Chapter 5-2: Multiprocessor
Architectures

Soo-lk Chae

High Performance Embedded Computing

Topics

Memory systems.
Physically distributed multiprocessors.
Design methodologies.

High Performance Embedded Computing

‘ Parallel memory systems

= n memory banks can
be accessed
iIndependently.

= Peak access rate given
by n parallel accesses.
o Can be achieved If the

access pattern is address
properly laid out like
(0111213’01112131"') data

High Performance Embedded Computing

‘ Parallel memory systems

= Performance can be estimated statistically
o A probability of non-sequential memory access.
o The probability of a string of k sequential accesses is
p()=A(1-1)*
o Mean length of a sequential access sequence is L,

L, = Z kp(k)
1<k Soo
1-a-n)"
B A
= We can use program statistics to estimate the average
probability of non-sequential accesses, and design the
memory system accordingly

= We can also use software techniques to maximize the
length of access sequences whenever possible.

High Performance Embedded Computing

Memory system design

Models for memory
o Model parameters: area, performance, energy.

Delay is a nonlinear function of memory size.
o Wire delay ~ between O(n) and O(n?)

Delay and energy are a nonlinear function of
the number of ports.

High Performance Embedded Computing

Memory system design methodology

Algorithm selection

Choose application
and algorithm
. . L
Estimating n
le-ti Generate data-flow
cycle-time schedule Design complete
+ / YES)
stermine o - X NO
: o Determine .nu_mb(T Total cycles * clock-cycle time
Area-gelay and type of PEs ; e " Consider tradeoffs:
- or - @ satisfies requirements? “onsider tradeoffs:
curves for =1 P — ’
memory g = (i) Different network
- £ =] topologies
— = i) Pinelini K
Estimate clock- = = - T (ii) Pipelining networl
| evele time for the & E Generate a I\.‘!Ild schedule (iii) Varying number of
{li)(]\'l‘ schedule {a = ':!I'u;r Tl::il’!\.'l[l.[i i!-|! Irl.l.‘lt\'nr;-].li.llll memory ports
T =" 1 and memory-access conflicts {iv) Changing transistor

sizes in memory cells
(v] Different data Mow
schedule

¥ o
i), (iv) Y + bl
Calculate maximum allowable | Network _ clock-cycle |_
- memory size (so that memory < : *

delay ime
delay < clock-cycle time) ¥ e
Memory ' (i), (i)
partitioning Decide on #MEs based on Estimate delay of network
i) allowable size for calculated size and
ii] data-storage requirements chosen topology
L

Determine size of network

. Choose a network topology
{i.e., number of network ports) POTOgY

for PEs and MEs to be connected]L Area-delay
curves for
network
Network selection

High Performance Embedded Computing

Memory system design

L A
14 1port = : P
2 ports -%— : o -
4 poris -+— a

12 ¢ e

i0

Memory delay (ns)

2 1 1 L)
2 4 6 8 10 12 14 16
Memory size :

Figure 4: Delay variation with hun_iBé;-of ports

High Performance Embedded Computing

Memory system design

Table 2: Delay of minimum-sized memory banks

[N] S [Nyt ta (ns)]

16 | 4x4 1 2.44
8 6x6 2 3.45
4 8x8 4 5.85
2 | 12x12 8 12.48

Table 3: Fixed datapath delay (small transistors)

. Mo | So | Npre | teycte | Ne [tegee (n3) |

16 | 4x4 1 3.41 2364 [8061.24
8 | 6x6 2 . 2170 | 7486.50
4 8x8 4 5.85 | 1872 | 10951.20
2 | 12x12 8 12.48 | 1024 | 12779.52

High Performance Embedded Computing

Heterogeneous memory systems

Heterogeneous memory improves real-time
performance:

o Accesses to the same bank interfere, even if not
to the same location.

o Segregating real-time locations improves
predictability, reduces access time variance.
Heterogeneous memory improves power:
o Smaller blocks with fewer ports consume less

energy' EM = Z Ei,moduie"' Z Ej,sw:'rch"' z Ek,wire'

i € madules j€ switch ke wires

High Performance Embedded Computing

Networks and physically-distributed
embedded systems

Examples: automobiles, airplanes.

Nodes connected by a network.
o Network delay is noticeable.

