
Chapter 3-3: MoC and
P iProgramming

Soo-Ik Chae

High Performance Embedded Computing
1

Topicsp

Models of computation and programming.

High Performance Embedded Computing
2

Design Approachg pp

Start design process before hw-sw partitioning

Sequence of steps are vital
system specification unbiased to implementation

describe system behavior at high level

I i i l f i l d iInitial functional design

verification

mapping to target architecturemapping to target architecture

Thus, function-architecture codesign is key
approachapproach

High Performance Embedded Computing
3

System design flowy g

Behavioral
Libraries

Capture Verify

Arch.
Libraries

Capture
Functional+ Architectural

L lCapture
Behavior

Verify
Behavior

Capture
Arch. Level

Map Behavior to
Architecture

Verify
Performance

Mapping Level

Refine HW/SW
microArch

Link to microArch
VerificationmicroArch

Link to Hw/Sw
Implementation

Verification

Microarchitectural
Level

High Performance Embedded Computing
4

Design conception to design descriptiong p g p

At functional level, behavior of a system to be
implemented is selected and analyzed against a
set of specifications

Specifications vs.. behavior?
Specs: I/O relation, set of constraints, system goals

Behavior: algorithm to realize the function

Specs vs algorithm
Algorithm is the result of implementation decision g p
(purists view)

Specs: algorithm itself! (another view)

High Performance Embedded Computing
5

Algorithm Design and Analysisg g y

Algorithm development: key aspect of systemAlgorithm development: key aspect of system
design at functional level

Relatively little work has been done on selection ofRelatively little work has been done on selection of
algorithm based on specifications

Must have strong correctness properties in criticalMust have strong correctness properties in critical
operations

Algorithm analysis is more general concept thanAlgorithm analysis is more general concept than
simulation

It is important to decide on mathematical modelIt is important to decide on mathematical model
for designer that will support algorithm analysis

High Performance Embedded Computing
6

Algorithm Implementationg p

Need of intermediate steps that transform an
algorithm to a set of tractable functional
components

The functional components are to be formally y
defined to capture the algorithm’s properties

MoC is a key answer to the above!MoC is a key answer to the above!

Selection of MoC is to be done carefully.

High Performance Embedded Computing
7

Introduction to MoC

System design goals: time-to-market, safety,
l t li bilitlow cost, reliability

Specification - need for an unambiguous
formalism to represent design choices and
specifications

Need for heterogeneity, unification for
optimization and verification purposesp p p

High Performance Embedded Computing
8

Basic Conceptsp

A MOC is composed of:A MOC is composed of:
Syntax: a description mechanism

Semantics: rules for computation of the behavior givenSemantics: rules for computation of the behavior given
syntax

Operational semanticsOperational semantics

Denotational semantics

It is chosen for its suitability:It is chosen for its suitability:
Compactness of description,

Fidelity to design styleFidelity to design style,

Ability to synthesize and optimize the behavior to an
implementation

High Performance Embedded Computing
9

implementation

Most MOCs

permit distributed system description (with a
collection of modules)
Gives rules dictating how each module
compute (function)
Gives rules specifying how the modules
communicate

Function and communication may not be
described completely separately

High Performance Embedded Computing
10

Modeling with MOCs (cont)g ()

MOCs are implemented by a language and its
semantics (operational or denotational)semantics (operational or denotational)

MOCs describe:
h ki d f l i h ibl i d i lthe kinds of relations that are possible in a denotational
semantics

how the abstract machine behaves in an operationalhow the abstract machine behaves in an operational
semantics

how individual behavior is specified and composed

how hierarchy abstracts the composition

communication style

High Performance Embedded Computing
11

Modeling with MOCs (cont)g ()

Two levels of abstraction
High level: processes and their interaction
using signals

denotational view

processes describe both functional and
comm nication beha iorcommunication behavior

Lower level: general primitives for function and
timingtiming

operational view

High Performance Embedded Computing
12

MoC Primitives

Functions
combination of Boolean functions

synchronous state machines

Communications
queues,

buffers, ,

schedulers

High Performance Embedded Computing
13

Tagged-Signal Model (TSM)gg g ()

Formalism for describing aspects of MOCs for
embedded system specificationembedded system specification

A semantic framework for comparing and studying
and comparing of MOCsand comparing of MOCs

Very abstract: describing a particular model involves
imposing further constraints that make more concreteimposing further constraints that make more concrete

A high level abstraction model: Defines processes and
their interaction using signals

Denotational view without any language

High Performance Embedded Computing
14

Signals, Events, Tagsg , , g

Event: a value/tag pair -> the fundamental entity; g p y;
Tags: model time, precedence relationship, synchronization
points, and etc

V l t th d d lt f t tiValues: represent the operands and results of computation.

