier 27

SDF notation

Nodes may have
rates at which data
are produced nor
consumed.

Edges may have @ : 5 ZD

delays.

© 2006 Elsevier 28

'SDF example

= This graph has consistent sample rates:

separate
outputs

© 2006 Elsevier 29

| Delays in SDF graphs

= Delays do not change rates, only the amount of data
stored in the system.

= Changes system start-up.

OO

0

© 2006 Elsevier 30

Kahn process network

Process has unbounded FIFO at each input:

channel : process

Each channel carries a possibly infinite sequence
or stream.
A process maps one or more input sequences to
one or more output sequences.

o Block read / nonblocking write

© 2006 Elsevier 31

Properties of processes

x=(xﬁ: XI: e Xp) €SP
XX if X, c X, for each |

p-tuple of sequences
ordered set of seq.
set of p-tuple of sequences v={X,, X, ...}
functional process F:5°P>38"

32

© 2006 Elsevier

Properties of processes

Processes are usually required to be
continuous: least upper boundedness can be
moved across function boundary.

Monotonicity:
o0 X< X =>F(X) c F(X)

© 2006 Elsevier 33

Least fixed point semantics

I Let X'be the set of all sequences.

I A network is a mapping F from the sequences to the
sequences (where [represents the input sequence):

X=FX 1)

I The behavior of the network is defined as the unique
least fixed point of the equation (LFP).

I If Fis continuous then the least fixed point exists
LFP=LUB({F' (L, 1):n>0})

© 2006 Elsevier 34

Least fixed point semantics

Start with the empty sequence.
Apply the (monotonic) function.

O
O
o Apply the function again to the result.
o Repeat forever.

The result “converges” to the least fixed point.

© 2006 Elsevier 35

 Network propetrties

= A network of monotonic processes is a
monotonic process.
o Even in the presence of feedback loops.

= Can add nondeterminism in several ways:
o allow process to test for emptiness;
o allow process to be internally nondeterminate;

o allow more than one process to consume data
from a channel,

o etc.

© 2006 Elsevier 36

‘ Parallelism and Communication

= Parallelism in hardware must be matched by
parallelism in the programs

= Parallel algorithm describe time as partially ordered

o As we bind operations to the architecture, the description
Is changed to a totally ordered description.

o Some operations may be left partially ordered to be
managed by the operating system.

© 2006 Elsevier 37

Processor graph

© 2006 Elsevier 38

Task graph
© O ?
@

= Task graph is a simple model of parallelism

o Nodes: processes or tasks

o Edges: data dependencies

= Used to model multi-rate systems.

© 2006 Elsevier 39

Task graph properties

= Not a Turning machine.

o No branching behavior.

o May be extended to provide conditionals.
= Possible models of execution time:

o Constant.

o Min-max bounds.

o Statistical.

= Can model late arrivals, early departures by adding
dummy processes.

© 2006 Elsevier 40

Petr1 net

Parallel model of computation: Equivalent with Turing machines
It is a weighted, directed bipartite graph

Place

Transition

Arc

a
a
(]
o Token

place

token transition
Q/ arc

© 2006 Elsevier 41

Firing rule

A transition is enabled if each place at its
Inputs have at least one token.

o Enabled transitions may fir but are not required
to do so.

o A transition doesn’t have to fire right away.

Firing a transition removes tokens from inputs
and adds a token to each output place.

In general, may require multiple tokens to
enable, which is specified by the weight of
each incoming arc

© 2006 Elsevier 42

Properties ot Petrt nets

Turing complete.

Arbitrary number of tokens.
o Nondeterministic behavior.
o Naturally model parallelism.

© 2006 Elsevier 43

Communication styles

Useful parallelism necessarily involves
communication between the parallel
components of the system.

Two types] : -
o Buffered M1 M2
o Unbuffered)

Two communicating FSMs

o The first step in analyzing the behavior of such
networks of FSMs is often to form the equivalent
product machine.

© 2006 Elsevier 44

Communication

Synchronous vs. asynchronous

Blocking vs. nonblocking

In blocking communication

o The sender blocks or waits until the receiver has the data.
In non-blocking communication,

o If there is no buffer and the receiver is not ready, the
sender will drop the data

o Adding a buffer allows the sender to move on even if the
receiver is not ready , assuming that the buffer is not fill.

o An infinite-size buffer allows unlimited non-blocking
communication.

Buffer sizing is important
o data rate control with full and empty signals.

© 2006 Elsevier 45

Source and Uses of Parallelism

Parallelism can be found at many different levels of
abstraction.
Instruction-level parallelism

o Itis not visible in the source code and so cannot be
manipulated by the programmer

Data-level parallelism

o It can be found in a basic block of a program, especially in
a nest of loops

Task-level parallelism

o particularly important in embedded system because the
system often perform several different types of
computation on data streams.

© 2006 Elsevier 46