Reasons for physically distributed nodes:

o Must keep some computation close to mechanics to reduce
latency.

o May reduce network bandwidth by processing data locally.

o Modular design may be assembled from components by
different vendors.

o Fault tolerance into systems

High Performance Embedded Computing
10

Time-Triggered Architecture

TTA Is a distributed architecture for real-time
control.

TTA has a notion of real time.
o Correct partial order is not sufficient.

TTH timestamp is based on GPS clock.
o 64-bit value.

o Fractions of second in three lower bytes, seconds
in five upper bytes.

o GPS epoch starts at 0:00:00 UCT Jan 6, 1980.

High Performance Embedded Computing
11

Sparse model of time
Events 4p 4P Idle ¢

Allows predictable interaction between physical time and
discrete time.

Active periods denoted by «.

Idle periods denoted by 4.

Events occur during g, never during o.

Duration of ¢, § is larger than precision of the clock.

The sparse time model ensures that events will not be
reordered due to small variations in the clock between nodes.
o In a dense timing model, an arriving event may be stamped with

two different times due to variations in the clock value at different
nodes.

High Performance Embedded Computing
12

Communications network interface

CNI Helps maintain

consistent view of time. Host
o Between host controller and —_— _—
communications controller. " :0“" e
Enforces unidirectional flow |
Memory Memory
Of data : : Comml}.lcnicalimls
. networ
o One inbound, one outbound : ; interface
channel. Memory Menimr}f
) N |
Buffering ensures that tasks A
on the host are not delayed controller
by unpredictable
communication delays t”ﬂwmk
High Performance Embedded Computing
13
TTA topologies
Node |Guardian
Guardian
g '
—~t} —

Node | Guardian

Guardian

Bus-based system

Node | Gua rdi;ln
|Guardiay

Node | Guardia

Node | Guardidn .
Guardiay

Guardian
Node | Guardidn Star)
Guardian coupler
Star)
Node | Guardian
coupler Guardian

Star-based system

High Performance Embedded Computing

14

Cliques

In a fault-tolerant system, failures cause
internal inconsistencies.
o Different nodes have different views of the system

state.

Clique avoidance algorithm identifies faulty

nodes.

o Protocols can identify state inconsistency.
o Action on faulty nodes is determined by the

application.
High Performance Embedded Computing
15
Typical Protocols
= n2ER =
oA £ = 20 kbps
- LIN | ADIE dIA QL HEMOIH 22 Sadt 2-
QI JIJ|9 sl
%/ CH 1 Mbps (High-speed CAN) ECU 2+2|
ERIN S CAN |S¢L AN s
MO8 HERID EE2=Z 8
& M 25 Mbps. MOST2= 150Mbps.
B MOST | ZEIDICIOf HA
3* SeS HOZ AN S
IEEE | 100 Mbps Ol &, HEIDICI HA
1394 | 0I=22 S22 HESH A =

High Performance Embedded Computing

16

‘ FlexRay

= Shortcomings of existing solutions
o Data rate
o Deterministic behavior
o Fault tolerance
o Topology

= Sept 2000

o Foundation of the FlexRay Consortium
o BMW, DaimlerChrysler, Philips, Motorola

High Performance Embedded Computing
17

FlexRay
Channels Single Single Single / Dual
Speed 20 Kbit/sec <=1 Mbit/sec 10 Mbits/sec
Time Triggered No No Yes
Arbitration Master CSMA TDMA

Devices available
today

Yes Yes Yes

* Primary focus of the FlexRay Consortium is to
enable new automotive systems

* FlexRay complements existing automotive networks,
such as CAN and LIN

High Performance Embedded Computing

18

FlexRay

Host runs applications.

Communication controller provides high-level functions.
o Interface to host

o Message processing: transmission, reception

o Clock synchronization

Bus guardians watch system for errors.

