
Chapter 5-2: Multiprocessor
A hiArchitectures

S Ik ChSoo-Ik Chae

High Performance Embedded Computing 1

Topicsp

Memory systems.

Physically distributed multiprocessors.y y p

Design methodologies.

High Performance Embedded Computing
2

Parallel memory systemsy y

n memory banks cann memory banks can
be accessed
independentlyindependently.

Peak access rate given
by n parallel accesses

Bank 0 Bank 1 Bank 2 Bank 3

by n parallel accesses.
Can be achieved If the
access pattern is address
properly laid out like
(0,1,2,3,0,1,2,3,…) data

High Performance Embedded Computing
3

Parallel memory systemsy y
Performance can be estimated statistically

λ: probability of non-sequential memory accessλ: probability of non sequential memory access.
The probability of a string of k sequential accesses is
p(k)=λ(1−λ)k-1

Mean length of a sequential access sequence is Lb

We can use program statistics to estimate the average
probability of non-sequential accesses, and design the
memory system accordinglymemory system accordingly
We can also use software techniques to maximize the
length of access sequences whenever possible.

High Performance Embedded Computing
4

Memory system designy y g

Models for memory
Model parameters: area, performance, energy.gy

Delay is a nonlinear function of memory size.
Wire delay ~ between O(n) and O(n2)Wire delay ~ between O(n) and O(n)

Delay and energy are a nonlinear function of
th b f tthe number of ports.

High Performance Embedded Computing
5

Memory system design methodologyy y g gy

High Performance Embedded Computing
6

Memory system designy y g

High Performance Embedded Computing
7

Memory system designy y g

High Performance Embedded Computing
8

Heterogeneous memory systemsg y y

Heterogeneous memory improves real-time
performance:

Accesses to the same bank interfere, even if not
to the same location.

Segregating real-time locations improves
predictability, reduces access time variance.p y

Heterogeneous memory improves power:
Smaller blocks with fewer ports consume lessSmaller blocks with fewer ports consume less
energy.

High Performance Embedded Computing
9

Networks and physically-distributed p y y
embedded systems

Examples: automobiles, airplanes.

Nodes connected by a network.
Network delay is noticeable.

Reasons for physically distributed nodes:
Must keep some computation close to mechanics to reduce
latency.

M d t k b d idth b i d t l llMay reduce network bandwidth by processing data locally.

Modular design may be assembled from components by
different vendorsdifferent vendors.

Fault tolerance into systems

High Performance Embedded Computing
10

Time-Triggered Architecturegg

TTA is a distributed architecture for real-time
control.

TTA has a notion of real time.
Correct partial order is not sufficientCorrect partial order is not sufficient.

TTH timestamp is based on GPS clock.
64-bit value.

Fractions of second in three lower bytes, seconds
in five upper bytes.

GPS epoch starts at 0:00:00 UCT Jan 6, 1980.

High Performance Embedded Computing
11

Sparse model of timep

Allows predictable interaction between physical time and
discrete time.discrete time.

Active periods denoted by ε.
Idle periods denoted by δ.p y

Events occur during ε, never during δ.

Duration of ε, δ is larger than precision of the clock.

The sparse time model ensures that events will not be
reordered due to small variations in the clock between nodes.

I d ti i d l i i t b t d ithIn a dense timing model, an arriving event may be stamped with
two different times due to variations in the clock value at different
nodes.

High Performance Embedded Computing
12

Communications network interface

CCNI Helps maintain
consistent view of time.

Between host controller andBetween host controller and
communications controller.

Enforces unidirectional flow
of data.

One inbound, one outbound
channelchannel.

Buffering ensures that tasks
on the host are not delayed
by unpredictable
communication delays

High Performance Embedded Computing
13

TTA topologiesp g

High Performance Embedded Computing
14

Cliquesq

In a fault-tolerant system, failures cause
internal inconsistencies.

Different nodes have different views of the system
state.

Clique avoidance algorithm identifies faulty
nodesnodes.

Protocols can identify state inconsistency.

