
Chapter 2-2: CPUs

Soo-Ik ChaeSoo Ik Chae

High Performance Embedded Computing 1

Topicsp

Memory systems.
Memory component models.y

Caches and alternatives.

Code compressionCode compression.

High Performance Embedded Computing
2

Generic memory blocky

High Performance Embedded Computing
3

Simple memory modelp y

Core array is n rows x m columns.

Total area A = Ar + Ax + Ap + Ac.r x p c

Row decoder area Ar = arn.

C ACore area Ax = axmn.

Precharge circuit area Ap = apm.g p p

Column decoder area Ac = acm.

High Performance Embedded Computing
4

Simple energy and delay modelsp gy y

Δ = Δ setup + Δ r + Δ x + Δ bit + Δ c.
Setup delay is for the precharge circuitryy g y

Total energy E = ED + ESTotal energy E = ED + ES.
Static energy component ES is a technology
parameterparameter.

Dynamic energy ED = Er + Ex + Ep + Ec.

High Performance Embedded Computing
5

Multiport memoriesp

structure
Delay vs. memory size
and number of ports.

High Performance Embedded Computing
6

Kamble and Ghose cache power modelp

High Performance Embedded Computing
7

Kamble and Ghose cache power modelp

High Performance Embedded Computing
8

Kamble and Ghose cache power modelp

High Performance Embedded Computing
9

Kamble and Ghose cache power modelp

High Performance Embedded Computing
10

Kamble and Ghose cache power modelp

Capacity D = SLm [bytes]
Total Tag = STm [bits]

High Performance Embedded Computing
11

Kamble and Ghose cache power modelp

High Performance Embedded Computing
12

Kamble and Ghose cache power modelp

High Performance Embedded Computing
13

Kamble and Ghose cache power modelp

High Performance Embedded Computing
14

Shiue and Chakrabarti cache energy modelgy

add_bs: number of transitions on address bus per
instruction.

data_bs: number of transitions on data bus per
instruction.

word_line_size: number of memory cells on a word
line.

bit_line_size: number of memory cells on a bit line.

Em: Energy consumption of a main memory access.

α, β, γ: technology parameters.

High Performance Embedded Computing
15

Shiue/Chakrabarti, cont’d./ ,

E CellE_Cell

High Performance Embedded Computing
16

Register filesg

First stage in the memory hierarchy.

When too many values are live, some values y ,
must be spilled onto main memory and read
back laterback later.

Spills cost time, energy.

R i t fil tRegister file parameters:
Number of words.

Number of ports.

High Performance Embedded Computing
17

Performance and energy vs. register file gy g
size.

[Weh01] © 2001 IEEE

High Performance Embedded Computing
18

Caches

Cache design has received a lot of attention
in general purpose computer design

Most of the lessons apply to embedded
computer as wellcomputer as well.

Caches have a sweet spot: neither too small
nor too largenor too large.

High Performance Embedded Computing
19

Cache size vs. energygy

[Li98]
© 1998 IEEE

High Performance Embedded Computing
20

Cache parametersp

Cache size:
Larger caches hold more data, burn more energy, g gy
take area away from other functions.

Number of sets:Number of sets:
More independent references, more locations
mapped onto each linemapped onto each line.

Cache line length:
L li i f t hi b d idthLonger lines give more prefetching bandwidth,
higher energy consumption.

High Performance Embedded Computing
21

Wolfe/Lam classification of program p g
behavior in caches

Self-temporal reuse: same array element is
accessed in different loop iterations.

Self-spatial reuse: same cache line is
accessed in different loop iterationsaccessed in different loop iterations.

Group-temporal reuse: different parts of the
program access the same arra elementprogram access the same array element.

Group-spatial reuse: different parts of the
program access the same cache line.

High Performance Embedded Computing
22

Multilevel cache optimizationp

Gordon-Ross et al developed a method to
optimize multilevel cache hierarchies, which
adjust cache parameters in order:

Cache size.

Line size.

AssociativityAssociativity.

Choose cache size for each level, then line
i f h l l d fi ll i ti it fsize for each level, and finally associativity for

each level.

High Performance Embedded Computing
23

Scratch pad memoryp y

Scratch pad is managed by software, not
hardware.

Provides predictable access time.

Requires values to be allocated.

It i fi d t f th ’It is a fixed part of the processor’s memory space

Use standard read/write instructions to access
t h dscratch pad.