Data
Communication controller
Configuration
Syne I
. . Optional Data Data
Configuration bus
L guardian
Control, t T
status 1] 1
Control
Busd

High Performance Embedded Computing

19

Network topology overview

Single
channel

Dual
channel

Bus Multiple star

J_'_L
—

passive medium,
most experience,
cost efficient

allows for
high data rates,

increases error
containment

High Performance Embedded Computing

reduced
wire-harness,
experience, cost

tolerates one
faulty channel

Electrical &
optical
physical layer

20

Interface level overview

* FlexRay supports bus guardian at physical interface
» enforces error containment in the time domain
= performs error detection in the time domain

* Bus guardian interacts with
" communication controller

- signal monitoring
- synchronization
" host processor
- configuration
- activation / deactivation
- error signalling

High Performance Embedded Computing

21

FlexRay architecture levels — Level 3

Host || Protocol basics
Host —

level |+ Protocol timing
I:[| || = Frame format

Controller host Controller host i Coieaie

. . modes

interface level interface

Protocol engine Protocol engine - Protocol services

level

Interface level Channel interface

E:? .E:‘)
— [

e

High Performance Embedded Computing

22

FlexRay schedule

e time-triggered
e time-devision multiple access (TDMA)
e fixed time intervals for bus writing
e fixed assignment: node — intervals
= static, deterministic schedule
* nodes: only list with own transmission times

e different approach: event-triggered

e fundamental element: communication cycle
¢ periodically, recurring time unit

e whole schedule executed once

High Performance Embedded Computing
23

FlexRay timing

Action points are boundaries between
macroticks.

Arbitration grid determines boundaries
between messages.

Communication cycle:
o Static segment.

o Dynamic segment.

o Symbol window.

o Network idle time.

High Performance Embedded Computing
24

‘ FlexRay frame format

13

<]

=}
S =
= <]

-]
£ =~ 58
Oﬁﬁ
2 = ©
2 8¢5 =
n:g.E-Eg
s £ J o g
'BQ-EE.._
'}Euﬂﬂ.
RN
El =
e z,8,0

Header CRC
Covered Area

-

Payload Segment

FlexRay Frame 5+ (0 ... 254) + 3 Bytes

* 254 bytes, 8 Bytes overhead (5 header incl. header CRC, 3 frame CRC)
plus start/stop bits

High Performance Embedded Computing
25

Frame format

Header section (5 bytes)
Network management indication bit - 1 bit
Null frame indicator bit - 1 bit

Cycle counter - 6 bit (0-63)
Payload section (0 — 254 bytes)

Message |ID (optional) - 16 bit (1 — 65535)
Network management vector (optional) - variable
Payload data - variable

Trailer section (3 bytes)
Frame CRC - 24 bit

High Performance Embedded Computing
26

‘ FlexRay real-time performance

= Static phase is scheduled statically for real-time
behavior.

= Dynamic phase provides non-time-critical time
slots.

= Microtick comes from application internal clock.

= Macrotick comes from clusterwide synchronized
clock.

= Creates a temporal firewall between time-sensitive
and no-time-sensitive transmissions

High Performance Embedded Computing
27

' Communication cycle

| communication cycle Sl
| | £
static symbol network
segment window idle time
static slot static slot

e static slot:
* 1 message per static slot
¢ all same length, i.e. same amount of macroticks
e TDMA part of schedule
* unique, fixed assignment to a node
¢ symbol window:
* special messages, called symbols
* wake-up symbol
* network idle time:

® needed for clock synchronization

High Performance Embedded Computing
28

Protocol timing

Protocol timing related to the schedule of the communication cycle

communication
cycle level | : | | | : |_t"
i .r'lr / i 7
____________________________ staticsegment | dynamic segment | symbol | retwork | |
| /| window, idle time |
arbitration ¢ [: '
grid level \:’ """" | | | """"]
____________________ Sta‘EIC Slot__L________________v__m|n|5|ot _, !
¥— action point | /)
macrotick L i =
e D--Dj A O-C0-0 OO0 O-0
macrotlck '

microtick
level D' [
microtick

High Performance Embedded Computing
29

FlexRay Encoding Approach

4 Data sent as NRZ bytes
« TSS = Transmit Start Sequence (LOW for 5-15 bits)
« FSS = Frame Start Sequence (one HI bit)
« BSS = Byte Start Sequence (similar to start/stop bits in other NRZ)
* FES = Frame End Sequence (END symbol for frame — LO + HI)

FSS BSS BSS FES
High___ Lo ; ; :
T*D i
LDW 1] 1 1 i E 1 ! i

e B —— ;
TSS 1st byte sequence last byte sequence

High _. 1" gdBit —m LF
- —‘ MSBE LSE
Low

Figure 3-2: Frame encoding in the static segment. [FlexRay04]
4 Dynamic segment frames are similar

+ Adds a DTS = dynamic trailing sequence field; helps line up minislots .