Action on faulty nodes is determined by theAction on faulty nodes is determined by the
application.

High Performance Embedded Computing
15

Typical Protocolsyp

속도 프로토콜 특성

저속
LIN

보통 20 kbps

스마트센서와액츄에이터같은단순한온LIN 스마트센서와액츄에이터같은단순한온-
오프기기의통신

최대 1 Mbps (High-speed CAN) ECU간의
중 • 저속 CAN

최대 1 Mbps (High speed CAN) ECU 간의
통신. 제어신호

제어기용네트워크표준으로정립

고속
MOST

현재 25 Mbps. MOST2는 150Mbps.
멀티미디어버스

유럽을중심으로양산중유럽을중심으로양산중

IEEE
1394

100 Mbps 이상. 멀티미디어버스

미국을중심으로표준화진행중

High Performance Embedded Computing
16

FlexRayy

Shortcomings of existing solutions
Data rate

Deterministic behavior

Fault tolerance

Topology

Sept 2000
Foundation of the FlexRay Consortium

BMW, DaimlerChrysler, Philips, Motorola

High Performance Embedded Computing
17

FlexRayy

High Performance Embedded Computing
18

FlexRay
Host runs applications.

Communication controller provides high-level functions.p g
Interface to host

Message processing: transmission, reception

Clock synchronization

Bus guardians watch system for errors.g y

High Performance Embedded Computing
19

High Performance Embedded Computing
20

High Performance Embedded Computing
21

High Performance Embedded Computing
22

FlexRay scheduley

High Performance Embedded Computing
23

FlexRay timingy g

Action points are boundaries between
macroticks.

Arbitration grid determines boundaries
between messagesbetween messages.

Communication cycle:
St ti tStatic segment.

Dynamic segment.

Symbol window.

Network idle time.

High Performance Embedded Computing
24

FlexRay frame formaty

High Performance Embedded Computing
25

High Performance Embedded Computing
26

FlexRay real-time performancey p

Static phase is scheduled statically for real-time
behavior.

Dynamic phase provides non-time-critical time
slots.

Microtick comes from application internal clock.

Macrotick comes from clusterwide synchronized
clock.

Creates a temporal firewall between time-sensitive
and no-time-sensitive transmissions

High Performance Embedded Computing
27

Communication cycley

High Performance Embedded Computing
28

High Performance Embedded Computing
29

High Performance Embedded Computing
30

Communication cycley

High Performance Embedded Computing
31

High Performance Embedded Computing
32

Message Processingg g

High Performance Embedded Computing
33

FlexRay segment timingy g g

Slots are arbitrated
using a deterministic

l ithalgorithm.

Messages sent at
i i l t b d iminislot boundaries.

Message lasts longer
th i i l t if tthan a minislot if sent.

High Performance Embedded Computing
34

High Performance Embedded Computing
35

High Performance Embedded Computing
36

Clock Synchronizationy
Clock synchronization component

Perform two ways of time synchronizationPerform two ways of time synchronization

Generate macroticks, a local time unit.

MacrotickMacrotick
Their length depends on the local oscillator clock

The aim is that a macrotick has approximately the same length
on any bus controller within the cluster relative to real time.

That is a non-trivial problem in distributed systems because the
l l ill t l k d ift d t f b i ti t llocal oscillator clocks may drift due to fabrication tolerances or
environment differences.

For any kind of correction a time difference between the localFor any kind of correction a time difference between the local
view of time and the view of other bus controllers is needed.

This can be achieved by so called sync messages.

High Performance Embedded Computing
37

Clock Synchronizationy
If a bus controller receives a sync message, the
diff b t t d d b d i ldifference between expected and observed arrival
time calculated and stored.

D i i ti l (d) t 15During a communication cycle (round), up to 15 sync
messages are received.

Th l k h i ti Fl R fThe clock synchronization FlexRay performs
Offset correction

R t tiRate correction

High Performance Embedded Computing
38

Clock Synchronizationy
Offset correction: a fault-tolerant midpoint algorithm

t th ti diff fcomputes an average over the time differences from
one communication cycle and the next schedule
execution is delayed or starts earlierexecution is delayed or starts earlier

Rate correction: minimize the difference between time
views by adjusting the length of a macrotickviews by adjusting the length of a macrotick.

