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Parallel memory systemsy y

n memory banks cann memory banks can 
be accessed 
independentlyindependently.

Peak access rate given 
by n parallel accesses

Bank 0 Bank 1 Bank 2 Bank 3

by n parallel accesses.
Can be achieved If the 
access pattern is address
properly laid out like 
(0,1,2,3,0,1,2,3,…) data
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Parallel memory systemsy y
Performance can be estimated statistically

λ: probability of non-sequential memory accessλ: probability of non sequential memory access.
The probability of a string of k sequential accesses is
p(k)=λ(1−λ)k-1

Mean length of a sequential access sequence is Lb

We can use program statistics to estimate the average 
probability of non-sequential accesses, and design the 
memory system accordinglymemory system accordingly 
We can also use software techniques to maximize the 
length of access sequences whenever possible.
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Memory system designy y g

Models for memory
Model parameters: area, performance, energy.gy

Delay is a nonlinear function of memory size.
Wire delay ~ between O(n) and O(n2)Wire delay ~ between O(n) and O(n )

Delay and energy are a nonlinear function of 
th b f tthe number of ports.
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Memory system design methodologyy y g gy
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Memory system designy y g
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Memory system designy y g
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Heterogeneous memory systemsg y y

Heterogeneous memory improves real-time 
performance:

Accesses to the same bank interfere, even if not 
to the same location.

Segregating real-time locations improves 
predictability, reduces access time variance.p y

Heterogeneous memory improves power:
Smaller blocks with fewer ports consume lessSmaller blocks with fewer ports consume less 
energy.
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Networks and physically-distributed p y y
embedded systems

Examples: automobiles, airplanes.

Nodes connected by a network.
Network delay is noticeable.

Reasons for physically distributed nodes:
Must keep some computation close to mechanics to reduce 
latency.

M d t k b d idth b i d t l llMay reduce network bandwidth by processing data locally.

Modular design may be assembled from components by 
different vendorsdifferent vendors.

Fault tolerance into systems
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Time-Triggered Architecturegg

TTA is a distributed architecture for real-time 
control.

TTA has a notion of real time.
Correct partial order is not sufficientCorrect partial order is not sufficient.

TTH timestamp is based on GPS clock.
64-bit value.

Fractions of second in three lower bytes, seconds 
in five upper bytes.

GPS epoch starts at 0:00:00 UCT Jan 6, 1980.
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Sparse model of timep

Allows predictable interaction between physical time and 
discrete time.discrete time.

Active periods denoted by ε.
Idle periods denoted by δ.p y

Events occur during ε, never during δ.

Duration of ε, δ is larger than precision of the clock.

The sparse time model ensures that events will not be 
reordered due to small variations in the clock between nodes.

I d ti i d l i i t b t d ithIn a dense timing model, an arriving event may be stamped with 
two different times due to variations in the clock value at different 
nodes.
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Communications network interface

CCNI Helps maintain 
consistent view of time.

Between host controller andBetween host controller and 
communications controller.

Enforces unidirectional flow 
of data.

One inbound, one outbound 
channelchannel.

Buffering ensures that tasks 
on the host are not delayed 
by unpredictable 
communication delays
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TTA topologiesp g
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Cliquesq

In a fault-tolerant system, failures cause 
internal inconsistencies.

Different nodes have different views of the system 
state.

Clique avoidance algorithm identifies faulty 
nodesnodes.

Protocols can identify state inconsistency.

Action on faulty nodes is determined by theAction on faulty nodes is determined by the 
application.
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Typical Protocolsyp

속도 프로토콜 특성

저속
LIN

보통 20 kbps

스마트센서와액츄에이터같은단순한온LIN 스마트센서와액츄에이터같은단순한온-
오프기기의통신

최대 1 Mbps (High-speed CAN) ECU간의
중 • 저속 CAN

최대 1 Mbps (High speed CAN) ECU 간의
통신. 제어신호

제어기용네트워크표준으로정립

고속
MOST

현재 25 Mbps. MOST2는 150Mbps. 
멀티미디어버스

유럽을중심으로양산중유럽을중심으로양산중

IEEE 
1394

100 Mbps 이상. 멀티미디어버스

미국을중심으로표준화진행중
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FlexRayy

Shortcomings of existing solutions 
Data rate

Deterministic behavior

Fault tolerance

Topology

Sept 2000
Foundation of the FlexRay Consortium

BMW, DaimlerChrysler, Philips, Motorola
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FlexRayy
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FlexRay
Host runs applications.

Communication controller provides high-level functions.p g
Interface to host

Message processing: transmission, reception

Clock synchronization

Bus guardians watch system for errors.g y
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FlexRay scheduley
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FlexRay timingy g

Action points are boundaries between 
macroticks.