High Performance Embedded Computing
30

Communication cycle
« Maximum duration: 16000pus
« Static segment: TDMA
« Dynamic Segment: minislotting scheme
« SW (symbol window), NIT (network idle time)

communication
cycle level

communication cycle #N

N+1

arbitration grid
level

macrotick level

microtick level

static segment

dynamic segment (opt.)

SW

NIT

static s

lots (2..1023)

minislots (T<2047)

opt.

2

S B+1

5+2

T

High Performance Embedded Computing

31

FlexRay architecture levels - Level 3

Host
level

Controller host
interface level

Protocol engine
level

Interface level

Physical layer

Host

¥

Controller host

interface

|

Protocol engine

| i

Channel interface

= -

= =

L

s
Channel A Channel B

High Performance Embedded Computing

| Protocol basics

Protocol services

* Message exchange
* Synchronization

« Startup

* Error management
* Symbol

» Wakeup

* Diagnosis

32

‘ Message Processing

Host A (Sender) Host B (Receiver)
I Payload Payload |
Controller Host Controller Host
Interface Interface
I Payload Payload |
Media Access Frame & Symbol
Control Processi
eader, y
Payload Payload
CRC Append CRC Check
; Frame Frame T
Coding Decoding

1

Bits Bits
physical bus

High Performance Embedded Computing
33

| FlexRay segment timing

= Slots are arbitrated
using a deterministic

aI g 0 rith m . - Transmission phase -— Idle phase -
[| Messages Se nt at acli:1n point
minislot boundaries.

= Message lasts longer
than a minislot if sent.

Slot m m+

High Performance Embedded Computing
34

Statically scheduled frames

slot counter channel A
/

2 3
channel A | Frame ID 1 | | Famed2 | | | e=ee== .
>
channel B | Frame ID 1 Bilee 0 il s sy
1 2 3
\\
slot counter channel B
static slot 1 static slot 2 static slot 3
- > > >
static segment
-t -

* Frames of static length assigned uniquely to slots of static duration
= Frame sent when assigned slot matches slot counter

* Multiple slots per node assignable / message content variable
» Decouple agreement/diagnosis cycles from communication cycle
= Support intra-cycle application level agreement

* BG protection of static slots

High Performance Embedded Computing

35

page

Dynamically scheduled frames

slot counter channel & minizlot
!

channel A

Frame IO m

m+1p M2 M3

m+4 M5

channel B

m+1 ' m2 | me2 \ 5 &

N \ b
slot counter channel B

T

dynamic slot without fransmigsion

dynamic slot with fransmission

dynamic segment
=1

* Dynamic bandwidth allocation
» per node as well as per channel

* Collision-free arbitration via unique IDs and minislot counting
» Frame sent when scheduled frame ID matches slot counter

* No BG protection within dynamic segment

High Performance Embedded Computing
36

page

Clock Synchronization

Clock synchronization component

o Perform two ways of time synchronization

o Generate macroticks, a local time unit.

Macrotick

a Their length depends on the local oscillator clock

The aim is that a macrotick has approximately the same length
on any bus controller within the cluster relative to real time.

That is a non-trivial problem in distributed systems because the
local oscillator clocks may drift due to fabrication tolerances or
environment differences.

For any kind of correction a time difference between the local
view of time and the view of other bus controllers is needed.

This can be achieved by so called sync messages.

High Performance Embedded Computing
37

Clock Synchronization

If a bus controller receives a sync message, the
difference between expected and observed arrival
time calculated and stored.

During a communication cycle (round), up to 15 sync
messages are received.
The clock synchronization FlexRay performs

o Offset correction
o Rate correction

High Performance Embedded Computing
38

Clock Synchronization

Offset correction: a fault-tolerant midpoint algorithm
computes an average over the time differences from
one communication cycle and the next schedule
execution is delayed or starts earlier

Rate correction: minimize the difference between time
views by adjusting the length of a macrotick.

o Computes the difference between the expected and
observed arrival time of a sync message in two consecutive
communication rounds

o Then the macrotick length is adjusted accordingly.

