Chapter 2-2: CPUs

Soo-lk Chae

High Performance Embedded Computing

Topics

Memory systems.
o Memory component models.
o Caches and alternatives.

Code compression.

High Performance Embedded Computing

Generic memory block

m

ﬂ// r ya RO\'V . (:Ol'e n (:(_‘,1] ROW
< decoder line

- .
e Bit
“'h.. -
~ line
, Precharge ~
circuits ~

S~

[

N

Column
decoder

1

High Performance Embedded Computing

Simple memory model

Core array IS n rows x m columns.
Totalarea A=A + A+ A + A,
Row decoder area A, = a,n.

Core area A, = a,mn.

Precharge circuit area A, = a,m.
Column decoder area A, = a_m.

High Performance Embedded Computing

Simple energy and delay models

A:Asetup_l_Ar'l_Ax_|_Abit_|_AC'
o Setup delay is for the precharge circuitry

Total energy E = E; + E.

o Static energy component Eg is a technology
parameter.

o Dynamic energy Ep = E, + E, + E, + E,.

High Performance Embedded Computing

Multiport memories

Address L

Memory
block

Memory
block

=t e
b b 4= Py T =
2
2 4 6 8 10 12 14 16
Memory size
—a— lport -« 2ports -+4- 4ports —w— Gports -8 8porls

structure

High Performance Embedded Computing

Delay vs. memory size
and number of ports.

Kamble and Ghose cache power model

Bank 0 Bank 1 Bank m-1
Oneset \Way0) (wayl) (waym-1)
Tag|Datg|Tag| Datg ~ ~ [Tag| Datg Status
Address - -
issued by Tg
cPU _,_
T+ L Replacement
— Logic
T

C T 1T 1 [1 1 tag/dataoutputlatch
associated witha "way”

%ig | Comparators

L : line size or block size = 2b bytes
w : word size

T : #bits in a tag for a cache line
#line—tag pairs per bank, S = 2s
Total cache capacity = m.S_L bytes

Encoder

7

b

“hit” Required word
Figure 1. A m-way Set-Associative Cache

High Performance Embedded Computing

Kamble and Ghose cache power model

Vdd Vprecharge N _‘ word
._>O|7 select line

| ai 1{4 Q2| qpa | o—10| [apb - word

= |J |_| _ L] scielline
precharge
[1 L
| GND | | Qp | row 4
- - — decoder | word
word sclect line ‘ ‘ : select line
hit bit _
hit bt \
word line drivers
a) A 6-Transistor it i ;)))
{ }SRAM hitcell (b) Bit IIHﬁlg:’?chargmg (c) Word line drive logic

Figure 2. Some Components of a Static RAM

High Performance Embedded Computing

Kamble and Ghose cache power model

Bit—line dissipations: caused due to precharging in
preparation for an access and then during the actual read or
write. Based on [W1J094] we derived the following equations:

Chit, pr = Nrows - (0.5 - Cq.q1 + Coi) (2)

Chit, riw = Nrows ‘ Ca.q1+ Chig) + Ca,0p + Cd,qpa (3)
where Cyjt pr. Cpit r/w are the effective load capacitance of the
bit lines during precharging, and read/write to the cell. Cg gx
1s the drain capacitance of transistor Qx and Chy; 1s the bitwire

capacitance over the extent of a single bit cell. We assume a
Voltage swing on the bit lines.

High Performance Embedded Computing

Kamble and Ghose cache power model

Word—line dissipations: caused due to assertion of the word
select line by the word line drivers to perform the read or write

Cwordline = Neolumns * (2 - Cgr Q1* Cuwordwire) (4)
where C,yordline 18 capacitive load of the driver, Cyordwire 18
the word select line capacitance across the extent of a bit cell.

Dissipation in output lines: caused due to driving signals on
the interconnects external to the cache.

Input line dissipations: caused due to transitions on the mput
lines and mput latches.

High Performance Embedded Computing
10

Kamble and Ghose cache power model

A Vi

We now enumerate the energy dissipated within a m—way set
associative cache, with a total data capacity of D bytes, a tag

~E T s an T 1.« T o4 Ut Aaen~dn 41a o
blLC OL i Dits auu a llllC blLC Ul o Uy 1.CL o UClIULC LLIC

number of status bits per block frame. These status bits are
mmplemented as arow ofmz - Stbits1n a status RAM bank. The
number of sets, S, 1s D/(L - m). The main components of
energy dissipations are:

Capacity D =SLm [bytes]
Total Tag = STm [bits]

High Performance Embedded Computing
11

Kamble and Ghose cache power model

Energy dissipated in the bit lines, Ey;;, due to precharging,
readout and writes 1s given by:

]
i
L]

I
=
[=3)
—

St)

Ebit =0.9" Vigg“ - [Nbit, pr - Cpit, pr + Nbit, w * Cbit, riw + Nbi, r - Cbit, riw +

m-(8-L+T+St)- CA- (Cgqpat Cqappt+ Cqap)l (5
where Nbit pr. Nbitr» Nbitw are the total number of bit line
transitions due to precharging, reads and writes, CA 1s the
total number of cache accesses.