Computes the difference between the expected and
observed arrival time of a sync message in two consecutiveobserved arrival time of a sync message in two consecutive
communication rounds

Then the macrotick length is adjusted accordingly.

High Performance Embedded Computing
39

Clock Synchronizationy

High Performance Embedded Computing
40

Synchronization y

High Performance Embedded Computing
41

FlexRay timekeepingy p g
Global time is synthesized by clock synchronized
process (CSP).
Macroticks are managed by macrotick generation
process. (MTG: macrotick generation process)

High Performance Embedded Computing
42

Fault tolerant midpoint (FTM) algorithmp () g
Is used for clock state correction (Offset correction)
First the valid time difference is sorted and the k largest andFirst, the valid time difference is sorted and the k largest and
the k smallest values are discarded.
Then, the largest and the smallest of the remaining values are

d f h l l i f h id i l hi haveraged for the calculation of the midpoint value which serves
as the state correction term vOffsetCorection that indicates by
how many microticks the node’s communication cycle length y y g
should be changed.
k= 0 for up to 2 values

1 for up to 7 values1 for up to 7 values
2 for more than 7 values.

Clock state correction takes place during the network idle timeClock state correction takes place during the network idle time
NIT in every second communication cycle.

High Performance Embedded Computing
43

FTM algorithmg

High Performance Embedded Computing
44

FlexRay Summaryy y

High Performance Embedded Computing
45

Evolution of Vehicle Networks

High Performance Embedded Computing
46

Aircraft networks

Si il t t bil d i b t t i t i tSimilar to automobile design, but more stringent requirements
More sensitive to weight
More complex control (3D)p ()

Avionics categories:
Instrumentation.
N i ti / i tiNavigation/communication.
Control.

Control networks must perform hard real-time, safety-critical p , y
tasks.
Management networks control noncritical devices.
Passenger networks manage entertainment internet access etcPassenger networks manage entertainment, internet access, etc.

High Performance Embedded Computing
47

ARINC 644 standard

Ai ft t k i di id d i t f d iAircraft network is divided into four domains
with firewalls between them:

1. Flight deck network is deterministic.
2. Separate network for OEM equipment with p q p

temporal determinism.
3. Airline systems network supports3. Airline systems network supports

entertainment, etc.
4 Passenger subnetwork provides Internet4. Passenger subnetwork provides Internet

access.

High Performance Embedded Computing
48

Multiprocessor design methodologiesp g g

MPSoC built from many hardware and
software modules.

Many modules are existing IP.

Some IP may be unmodifiable, other IP may beSome IP may be unmodifiable, other IP may be
modified.

Some modules are created for the project.Some modules are created for the project.

High Performance Embedded Computing
49

Characteristics of modern SoC designsg

Too big to be designed at register-transfer level.
CPUs running software.

Memory.

Devices.

T bi t d i ll th IP bl k lfToo big to design all the IP blocks yourself.

Too big to be verified solely by cycle-level simulation.

High Performance Embedded Computing
50

Standard buses

ARM AMBA

IBM CoreConnect

Sonics Silicon Backplaine

VSIA (virtual socket interface alliance)()
Defines a virtual component interface and a functional
interface.

Coware N2C and Cadence VCC
Provides tools for system-on-chip integration
methodologies

High Performance Embedded Computing
51

IBM CoreConnect

PLB

OPB

DCR bus

High Performance Embedded Computing
52

Coral (IBM tool) design methodology() g gy

Vi t l tVirtual components
describe a class of real
componentscomponents.

Coral synthesizes glue
logic betweenlogic between
components.

Interconnection engine g
generates netlist,
checks designs.