Bottom (⊥): indicate the absence of a value

Signal: a set of events (abstract aggregation)Signal: a set of events (abstract aggregation)
Empty signal (λ),

High Performance Embedded Computing
15

TSM Processes

Process P with n signals is a subset of the set of all g
n-tuples of signals Sn

A signal s ∈ Sn satisfies a process P if s ∈ P g
an s is also called a behavior of the process

A process is a set of possible behaviors or p p
constraints on the set of legal signals.

Processes in a systems operate concurrently and y p y
the constraints are on communication or
synchronization

The environment can be modeled as a process

High Performance Embedded Computing
16

TSM Processes

Signals associated with a process may be dividedSignals associated with a process may be divided
as input and output

process does not determine its inputprocess does not determine its input

process does determine its output

Process defines a relation between input and outputp p
signals

Ex. p = {s1,s2,s3,s4}{ }

s1 s3
pinputs outputss1

s2

s3

s4

High Performance Embedded Computing
17

TSM Processes (cont)()

Functional process - given input signals,
t t i d t i doutput is determined
injective

Completely specified process: for all the
inputs there is a unique behavior

bijective

High Performance Embedded Computing
18

TSM Process Compositionp

Definition: Process composition in TSM is defined by
the intersection of the constraints each process
i h i limposes on each signal

Properties of process preserved by composition:
Functionality: unique output n-tuples for every input n-tuple

Complete specification: for every input n-tuple, there exists
a unique output n tuplea unique output n-tuple

High Performance Embedded Computing
19

TSM Process compositionp

s1 s5

p1
s1

s2

s5

s6

p2
s3 s7

Qs4

s8

Q = {s1, s2, s3, …,s8)

High Performance Embedded Computing
20

TSM Process Compositionp

Given a formal model of functional specification
and of the properties, three situations may arise:

property is inherent for model of specification

property can be verified syntactically for given p p y y y g
specification

property must be verified semantically, for given p p y y, g
specification

High Performance Embedded Computing
21

Functional property examplesp p y p

Any design described by Dataflow Network is functional y des g desc bed by ata o et o s u ct o a
and hence this property need not be checked for this
MoC. (Inherent)

If above design is in FSM, even if the components are
functional and completely specified, the result of

iti b ith i l t l ifi dcomposition may be either incompletely specified or
nonfunctional.

This is due to feed-back loop in the compositionThis is due to feed-back loop in the composition

A syntactical check can find the feed-back paths

With Petrinets, functionality is difficult to prove.With Petrinets, functionality is difficult to prove.
Exhaustive simulation required for checking functionality

High Performance Embedded Computing
22

Comparing MoCsp g
System behavior

functional behavior and communication behavior, each as of
TSM processes

ProcessProcess

functional behavior and timing behavior

Function ⇒ how inputs are used for computing outputFunction ⇒ how inputs are used for computing output

Time ⇒ the order in which things happen (assignment of
Tags to each event)Tags to each event)

Distinction between Function and Time is not clear inDistinction between Function and Time is not clear in
every context as in FSM

High Performance Embedded Computing
23

Concurrency and Communicationy

ES has se eral coordinated conc rrentES has several coordinated concurrent
processes with communication among them
Communication can be:Communication can be:

explicit – sender forces an order on the events
(sender and receiver processes)
implicit - sharing of tags (common time scale, or
clock), which forces a common partial order of the
events

Time - a larger role in the embedded systems
two events are synchronous if they have the same
ttag

High Performance Embedded Computing
24

Communication primitivesp

U h i d di ti t f lidUnsynchronized: no coordination, no guarantee of valid
read or not overwrite

Read modify write: locks data structure during dataRead-modify-write: locks data structure during data
access (In TSM, events are totally ordered, R-M-W
action is one event)action is one event)

Unbounded FIFO buffered: point-to-point, produced
token is consumed only after generated. (TSM context: y g (
simple connection where signal is constrained to have
totally ordered. If consumer process has unbounded
FIFO ll i t ll i t h t t l d i dFIFOs on all inputs, all inputs have a total order imposed
upon them.

