Chapter 2-2: CPUs

Soo-lk Chae

High Performance Embedded Computing

Topics

Memory systems.
o Memory component models.
o Caches and alternatives.

Code compression.
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Generic memory block
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Simple memory model

Core array IS n rows x m columns.
Totalarea A=A + A+ A + A,
Row decoder area A, = a,n.

Core area A, = a,mn.

Precharge circuit area A, = a,m.
Column decoder area A, = a_m.
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Simple energy and delay models

A:Asetup_l_Ar'l_Ax_|_Abit_|_AC'
o Setup delay is for the precharge circuitry

Total energy E = E; + E.

o Static energy component Eg is a technology
parameter.

o Dynamic energy Ep = E, + E, + E, + E,.
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Multiport memories
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Delay vs. memory size
and number of ports.




Kamble and Ghose cache power model
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L : line size or block size = 2b bytes
w : word size

T : #bits in a tag for a cache line
#line—tag pairs per bank, S = 2s
Total cache capacity = m.S_L bytes
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Figure 1. A m-way Set-Associative Cache
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Kamble and Ghose cache power model
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Figure 2. Some Components of a Static RAM

High Performance Embedded Computing




Kamble and Ghose cache power model

Bit—line dissipations: caused due to precharging in
preparation for an access and then during the actual read or
write. Based on [ W1J094 ] we derived the following equations:

Chit, pr = Nrows - (0.5 - Cq.q1 + Coi) (2)

Chit, riw = Nrows ‘ Ca.q1+ Chig) + Ca,0p + Cd,qpa (3)
where Cyjt pr. Cpit r/w are the effective load capacitance of the
bit lines during precharging, and read/write to the cell. Cg gx
1s the drain capacitance of transistor Qx and Chy; 1s the bitwire

capacitance over the extent of a single bit cell. We assume a
Voltage swing on the bit lines.
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Kamble and Ghose cache power model

Word—line dissipations: caused due to assertion of the word
select line by the word line drivers to perform the read or write

Cwordline = Neolumns * (2 - Cgr Q1* Cuwordwire) (4)
where C,yordline 18 capacitive load of the driver, Cyordwire 18
the word select line capacitance across the extent of a bit cell.

Dissipation in output lines: caused due to driving signals on
the interconnects external to the cache.

Input line dissipations: caused due to transitions on the mput
lines and mput latches.
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Kamble and Ghose cache power model

A Vi

We now enumerate the energy dissipated within a m—way set
associative cache, with a total data capacity of D bytes, a tag

~E T s an T 1.« T o4 Ut Aaen~dn 41a o
blLC OL i Dits auu a llllC blLC Ul o Uy 1.CL o UClIULC LLIC

number of status bits per block frame. These status bits are
mmplemented as arow ofmz - Stbits1n a status RAM bank. The
number of sets, S, 1s D/( L - m). The main components of
energy dissipations are:

Capacity D =SLm [bytes]
Total Tag = STm [bits]
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Kamble and Ghose cache power model

Energy dissipated in the bit lines, Ey;;, due to precharging,
readout and writes 1s given by:

]
i
L]

I
=
[=3)
—

St)

Ebit =0.9" Vigg“ - [ Nbit, pr - Cpit, pr + Nbit, w * Cbit, riw + Nbi, r - Cbit, riw +

m-(8-L+T+St)- CA- (Cgqpat Cqappt+ Cqap)l (5
where Nbit pr. Nbitr» Nbitw are the total number of bit line
transitions due to precharging, reads and writes, CA 1s the
total number of cache accesses.
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Kamble and Ghose cache power model

Energy dissipated in the word lines, F,4, ncluding
energy expended in driving the gate of the row driver

Eword=Veg® - CA- m-(L-8+ T+St )‘(Z‘Cg, Q1+ Cwordwire)  (6)

Energy dissipated in the output lines, Eqy,y1, 1S the energy
dissipated when driving iterconnect lines external to the

cache towards the cpu side or the memory side

anutput =0.5- Vdd (Nout a2m * Cout, a2m + Nout, a2c * Cout, a2c)
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Kamble and Ghose cache power model

Edoutput =05 Vdd2 ’ (Nout, d2m - Cout, dzm * Nout, dzc - Cout, d2c)
Eoutput = anutput t Edoutput (7)
utput> Edoutput are the address and data lines

‘l“\'l‘lml"\ﬂl‘" f Oy O t VY O

; ES N T\T 1'] A
111 ’ “aOllt ain‘lj L“Ollt dZn*l Cll \..r Ll 11Ul L
on the memory—bld.e ad.d.resb and data line drivers, Coutaom

and Coytdom are therr corresponding capacitive loads.
Slmllarly Nout,a2ca Nout,ch and Cout,a2c.a Cout,d20 are the
corresponding terms for the cpu—side interconnect. Following
[WiJo 94], the capacitive load for on—chip destinations 1s
0.5pF and for off—chip destinations, it 1s 20pF.
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Shiue and Chakrabarti cache energy model

add_bs: number of transitions on address bus per
Instruction.

data_bs: number of transitions on data bus per
Instruction.

word_line_size: number of memory cells on a word
line.

bit_line_size: number of memory cells on a bit line.
E.,: Energy consumption of a main memory access.
o, B, v: technology parameters.
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Shiue/Chakrabarti, cont’d.

Energy = hit_rate * energy_hit + miss_rate * energy_miss
Energy_hit = E_dec + E_cell

Energy_miss = E_dec + E_cell + E_io + E_main
= Energy_hit + E_io + E_main

E dec = o *add_bs
E Cell =B *word_line_size * bit_line_size
E_io =y * (data_bs * cache-line_size + add_bs)

E_main =Y * data_bs * cache_line_size
+ Em * cache_line_size
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Register files

First stage in the memory hierarchy.