High Performance Embedded Computing
53

Coral virtual-to-real synthesisy

High Performance Embedded Computing
54

Component-based designp g
Cesario/Jerraya: build MPSoCs
from components to allowfrom components to allow
design reuse.
Components + wrappers canComponents wrappers can
be connected to channels.
A wrapper is a design unit that
i f d l h

P1

interfaces a module to another
module.

It can be HW or SW and
wrapper

It can be HW or SW and
may include both.
It can perform only low-level

h l
p y

adaptation, such as protocol
transformation

channel

High Performance Embedded Computing
55

Challenges in heterogeneous multiprocessorsg g p

Multiple bus/network masters makes it harder to
synchronize communications.

Multiple busses/networks rather than single bus.

Need specialized hardware for interprocess
communication to offload the CPU.

Need high-level communication primitives that can
be off-loaded from CPU. (Shared memory I/O is too
low-level)

High Performance Embedded Computing
56

When a dedicated CPU is added,

Its software must be adapted in several ways.
The software must be updated to support the platform’s
high level communication primitiveshigh-level communication primitives.

Optimized implementations of the host processor’s
communication functions must be provided forcommunication functions must be provided for
interprocess communication

Synchronization functions must be provided.

High Performance Embedded Computing
57

Challenges for EDA industryg y

Must verify protocols, etc. without resorting to
cycle-level simulation for everything.

Chips will include several types of processors,
making software development hardermaking software development harder.

Must adapt CPU, hardware IP blocks to the
nderl ing comm nication fabricunderlying communication fabric.

High Performance Embedded Computing
58

Application vs. task-specific software pp p
stacks

Host CPU and task-specific CPUs tend to run
different stacks:

S i li d k

Programming API

Application

Task-specific API

Specialized tasks

Drivers

Host OS

Drivers

Custom OS

Hardware

Host CPU

Hardware

Task-specific CPU

High Performance Embedded Computing
59

Software adaptations for a dedicated CPUp

Adapt to hardware platform’s communication
primitives.

Provide optimized versions of host OS
communication functionscommunication functions.

Provide synchronization functions.

High Performance Embedded Computing
60

System-level design flow (Jerraya et al.)y g (J y)
requirements

SW model HW modelAbstract platform

An abstract platform is
Performance/power

Analysis
HW/SW partitioning

Golden abstract
architecture

p
created form a
combination of system
requirements, models of q ,
the software, and
models of the hardware
components Based on the results of this analysiscomponents
This abstract platform is
analyzed to estimate the
application’s

Based on the results of this analysis,
software is allocated and scheduled
onto the platform.
Th lt i ld b t tapplication s

performance and
power/energy
consumption

The result is a golden abstract
architecture that can be used to build
the implementation.

High Performance Embedded Computing
61

consumption.

Abstract architecture templatep

Application libraries provide
application-specific
functions.functions.

OS and communication
system provide scheduling
and resource management.

Hardware abstraction layer
provides clock interruptsprovides clock, interrupts,
etc.

CPU wrapper translates pp
signals between CPU and
network.

High Performance Embedded Computing
62

Hardware and software abstraction layersy

High Performance Embedded Computing
63

Wrapper pp
A wrapper-oriented design methodology presents
several challengesg
Must be supported by tools that automatically generate
the wrappers and deploy them within the architecture.
Wrapper design is tedious and error prone when left to
humans
The wrapper generators must be able to build wrappersThe wrapper generators must be able to build wrappers
for several different types of protocols since realistic
chips will use several types of interconnect.y
Some wrappers may have to interface two different
protocols. the
Th b h SW d HWThe wrapper generator must generate both SW and HW.
Wrappers must be designed to support mixed-level co-
simulation

High Performance Embedded Computing
64

simulation.

Register-transfer implementationg p

Given a golden architecture model, we still need to
generate the complete register-transfer design of the g p g g
hardware as well as the final software wrappers.
The register-transfer design enumerates all the required

t d t th t thcomponents and connect them together.
One of the major steps in register-transfer generation is
the creation of the memory subsystemthe creation of the memory subsystem.
This subsystem may include both connections between
internal memory blocks and interfaces to the
communication network.

High Performance Embedded Computing
65