High Performance Embedded Computing
25

Communication primitivesp

Bounded FIFO buffered: Each input and output
signals are internally totally ordered For buffer size =signals are internally totally ordered. For buffer size
1, input and output events must interleaved. For
larger size, impose the maximum difference between
i t t t t i i iinput or output events occuring in succession.
Petri net places
RandezvousRandezvous

High Performance Embedded Computing
26

Randezvous
Called process P is

part of an arbitrary processpart of an arbitrary process

Maintains state between calls

P may accet/delay/reject call

Set up is symmetrical

Any process may be a client or a server.

C ll f()Caller: q.f(param)

Similar syntax/semantics to RPC

Q is the called process (server)Q is the called process (server)

Server: accept f(param) S

Must indicate willingness to accept

Rendezvous

Caller (calling process) or server (called process) waits for the
other then they execute in parallel

High Performance Embedded Computing
27

other, then they execute in parallel

Randezvous

High Performance Embedded Computing
28

Petri Net
A PN is a mathematical formalism and a Graph tool to model and
analyze discrete event dynamic systems. It is directed graphs with twoanalyze discrete event dynamic systems. It is directed graphs with two
types of nodes: places and transitions. Places represent states which
may be ‘held’ and transitions represent events that may ‘occur’

E bli l

place: transition:

Enabling rule:

A transition t is enabled if and only if all the
input places of the transition t have a token.

t

p p

Firing rule:

An enabled transition t may fire at markingAn enabled transition t may fire at marking
Mc. Firing a transition t will remove a token
from each of its input places and will add a
token to each of its output places t

High Performance Embedded Computing
29

token to each of its output places. t

Time and tagsg
Different models of time -> different order relations on
the set of tagsthe set of tags

Ordering relation
ReflexiveReflexive

Transitive

Anti-symmetric

If the ordering is partial, then T is called a partially
ordered set or poset.

Timed systems
Tags are totally ordered

U i dUntimed systems
Tags are partially ordered rather than totally ordered.

High Performance Embedded Computing
30

Basic Time

ES are usually real-time systems

T t h if th h thTwo events are synchronous if they have the same
tag.

Two signals are synchronous if each event in oneTwo signals are synchronous if each event in one
signal is synchronous with an event in other signal
and vice versaand vice versa

High Performance Embedded Computing
31

Causalityy

A casual process has a non-negative time delay from
inputs to outputs.

St i tl l h iti ti d l fStrictly casual process has a positive time delay from
inputs to outputs.

High Performance Embedded Computing
32

Treatment of Time

Discrete-event system: a timed system where tags inDiscrete-event system: a timed system where tags in
each signal are order isomorphic with the natural
numbers (Verilog, VHDL)(g)

Synchronous system: every signal in system is
synchronous with every other signal in the system

Discrete-time system: a synchronous discrete-event
system

Asynchronous system: no two events can have the
same tag

h i t l d t t t ll d dasynchronous interleaved - tags are totally ordered

asynchronous concurrent - tags are partially ordered

High Performance Embedded Computing
33

Discrete-Event MOC

Global event queue totally ordered timeGlobal event queue, totally ordered time

Verilog, VHDL languages

Si lt t t h ll f di tSimultaneous events present a challenge for discrete-
event MOCs

t

High Performance Embedded Computing
34

MoC for reactive systemsy

Main MoCs:
Finite State Machines (FSM)

Data Flow Process NetworksData Flow Process Networks

Petri Nets

Discrete Event

Codesign Finite State Machines

Some main Languages:

Esterel, StateCharts, Dataflow Networks

High Performance Embedded Computing
35

Synchronous/Reactivey /

Synchronous
All events are synchronous (all signals have identicalAll events are synchronous (all signals have identical
tags)

Tags are totally ordered and globally available

All signals have events at all clock ticks (unlike discrete
event model)

fAt each cycle the order of event processing may be
determined by data precedences

Inefficient for systems where events do not occur at theInefficient for systems where events do not occur at the
same rate in all signals

High Performance Embedded Computing
36

Synchronous/Reactive (cont)y / ()

Synchronous/ReactiveSynchronous/Reactive

set of concurrently-executing synchronized modules

modules communicate through signals which are either g g
present or absent in each clock tick