High Performance Embedded Computing
12

Kamble and Ghose cache power model

Energy dissipated in the word lines, F,4, ncluding
energy expended in driving the gate of the row driver

Eword=Veg® - CA- m-(L-8+ T+St)‘(Z‘Cg, Q1+ Cwordwire) (6)

Energy dissipated in the output lines, Eqy,y1, 1S the energy
dissipated when driving iterconnect lines external to the

cache towards the cpu side or the memory side

anutput =0.5- Vdd (Nout a2m * Cout, a2m + Nout, a2c * Cout, a2c)

High Performance Embedded Computing
13

Kamble and Ghose cache power model

Edoutput =05 Vdd2 ’ (Nout, d2m - Cout, dzm * Nout, dzc - Cout, d2c)
Eoutput = anutput t Edoutput (7)
utput> Edoutput are the address and data lines

‘l“\'l‘lml"\ﬂl‘" f Oy O t VY O

; ES N T\T 1'] A
111 ’ “aOllt ain‘lj L“Ollt dZn*l Cll \..r Ll 11Ul L
on the memory—bld.e ad.d.resb and data line drivers, Coutaom

and Coytdom are therr corresponding capacitive loads.
Slmllarly Nout,a2ca Nout,ch and Cout,a2c.a Cout,d20 are the
corresponding terms for the cpu—side interconnect. Following
[WiJo 94], the capacitive load for on—chip destinations 1s
0.5pF and for off—chip destinations, it 1s 20pF.

High Performance Embedded Computing
14

Shiue and Chakrabarti cache energy model

add_bs: number of transitions on address bus per
Instruction.

data_bs: number of transitions on data bus per
Instruction.

word_line_size: number of memory cells on a word
line.

bit_line_size: number of memory cells on a bit line.
E.,: Energy consumption of a main memory access.
o, B, v: technology parameters.

High Performance Embedded Computing
15

Shiue/Chakrabarti, cont’d.

Energy = hit_rate * energy_hit + miss_rate * energy_miss
Energy_hit = E_dec + E_cell

Energy_miss = E_dec + E_cell + E_io + E_main
= Energy_hit + E_io + E_main

E dec = o *add_bs
E Cell =B *word_line_size * bit_line_size
E_io =y * (data_bs * cache-line_size + add_bs)

E_main =Y * data_bs * cache_line_size
+ Em * cache_line_size

High Performance Embedded Computing
16

Register files

First stage in the memory hierarchy.

When too many values are live, some values
must be spilled onto main memory and read
back later.

o Spills cost time, energy.

Register file parameters:
o Number of words.
o Number of ports.

High Performance Embedded Computing

17
Performance and energy vs. register file
S1Zc€.
3 0.035
, \
w25 \ 7 0.03
5 g N
= = 0.025 X
g E '-
@ 2 0.02 = :
% 1.5 g A Y\\\\-\
& £ 0.015 — =S W\
[8 "‘-\ Y
;) a . \-‘.;_ ,'\ \\
'E 5 0.01 = \\\\-_\M
= e " ...
Z 05 = 0.005 f——aee e e
Bl - S = R
TTeBeemea 8----
0 0
3 4 5 6 7 8 34 5 6 7 8
Number of registers Numlfer of registers .
Performance vs. number of registers Energy consumption vs. number of registers
-8— biquad (x 650) -»- lattice_init(x1) --&-- matrix-mult (x 100)

—¥- me_ivlin (x 1) —+- bubble_sort (x3) =+ heap_sort (x 12)
—e- insertion_sort (x5) -=+-- selection_sort (x 6)

[Weh01] © 2001 IEEE

High Performance Embedded Computing
18

Caches

Cache design has received a lot of attention
In general purpose computer design

Most of the lessons apply to embedded
computer as well.

Caches have a sweet spot: neither too small
nor too large.

High Performance Embedded Computing
19

Cache size vs. energy

MPEG

T 11 11T

i ““.« <
E S Ny]
9 _
10 N\ b
11 3
12 10
Dcache size[2**Val] 13 12 H [Li98]
14 " 13 [cache size[2** Val| © 1998 IEEE
15 15

High Performance Embedded Computing
20

Cache parameters

Cache size:

o Larger caches hold more data, burn more energy,
take area away from other functions.

Number of sets:

o More independent references, more locations
mapped onto each line.

Cache line length:

o Longer lines give more prefetching bandwidth,
higher energy consumption.

High Performance Embedded Computing
21

Wolfe/ILam classification of program
behavior in caches
Self-temporal reuse: same array element is
accessed in different loop iterations.

Self-spatial reuse: same cache line is
accessed in different loop iterations.

Group-temporal reuse: different parts of the
program access the same array element.

Group-spatial reuse: different parts of the
program access the same cache line.