When too many values are live, some values
must be spilled onto main memory and read
back later.

o Spills cost time, energy.

Register file parameters:
o Number of words.
o Number of ports.

High Performance Embedded Computing

17
Performance and energy vs. register file
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[Weh01] © 2001 IEEE
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Caches

Cache design has received a lot of attention
In general purpose computer design

Most of the lessons apply to embedded
computer as well.

Caches have a sweet spot: neither too small
nor too large.
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Cache size vs. energy

MPEG
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Cache parameters

Cache size:

o Larger caches hold more data, burn more energy,
take area away from other functions.

Number of sets:

o More independent references, more locations
mapped onto each line.

Cache line length:

o Longer lines give more prefetching bandwidth,
higher energy consumption.
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Wolfe/ILam classification of program
behavior in caches
Self-temporal reuse: same array element is
accessed in different loop iterations.

Self-spatial reuse: same cache line is
accessed in different loop iterations.

Group-temporal reuse: different parts of the
program access the same array element.

Group-spatial reuse: different parts of the
program access the same cache line.
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Multilevel cache optimization

Gordon-Ross et al developed a method to
optimize multilevel cache hierarchies, which
adjust cache parameters in order:

o Cache size.

o Line size.

o Associativity.

Choose cache size for each level, then line

size for each level, and finally associativity for
each level.
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Scratch pad memory

Scratch pad is managed by software, not
hardware.

o Provides predictable access time.

o Requires values to be allocated.

It is a fixed part of the processor's memory space

Use standard read/write instructions to access
scratch pad.

High Performance Embedded Computing
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Scratch pad memory

Main memory

!

Cache hit Scratch pad hit
—  Memory controller |-——
A
Cache Scratch pad
CPU
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Code compression *

Extreme version of instruction encoding:
o Use variable-bit instructions.

o Generate encodings using compression
algorithms.

Generally takes longer to decode.

Can result in performance, energy, code size
Improvements.

IBM CodePack (PowerPC) used Huffman
encoding.

High Performance Embedded Computing
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‘ Terms

= Compression ratio:

o Compressed code size/uncompressed code size *
100%.

o Must take into account all overheads.
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Wolfe /Chanin approach

= Object code is fed to
lossless compression
algorithm.
o Wolfe/Chanin used

Huffman’s algorithm.

= Compressed object
code becomes program
image.

= Code is decompressed
on-the-fly during
execution.

High Performance Embedded Computing
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Wolfe /Chanin execution

Instructions are

decompressed when read memory

from main memory.

o Data is not compressed or
decompressed. v

Cache holds uncompressed decompressor

instructions.

o Longer latency for
instruction fetch. cache ' CPU

CPU does not require

significant modifications.
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Huffman coding

Input stream is a
sequence of symbols.

Each symbol’'s

probability of b oo
occurrence is known. d 001
Construct a binary tree | 0
of probabilities fromthe § 2 ¢ @i % . e
bottom up. :fc.llgﬁcljsabilities oo e C(:;iibingifeem 0

o Path from room to
symbol gives code for
that symbol.
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| Compressed vs. uncompressed code

= Code must be
uncompressed from many
different starting points
during branches.

= Code compression
algorithms are designed to
decode from the start of a
stream.

= Compressed code is
organized into blocks.

o Uncompress at start of uncompressed compressed
block.

= Unused bits between blocks
constitute overhead (due to
branch).
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' Block structure and compression

= Trade-off:
o Compression algorithms work best on long blocks.
o Program branching works best with short blocks.

= Labels in program move during compression.

= Two approaches:

o Wolfe and Chanin used branch table to translate
branches during execution (adds code size).

o Lefurgy et al. patched compressed code to refer
branches to compressed locations. (branch
patching)
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| Compression ratio vs. block size
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Pre-cache compression

= Decompress as
Instructions come out of
the cache.

= One instruction must be
decompressed many
times.

= Program has smaller
cache footprint.

Memory

Cache

-

Decompression
engine

CPU
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Encoding algorithms

Data compression has developed a large
number of compression algorithms.

These algorithms were designed for different
constraints:

o Large text files.

o No real-time or power constraints.

Evaluate existing algorithms under the
requirements of code compressions, develop
new algorithms.
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Energy savings evaluation

Yoshida et al. used
dictionary-based encoding.
Power reduction ratio:

o N: number of instructions in
original program.

m: bit width of those gn
’ instructions Pf/o =1 _Nl—lo knm.
o n: number of compressed

instructions.

o k: ratio of on-chip/off-chip
memory power dissipation.
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Arithmetic coding

b ¢ d

Huffman coding maps |

0.0 0.4 0.7 0.85 L0

symbols onto the ' itervals o symbol

integer number line. T
Arithmetic coding maps Satog oo encoded

symbols onto the real |

number Iine. 0.0 E:Wdingpmcess 0.7 0.85 1.0

o Can handle arbitrarily
fine distinctions in symbol
probabilities. 2
Table-based method
allows fixed-point
arithmetic to be used.
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Code and data compression

Unlike (non-modifiable) code, data must be
compressed and decompressed dynamically.

Can substantially reduce cache footprints.
Requires different trade-offs.
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‘ Lempel-Ziv algorithm

= Dictionary-based
method.

= Decoder builds
dictionary during
decompression process.

= LZW variant uses a
fixed-size buffer.

Compressed
text
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