Computation is delay-free, arbitrary interconnection of
i iblprocesses is possible

Verifying causality (non-contradictory and deterministic) is a
fundamental challenge (a program may have no or multiplefundamental challenge (a program may have no or multiple
interpretations)

Can be translated into finite state descriptions or compiled
di tl i h ddirectly in hardware

High Performance Embedded Computing
37

Dataflow Process Networks

Directed graph where the nodes (actors) represent
computations and arcs represent totally ordered sequencescomputations and arcs represent totally ordered sequences
of events (streams)

Nodes can be language primitives specified in another
language (C)

A process can use partial information about its input streams
to produce partial information at output -> causality withoutto produce partial information at output > causality without
time

Each process is decomposed into an indivisible sequence of
firings, each firing consumes and produces tokens

High Performance Embedded Computing
38

Dataflow Process Networks (cont)()

A C D A B C D

B

A cycle in the schedule returns the graph in the original state

B

y g p g

Synchronous dataflow: processes consume and produce a finite
number of tokens for each firing

Tagged token model: partial order of tokens is explicitly carried
in them

High Performance Embedded Computing
39

Synchronous data flow schedulingy g

Determine schedule for data flow network
(PAPS):

Periodic.

Admissible---blocks run only when data isAdmissible blocks run only when data is
available, finite buffers.

Parallel.Parallel.

Sequential schedule is PAPS.

High Performance Embedded Computing
40

Describing the SDF network g
(Lee/Messerschmitt)

Topology matrix Γ.
Rows are edges.

Columns are nodes.

1 -1 0
a cb

0 1 -1

2 0 1
a b

1 1α

α

β

2 0 -1
2 1

βχ

χ

c
1 1

βχ

High Performance Embedded Computing
41

Feasibility testsy
a cb

Necessary condition for
PASS schedule:

1 -1 0

0 1 1

α

rank(Γ) = s-1 (s =
number of blocks in
graph).

0 1 -1

2 0 -1

β

χgraph).

Rank of example is 3:
no feasible schedule.

χ

1 1αno feasible schedule.
a b

1 1

2 1

c
1 1

βχ

High Performance Embedded Computing
42

c

Clustering and single-appearance g g pp
schedules

No single-appearance schedule2(ab)d(2c)

b (2d) b

No single-appearance schedule2(ab)c(2d)

abc(2d)ab

High Performance Embedded Computing
43

No single-appearance schedule2(ab)c(2d)

Fixing the problemg p

New graph has rank 2.

1 1α
1 1 0

a cb

a b
1 1

2 2

1 -1 0

0 2 -1

α

β

c
1 1

βχ
2 0 -1

β

χ
c

High Performance Embedded Computing
44

Serial system scheduley

a

b

ti

c

time

Schedule=ab(2c)

High Performance Embedded Computing
45

Allocating data flow graphsg g p

If e ass me that a b
1 1

If we assume that
function units operate at
roughly the same rate

a b

2 2
g y

as SDF graph, then
allocation is 1:1.
Higher data rates might c

1 1

Higher data rates might
allow multiplexing one
function unit over

l t

a b

several operators.

c

High Performance Embedded Computing
46

Fully sequential implementationy q p

Data path + sequencer perform operations in total
ordering:

a b c c

registersregisters

High Performance Embedded Computing
47

SDF schedulingg

Write schedules as strings: a(2bc)bc = abcbc.

Lee and Messerschmitt: periodic admissible sequential
h d l (PASS) i t f h d l th t bschedule (PASS) is one type of schedule that can be

guaranteed to be implementable.

Buffers are boundedBuffers are bounded.

Necessary condition for PASS is that, given s blocks in
graph rank of topology matrix must be s-1graph, rank of topology matrix must be s-1.

High Performance Embedded Computing
48

Bhattacharyya et al. SDF scheduling yy g
algorithms

One subgraph is subindependent of another if no samples
from the second subgraph are consumed by the first onefrom the second subgraph are consumed by the first one
in the same schedule period in which they are produced.

Loosely interdependent graph can be partitioned into two y p g p p
subgraphs, one subindependent of other.

Single-appearance schedule has each SDF node only
once.

We can use the recursive property of a single appearance schedule
to schedule an SDFto schedule an SDF.

High Performance Embedded Computing
49