Arbitration grid determines boundaries 
between messagesbetween messages.

Communication cycle:
St ti tStatic segment.

Dynamic segment.

Symbol window.

Network idle time.
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FlexRay frame formaty
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FlexRay real-time performancey p

Static phase is scheduled statically for real-time 
behavior.

Dynamic phase provides non-time-critical time 
slots.

Microtick comes from application internal clock.

Macrotick comes from clusterwide synchronized 
clock.

Creates a temporal firewall between time-sensitive 
and no-time-sensitive transmissions
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Communication cycley
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Communication cycley
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Message Processingg g
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FlexRay segment timingy g g

Slots are arbitrated 
using a deterministic 

l ithalgorithm.

Messages sent at 
i i l t b d iminislot boundaries.

Message lasts longer 
th i i l t if tthan a minislot if sent.
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Clock Synchronizationy
Clock synchronization component

Perform two ways of time synchronizationPerform two ways of time synchronization

Generate macroticks, a local time unit.

MacrotickMacrotick
Their length depends on the local oscillator clock

The aim is that a macrotick has approximately the same length 
on any bus controller within the cluster relative to real time.

That is a non-trivial problem in distributed systems because the 
l l ill t l k d ift d t f b i ti t llocal oscillator clocks may drift due to fabrication tolerances or 
environment differences.

For any kind of correction a time difference between the localFor any kind of correction a time difference between the local 
view of time and the view of other bus controllers is needed.

This can be achieved by so called sync messages.
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Clock Synchronizationy
If a bus controller receives a sync message, the 
diff b t t d d b d i ldifference between expected and observed arrival 
time calculated and stored.

D i i ti l ( d) t 15During a communication cycle (round), up to 15 sync 
messages are received.

Th l k h i ti Fl R fThe clock synchronization FlexRay performs
Offset correction

R t tiRate correction
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Clock Synchronizationy
Offset correction: a fault-tolerant midpoint algorithm 

t th ti diff fcomputes an average over the time differences from 
one communication cycle and the next schedule 
execution is delayed or starts earlierexecution is delayed or starts earlier

Rate correction: minimize the difference between time 
views by adjusting the length of a macrotickviews by adjusting the length of a macrotick.

Computes the difference between the expected and 
observed arrival time of a sync message in two consecutiveobserved arrival time of a sync message in two consecutive 
communication rounds

Then the macrotick length is adjusted accordingly.
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Clock Synchronizationy
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Synchronization y
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FlexRay timekeepingy p g
Global time is synthesized by clock synchronized 
process (CSP).
Macroticks are managed by macrotick generation 
process. (MTG: macrotick generation process)
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Fault tolerant midpoint (FTM) algorithmp ( ) g
Is used for clock state correction (Offset correction)
First the valid time difference is sorted and the k largest andFirst, the valid time difference is sorted and the k largest and 
the k smallest values are discarded.
Then, the largest and the smallest of the remaining values are 

d f h l l i f h id i l hi haveraged for the calculation of the midpoint value which serves 
as the state correction term vOffsetCorection that indicates by 
how many microticks the node’s communication cycle length y y g
should be changed.
k= 0 for up to 2 values

1 for up to 7 values1 for up to 7 values
2 for more than 7 values.

Clock state correction takes place during the network idle timeClock state correction takes place during the network idle time 
NIT in every second communication cycle.

High Performance Embedded Computing
43

FTM algorithmg
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FlexRay Summaryy y
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Evolution of Vehicle Networks
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Aircraft networks

Si il t t bil d i b t t i t i tSimilar to automobile design, but more stringent requirements 
More sensitive to weight
More complex control (3D)p ( )

Avionics categories:
Instrumentation.
N i ti / i tiNavigation/communication.
Control.

Control networks must perform hard real-time, safety-critical p , y
tasks.
Management networks control noncritical devices.
Passenger networks manage entertainment internet access etcPassenger networks manage entertainment, internet access, etc.
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ARINC 644 standard

Ai ft t k i di id d i t f d iAircraft network is divided into four domains 
with firewalls between them:

1. Flight deck network is deterministic.
2. Separate network for OEM equipment with p q p

temporal determinism.
3. Airline systems network supports3. Airline systems network supports 

entertainment, etc.
4 Passenger subnetwork provides Internet4. Passenger subnetwork provides Internet 

access.
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Multiprocessor design methodologiesp g g

MPSoC built from many hardware and 
software modules.

Many modules are existing IP.

Some IP may be unmodifiable, other IP may beSome IP may be unmodifiable, other IP may be 
modified.

Some modules are created for the project.Some modules are created for the project.
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Characteristics of modern SoC designsg

Too big to be designed at register-transfer level.
CPUs running software.