High Performance Embedded Computing
22

Multilevel cache optimization

Gordon-Ross et al developed a method to
optimize multilevel cache hierarchies, which
adjust cache parameters in order:

o Cache size.

o Line size.

o Associativity.

Choose cache size for each level, then line

size for each level, and finally associativity for
each level.

High Performance Embedded Computing
23

Scratch pad memory

Scratch pad is managed by software, not
hardware.

o Provides predictable access time.

o Requires values to be allocated.

It is a fixed part of the processor's memory space

Use standard read/write instructions to access
scratch pad.

High Performance Embedded Computing
24

Scratch pad memory

Main memory

!

Cache hit Scratch pad hit
— Memory controller |-——
A
Cache Scratch pad
CPU
High Performance Embedded Computing
25
Code compression *

Extreme version of instruction encoding:
o Use variable-bit instructions.

o Generate encodings using compression
algorithms.

Generally takes longer to decode.

Can result in performance, energy, code size
Improvements.

IBM CodePack (PowerPC) used Huffman
encoding.

High Performance Embedded Computing
26

‘ Terms

= Compression ratio:

o Compressed code size/uncompressed code size *
100%.

o Must take into account all overheads.

High Performance Embedded Computing
27

Wolfe /Chanin approach

= Object code is fed to
lossless compression
algorithm.
o Wolfe/Chanin used

Huffman’s algorithm.

= Compressed object
code becomes program
image.

= Code is decompressed
on-the-fly during
execution.

High Performance Embedded Computing
28

Wolfe /Chanin execution

Instructions are

decompressed when read memory

from main memory.

o Data is not compressed or
decompressed. v

Cache holds uncompressed decompressor

instructions.

o Longer latency for
instruction fetch. cache ' CPU

CPU does not require

significant modifications.

High Performance Embedded Computing
29

Huffman coding

Input stream is a
sequence of symbols.

Each symbol’'s

probability of b oo
occurrence is known. d 001
Construct a binary tree | 0
of probabilities fromthe § 2 ¢ @i % . e
bottom up. :fc.llgﬁcljsabilities oo e C(:;iibingifeem 0

o Path from room to
symbol gives code for
that symbol.

High Performance Embedded Computing
30

| Compressed vs. uncompressed code

= Code must be
uncompressed from many
different starting points
during branches.

= Code compression
algorithms are designed to
decode from the start of a
stream.

= Compressed code is
organized into blocks.

o Uncompress at start of uncompressed compressed
block.

= Unused bits between blocks
constitute overhead (due to
branch).

High Performance Embedded Computing
31

' Block structure and compression

= Trade-off:
o Compression algorithms work best on long blocks.
o Program branching works best with short blocks.

= Labels in program move during compression.

= Two approaches:

o Wolfe and Chanin used branch table to translate
branches during execution (adds code size).

o Lefurgy et al. patched compressed code to refer
branches to compressed locations. (branch
patching)

High Performance Embedded Computing
32

| Compression ratio vs. block size

—
o

Compression ratios
o O oS O o
(=B S Een 2] oo

bs=4 bs=8
Share-Model1 ™ ARM [Thumb

bs=16

bs =32

bs = 64

[Lek99b] © 1999 IEEE

High Performance Embedded Computing

33

Pre-cache compression

= Decompress as
Instructions come out of
the cache.

= One instruction must be
decompressed many
times.

= Program has smaller
cache footprint.

Memory

Cache

-

Decompression
engine

CPU

High Performance Embedded Computing

34

Encoding algorithms

Data compression has developed a large
number of compression algorithms.

These algorithms were designed for different
constraints:

o Large text files.

o No real-time or power constraints.

Evaluate existing algorithms under the
requirements of code compressions, develop
new algorithms.

High Performance Embedded Computing

Energy savings evaluation

Yoshida et al. used
dictionary-based encoding.
Power reduction ratio:

o N: number of instructions in
original program.

m: bit width of those gn
’ instructions Pf/o =1 _Nl—lo knm.
o n: number of compressed

instructions.

o k: ratio of on-chip/off-chip
memory power dissipation.

High Performance Embedded Computing
36

Arithmetic coding

b ¢ d

Huffman coding maps |

0.0 0.4 0.7 0.85 L0

symbols onto the ' itervals o symbol

integer number line. T
Arithmetic coding maps Satog oo encoded

symbols onto the real |

number Iine. 0.0 E:Wdingpmcess 0.7 0.85 1.0

o Can handle arbitrarily
fine distinctions in symbol
probabilities. 2
Table-based method
allows fixed-point
arithmetic to be used.

High Performance Embedded Computing
37

Code and data compression

Unlike (non-modifiable) code, data must be
compressed and decompressed dynamically.

Can substantially reduce cache footprints.
Requires different trade-offs.

High Performance Embedded Computing
38

‘ Lempel-Ziv algorithm

= Dictionary-based
method.

= Decoder builds
dictionary during
decompression process.

= LZW variant uses a
fixed-size buffer.

Compressed
text

High Performance Embedded Computing
39