High Performance Embedded Computing
39

Clock Synchronization

problem:
= physical clocks deviate

= TDMA-schedule: consistent view of time required to ensure
communication

synchronization of local clock against a fictive global clock
fictive global clock derived from some node’s view of time
FlexRay clock synchronization provides:

e ability to use the most accurate clocks for synchronization

e fault-tolerance

High Performance Embedded Computing
40

Synchronization

Local view of the global time represented by
- Cycle counter

- Macrotick

- Microtick

2..15 Sync Nodes per cluster: Sync Frame
Indicator Bit in static segment

Nodes measure time between expected and
observed arrival of sync frames

Calculate deviation from global time

- Offset correction: Shorten/lengthen NIT
- Rate correction: Change number of UT per cycle

High Performance Embedded Computing

41
FlexRay timekeeping
Global time is synthesized by clock synchronized
process (CSP).
Macroticks are managed by macrotick generation
process. (MTG: macrotick generation process)
media access schedule (MAC)
[cycle 2n cycle 2n+1 cycle 2n+2 cycie 2n+3
static Idyn.|swn.| NIT static dynlayml NIT static dyn!syrn| NIT static dyll|syrl1| NIT
clock sync correction schedule (MTG)
I i I te ICD”ECtiUI'I 'y i rate correction rate correction L
| ‘ | .-""JI‘ /' -:::-rr%ctin:wl-* wh_ii,s, .--" B 71
clock syne calculation schedule (CSP) B F I L .“J f/
1 mll [0 mE
y R h’? T \ i
\ - S N
measurement rate correction //’

phase s value calculation

offset correction
value calculation

High Performance Embedded Computing

42

Fault tolerant midpoint (F'ITM) algorithm

Is used for clock state correction (Offset correction)

First, the valid time difference is sorted and the k largest and
the k smallest values are discarded.

Then, the largest and the smallest of the remaining values are
averaged for the calculation of the midpoint value which serves
as the state correction term vOffsetCorection that indicates by
how many microticks the node’s communication cycle length
should be changed.

k= 0 for up to 2 values
1 for up to 7 values
2 for more than 7 values.

Clock state correction takes place during the network idle time
NIT in every second communication cycle.

High Performance Embedded Computing
43

FTM algorithm

Controller-local view of global time Controller1: &, -2, -6, 8 —» -4

A C1 ;" f.”
o) /

_ c3

o Controller3: &, 4, 0,-8 — 2

//17/

_Physical time

Controller-local view of global time
A

o _ Physical time

Before After
correction correction

High Performance Embedded Computing
44

FlexRay Summary

* Flexible and scalable bus system

« TDMA: guaranteed latency and jitter
« FTDMA: prioritizing of messages

« 10Mbit/s data rate on 2 channels
* Fault-tolerant clock synchronization

 Fault tolerance: extensive error detection and
signaling, bus guardian

« Expected to be the de-facto standard for high
speed automotive control applications

High Performance Embedded Computing

45
Feature CAN TTP byteflight FlexRay
- synchronous and synchronous and
Message transmission | asynchronous synchronous
asynchronous asynchronous
Message identification | message identifier time slot message identifier time slot
Data rate 1 Mbps gross 2 Mbps gross 10 Mbps gross 10 Mbps gross

Bit encoding

NRZ with bit stuffing

modified frequency

NRZ with start/stop

NRZ with start/stop

modulation (MFM) bits bits
. transceiver up to 1 optical transceiver up | 10Mbps with
Physical Layer Mbps not defined to 10 Mbps differential signalling
Clock synchronization | not provided distributed, in ps by master, in 100 ns | distributed, in ps
range range range
Temporal supported for high

composability

not supported

supported

priority messages

supported

Latency Jitter

bus load dependent

constant for all
messages

constant for high
priority messages
according t_cyc

constant for all
messages

Error containment

not provided

provided with special
physical layer

provided by optical
fiber and transceiver

provided with special
physical layer

Babbling idiot . only by independent provided via star provided via star
. not provided .
avoidance bus guardian coupler coupler or bus
excellent in non-time only if extension extension possible for | separation of
Extensibility critical applications planned in original hilgh priority messages functional and
design with effect on bandwidth structural domain
Flexibility flexible bandwidth for | only one message per| flexible bandwidth for | multiple slots per

each node

node and TDMA cycle

each node

node, dynamic

High Performance Embedded Computing

46

Ailrcraft networks

Similar to automobile design, but more stringent requirements
o More sensitive to weight

o More complex control (3D)

Avionics categories:

o Instrumentation.

o Navigation/communication.

o Control.