Memory.

Devices.

T bi t d i ll th IP bl k lfToo big to design all the IP blocks yourself.

Too big to be verified solely by cycle-level simulation.
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Standard buses

ARM AMBA

IBM CoreConnect

Sonics Silicon Backplaine

VSIA (virtual socket interface alliance)( )
Defines a virtual component interface and a functional 
interface.

Coware N2C and Cadence VCC
Provides tools for system-on-chip integration 
methodologies
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IBM CoreConnect

PLB

OPB

DCR bus
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Coral (IBM tool) design methodology( ) g gy

Vi t l tVirtual components 
describe a class of real 
componentscomponents.

Coral synthesizes glue 
logic betweenlogic between 
components.

Interconnection engine g
generates netlist, 
checks designs.
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Coral virtual-to-real synthesisy
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Component-based designp g
Cesario/Jerraya: build MPSoCs 
from components to allowfrom components to allow 
design reuse.
Components + wrappers canComponents  wrappers can 
be connected to channels.
A wrapper is a design unit that 
i f d l h

P1

interfaces a module to another 
module.

It can be HW or SW and
wrapper

It can be HW or SW and 
may include both.
It can perform only low-level 

h l
p y

adaptation, such as protocol 
transformation

channel
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Challenges in heterogeneous multiprocessorsg g p

Multiple bus/network masters makes it harder to 
synchronize communications.

Multiple busses/networks rather than single bus.

Need specialized hardware for interprocess 
communication to offload the CPU.

Need high-level communication primitives that can 
be off-loaded from CPU. (Shared memory I/O is too 
low-level)
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When a dedicated CPU is added,

Its software must be adapted in several ways.
The software must be updated to support the platform’s 
high level communication primitiveshigh-level communication primitives.

Optimized implementations of the host processor’s 
communication functions must be provided forcommunication functions must be provided for 
interprocess communication

Synchronization functions must be provided.
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Challenges for EDA industryg y

Must verify protocols, etc. without resorting to 
cycle-level simulation for everything.

Chips will include several types of processors, 
making software development hardermaking software development harder.

Must adapt CPU, hardware IP blocks to the 
nderl ing comm nication fabricunderlying communication fabric.
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Application vs. task-specific software pp p
stacks

Host CPU and task-specific CPUs tend to run 
different stacks:

S i li d k

Programming API

Application

Task-specific API

Specialized tasks

Drivers

Host OS

Drivers

Custom OS

Hardware

Host CPU

Hardware

Task-specific CPU
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Software adaptations for a dedicated CPUp

Adapt to hardware platform’s communication 
primitives.

Provide optimized versions of host OS 
communication functionscommunication functions.

Provide synchronization functions.
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System-level design flow (Jerraya et al.)y g (J y )
requirements

SW model HW modelAbstract platform

An abstract platform is 
Performance/power

Analysis
HW/SW partitioning

Golden abstract
architecture

p
created form a 
combination of system 
requirements, models of q ,
the software, and 
models of the hardware 
components Based on the results of this analysiscomponents
This abstract platform is 
analyzed to estimate the 
application’s

Based on the results of this analysis, 
software is allocated and scheduled 
onto the platform.
Th lt i ld b t tapplication s 

performance and 
power/energy 
consumption

The result is a golden abstract 
architecture that can be used to build 
the implementation.
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consumption.

Abstract architecture templatep

Application libraries provide 
application-specific 
functions.functions.

OS and communication 
system provide scheduling 
and resource management.

Hardware abstraction layer 
provides clock interruptsprovides clock, interrupts, 
etc.

CPU wrapper translates pp
signals between CPU and 
network.
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Hardware and software abstraction layersy
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Wrapper pp
A wrapper-oriented design methodology presents 
several challengesg
Must be supported by tools that automatically generate 
the wrappers and deploy them within the architecture.
Wrapper design is tedious and error prone when left to 
humans
The wrapper generators must be able to build wrappersThe wrapper generators must be able to build wrappers 
for several different types of protocols since realistic 
chips will use several types of interconnect.y
Some wrappers may have to interface two different 
protocols. the
Th b h SW d HWThe wrapper generator must generate both SW and HW.
Wrappers must be designed to support mixed-level co-
simulation
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Register-transfer implementationg p

Given a golden architecture model, we still need to 
generate the complete register-transfer design of the g p g g
hardware as well as the final software wrappers.
The register-transfer design enumerates all the required 

t d t th t thcomponents and connect them together.
One of the major steps in register-transfer generation is 
the creation of the memory subsystemthe creation of the memory subsystem.
This subsystem may include both connections between 
internal memory blocks and interfaces to the 
communication network.
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