High Performance Embedded Computing
24

Scratch pad memoryp y

High Performance Embedded Computing
25

Code compressionp

Extreme version of instruction encoding:
Use variable-bit instructions.

Generate encodings using compression
algorithms.g

Generally takes longer to decode.

Can result in performance energy code sizeCan result in performance, energy, code size
improvements.

IBM CodePack (PowerPC) used Huffman
encoding.

High Performance Embedded Computing
26

g

Terms

Compression ratio:
Compressed code size/uncompressed code size *
100%.

Must take into account all overheads.

High Performance Embedded Computing
27

Wolfe/Chanin approach/ pp

Obj t d i f d tObject code is fed to
lossless compression
algorithm

Source code

algorithm.
Wolfe/Chanin used
Huffman’s algorithm.

compiler

Compressed object
code becomes program
image

Object code

image.
Code is decompressed
on the fly during

compressor

on-the-fly during
execution.

Compressed
object code

High Performance Embedded Computing
28

Wolfe/Chanin execution/

Instructions are
decompressed when read
from main memory.

memory

from main memory.
Data is not compressed or
decompressed.

dCache holds uncompressed
instructions.

Longer latency for

decompressor

Longer latency for
instruction fetch.

CPU does not require
CPUcache

significant modifications.

High Performance Embedded Computing
29

Huffman codingg

Input stream is a
sequence of symbols.

Each symbol’s
probability of

i koccurrence is known.

Construct a binary tree
f b biliti f thof probabilities from the

bottom up.
P th f tPath from room to
symbol gives code for
that symbol.

High Performance Embedded Computing
30

y

Compressed vs. uncompressed codep p

Code must beCode must be
uncompressed from many
different starting points
during branchesduring branches.
Code compression
algorithms are designed to
decode from the start of a

add r1, r2, r3
decode from the start of a
stream.
Compressed code is
organized into blocks

mov r1, a

bne r1, foo
organized into blocks.

Uncompress at start of
block.

U d bit b t bl k

uncompressed compressed

Unused bits between blocks
constitute overhead (due to
branch).

High Performance Embedded Computing
31

Block structure and compressionp

Trade-off:
Compression algorithms work best on long blocks.
Program branching works best with short blocks.g g

Labels in program move during compression.
Two approaches:Two approaches:

Wolfe and Chanin used branch table to translate
branches during execution (adds code size)branches during execution (adds code size).
Lefurgy et al. patched compressed code to refer
branches to compressed locations. (branch b a c es o co p essed oca o s (b a c
patching)

High Performance Embedded Computing
32

Compression ratio vs. block sizep

[Lek99b] © 1999 IEEE

High Performance Embedded Computing
33

Pre-cache compressionp

Decompress as
instructions come out of
th hthe cache.

One instruction must be
d ddecompressed many
times.

P h llProgram has smaller
cache footprint.

High Performance Embedded Computing
34

Encoding algorithmsg g

Data compression has developed a large
number of compression algorithms.

These algorithms were designed for different
constraints:constraints:

Large text files.

No real time or power constraintsNo real-time or power constraints.

Evaluate existing algorithms under the
requirements of code compressions, develop
new algorithms.

High Performance Embedded Computing
35

Energy savings evaluationgy g

Yoshida et al. used
dictionary-based encoding.

Power reduction ratio:Power reduction ratio:
N: number of instructions in
original program.

m: bit width of those
instructions.

n: number of compressedn: number of compressed
instructions.

k: ratio of on-chip/off-chip
memory power dissipation.

High Performance Embedded Computing
36

Arithmetic codingg

H ff diHuffman coding maps
symbols onto the
integer number lineinteger number line.
Arithmetic coding maps
symbols onto the realsymbols onto the real
number line.

Can handle arbitrarily
fi di ti ti i b lfine distinctions in symbol
probabilities.

Table-based method
?

Table based method
allows fixed-point
arithmetic to be used.

High Performance Embedded Computing
37

Code and data compressionp

Unlike (non-modifiable) code, data must be
compressed and decompressed dynamically.

Can substantially reduce cache footprints.

Requires different trade offsRequires different trade-offs.

High Performance Embedded Computing
38

Lempel-Ziv algorithmp g

Source
Dictionary-based
method.

Source
text

Decoder builds
dictionary during
d i

Coder Dictionary

Compresseddecompression process.

LZW variant uses a
fi d i b ff C d Di ti

Compressed
text

fixed-size buffer.

U d

Coder Dictionary

Uncompressed
source

High Performance Embedded Computing
39