Control networks must perform hard real-time, safety-critical
tasks.

Management networks control noncritical devices.
Passenger networks manage entertainment, internet access, etc.

High Performance Embedded Computing
47

ARINC 644 standard

Aircraft network is divided into four domains
with firewalls between them:

Flight deck network is deterministic.

Separate network for OEM equipment with
temporal determinism.

Airline systems network supports
entertainment, etc.

Passenger subnetwork provides Internet
access.

High Performance Embedded Computing
48

Multiprocessor design methodologies

MPSoC built from many hardware and
software modules.
o Many modules are existing IP.

o Some IP may be unmodifiable, other IP may be
modified.

o Some modules are created for the project.

High Performance Embedded Computing
49

Characteristics of modern SoC designs

Too big to be designed at register-transfer level.
o CPUs running software.

o Memory.

o Devices.

Too big to design all the IP blocks yourself.
Too big to be verified solely by cycle-level simulation.

High Performance Embedded Computing
50

Standard buses

ARM AMBA

IBM CoreConnect

Sonics Silicon Backplaine

VSIA (virtual socket interface alliance)

o Defines a virtual component interface and a functional

interface.

Coware N2C and Cadence VCC

o Provides tools for system-on-chip integration
methodologies

High Performance Embedded Computing

51

IBM CoreConnect

OPB

slaves

o PLB
o OPB OPB | ¢ ol |
masters a
o DCRbus CPU, DMA Bridge S
controller, 3
MPEG audio, PLB slave, %
PLB master video OPB master &
1=
PPC4XX‘ CPU PLB PLB-OPB %
instruction data masters bridge |— g
A A =
Y Y =
PLB Processor local bus (PLB) =
arbiter o
A A
‘ Y | J OPB
DRAM PLB | < arbiter
controller slaves Device control-register bus
PLB slave Decompression

core, external bus
interface units

High Performance Embedded Computing

UART, inter-IC

serial bus

timers, infrared
communications
controller core,

smart card

52

Coral (IBM tool) design methodology

= Virtual components

describe a class of real ..

components.

= Coral synthesizes glue
logic between
components.

= Interconnection engine

generates netlist,
checks designs.

= Functional—=
-Microprocessor

= PowerPC
: ~Other
= DMA controller MICTOProcessor
. family
|—Filter
[Structural = Max, number

|-Bus arbiter

—tnl‘ masters
— Max, nu
of 5
—}T Bus type
=Slave device
-I-_ Bus type

—=Operating
: frequency

F~Implementation
" ! - Hand core
ype
" Othe = Soft core
| bher = Firm core

characteristics

~Master device

(= Electrical —

Pin —

= Functional —

‘._Ihm R Address

— Instruction

— Function type
: M = Read

. = Write
—Operation type
n W — Request
— Acknowledge
Processor local bus
_ Peripheral bus

I~ Interface type
: —t Master
— Slave

\— Rosource type —t

—Structural
I—Bus type

Bus
Peripheral
L Electrical — I

—Operating
. frequency

aracteristh — Input
= Output
- Capacitive load = Bidirectional

High Performance Embedded Computing

53

| Coral virtual-to-real synthesis

vl 3

Ve V.

cl v2 " 2
Vnet2 Vnetl

7 5

VC4 Vi3
v v

(a)

Virtual pin v1 maps to real pin r1(0:0),
real pin r2(0:15),
Virtual pin v2 maps to real pin r3(0:15),
real pin r4(0:0),
Virtual pin v3 maps to real pin r5(0:0),
real pin r6(0:3),
Virtual pin v4 maps to real pin r7(0:7),
real pin r8(0:0),
Virtual pin v5 maps to real pin r9(5:11),
real pin r10{0:0),
Virtual pin v6 maps to real pin r11(0:3),
Virtual pin v7 maps to real pin r12(4:0),
real pin r13(0:0),
Virtual pin v8 maps to real pin r14(0:0),

output

input, CONNECTION_LOGIC = CONCAT
output

output, PRIORITY = 2

input, CONNECTION_LOGIC = XOR
output

input

output, PRIORITY = 0

output

output

input, CONNECTION_LOGIC = CONCAT
output

output

output, PRIORITY = 1

()
— XOR
RC1 rif—o 0 N 5 RC2
2 et 1 .
i Conc | - |
L= HTruncation
(] I
" 015 15 i
RC4p12 9 RC3
rl3 10
rl4 0 rll
| Y
2| Cone |
(e)

High Performance Embedded Computing

54

Component-based design

Cesario/Jerraya: build MPSoCs
from components to allow
design reuse.

Components + wrappers can
be connected to channels. P1

A wrapper is a design unit that

interfaces a module to another

module. wrapper
o It can be HW or SW and

may include both. < >

o It can perform only low-level

adaptation, such as protocol
transformation

channel

High Performance Embedded Computing

Challenges in heterogeneous multiprocessors

Multiple bus/network masters makes it harder to
synchronize communications.

Multiple busses/networks rather than single bus.

Need specialized hardware for interprocess
communication to offload the CPU.

Need high-level communication primitives that can
be off-loaded from CPU. (Shared memory I/O is too
low-level)

High Performance Embedded Computing
56

When a dedicated CPU is added,

Its software must be adapted in several ways.

o The software must be updated to support the platform’s
high-level communication primitives.

o Optimized implementations of the host processor’'s
communication functions must be provided for
interprocess communication

o Synchronization functions must be provided.

High Performance Embedded Computing
57

Challenges for EDA industry

Must verify protocols, etc. without resorting to
cycle-level simulation for everything.

Chips will include several types of processors,
making software development harder.

Must adapt CPU, hardware IP blocks to the
underlying communication fabric.

High Performance Embedded Computing
58

Application vs. task-specific software
stacks

= Host CPU and task-specific CPUs tend to run
different stacks:

Application Specialized tasks

Host CPU Task-specific CPU

High Performance Embedded Computing
59

Software adaptations for a dedicated CPU

= Adapt to hardware platform’s communication
primitives.

= Provide optimized versions of host OS
communication functions.

= Provide synchronization functions.

High Performance Embedded Computing
60

System-level design flow (Jerraya et al.)

= An abstract platform is
created form a
combination of system -
requirements, models of

the software, and
models of the hardware

components = Based on the results of this analysis,
= This abstract platform is software is allocated and scheduled

analyzed to estimate the onto the platform.

application’s = The result is a golden abstract

performance and architecture that can be used to build

power/energy the implementation.

consumption.

High Performance Embedded Computing
61

| Abstract architecture template

= Application libraries provide
application-specific

functions.
= OS and communication
system provide scheduling]
SwiF [
and resource management. e [
= Hardware abstraction layer "‘:‘”’" - "‘;” 1 coe
provides clock, interrupts, I [commmewone | [erte
etC Software tasks HW/SW integration Hardware design

= CPU wrapper translates
signals between CPU and
network.

High Performance Embedded Computing
62

Hardware and software abstraction layers

Applications

Application
libraries

API

0S/comm

API

HAL

CPU Hardware unit

Hardware
wrapper

A |
Y Y

Communication network IP

CPU wrapper

High Performance Embedded Computing

63

Wrapper

A wrapper-oriented design methodology presents
several challenges

Must be supported by tools that automatically generate
the wrappers and deploy them within the architecture.

Wrapper design is tedious and error prone when left to
humans

The wrapper generators must be able to build wrappers
for several different types of protocols since realistic
chips will use several types of interconnect.

Some wrappers may have to interface two different
protocols. the

The wrapper generator must generate both SW and HW.

Wrappers must be designed to support mixed-level co-
simulation.

High Performance Embedded Computing

64

Register-transter implementation

Given a golden architecture model, we still need to
generate the complete register-transfer design of the
hardware as well as the final software wrappers.

The register-transfer design enumerates all the required
components and connect them together.

One of the major steps in register-transfer generation is
the creation of the memory subsystem.

This subsystem may include both connections between
internal memory blocks and interfaces to the
communication network.

High Performance Embedded Computing
65

