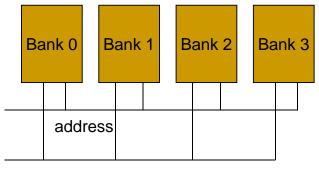
Chapter 5-2: Multiprocessor Architectures

Soo-Ik Chae


High Performance Embedded Computing

Topics

- Memory systems.
- Physically distributed multiprocessors.
- Design methodologies.

Parallel memory systems

- n memory banks can be accessed independently.
- Peak access rate given by n parallel accesses.
 - Can be achieved If the access pattern is properly laid out like (0,1,2,3,0,1,2,3,...)

data

High Performance Embedded Computing

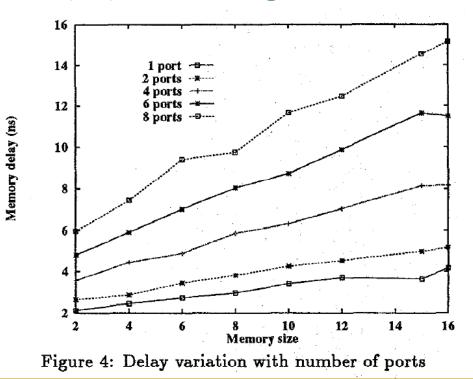
Parallel memory systems

1

- Performance can be estimated statistically
 - $\ \ \lambda$: probability of non-sequential memory access.
 - The probability of a string of k sequential accesses is $p(k)=\lambda(1-\lambda)^{k-1}$
 - Mean length of a sequential access sequence is L_b

$$L_b = \sum_{\substack{1 \le k \le \infty \\ = \frac{1 - (1 - \lambda)^m}{\lambda}}} kp(k)$$

- We can use program statistics to estimate the average probability of non-sequential accesses, and design the memory system accordingly
- We can also use software techniques to maximize the length of access sequences whenever possible.


Memory system design

- Models for memory
 - Model parameters: area, performance, energy.
- Delay is a nonlinear function of memory size.
 Wire delay ~ between O(n) and O(n²)
- Delay and energy are a nonlinear function of the number of ports.

High	h Performance Embedded Computing 5	
Algorithm selection Algorithm selection and algorithm Festimating Cycle-time Area-delay Curves for memory (iii), (iv) Calculate maximum allow memory size (so that men delay < clock-cycle time) Decide on #MEs based on i) allowable size ii) data-storage requirem Curves for Memory partitioning Determine size of network p for PEs and MEs to be con	vable n tents Choose a network topology More Notopologies Notopolo	

High Performance Embedded Computing

Memory system design

High Performance Embedded Computing

Memory system design

Table 2: Delay of minimum-sized memory banks

N _b	S_b	N _{prt}	t_d (ns)
16	4x4	1	2.44
8	6x6	2	3.45
4	8x8	4	5.85
2	12x12	8	12.48

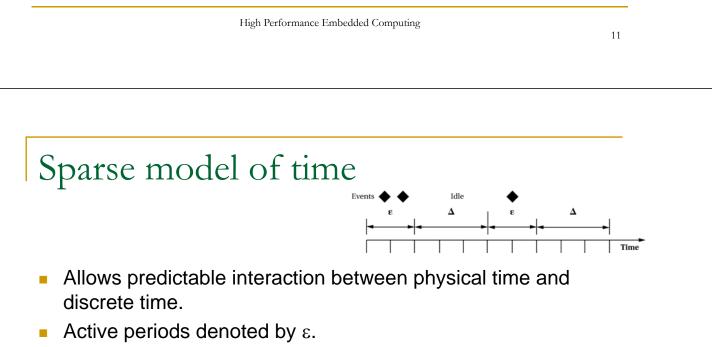
Table 3:	Fixed	datapath	delay	(small	transistors))
----------	-------	----------	-------	--------	--------------	---

No	S_b	N _{prt}	tcycle	N _c	t_{exec} (ns)
16	4x4	1	3.41	2364	8061.24
8	6x6	2	3.45	2170	7486.50
4	8x8	4	5.85	1872	10951.20
2	12x12	8	12.48	1024	12779.52

Heterogeneous memory systems

- Heterogeneous memory improves real-time performance:
 - Accesses to the same bank interfere, even if not to the same location.
 - Segregating real-time locations improves predictability, reduces access time variance.
- Heterogeneous memory improves power:
 - □ Smaller blocks with fewer ports consume less energy. $E_{r} = \sum_{i=1}^{r} E_{r} + \sum_{i=1}^{r} E_{r}$

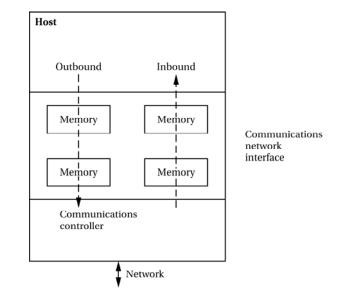
$$E_{M} = \sum_{i \in modules} E_{i, module} + \sum_{j \in switch} E_{j, switch} + \sum_{k \in wires} E_{k, wire}.$$


High Performance Embedded Computing

Networks and physically-distributed embedded systems

- Examples: automobiles, airplanes.
- Nodes connected by a network.
 - Network delay is noticeable.
- Reasons for physically distributed nodes:
 - Must keep some computation close to mechanics to reduce latency.
 - May reduce network bandwidth by processing data locally.
 - Modular design may be assembled from components by different vendors.
 - Fault tolerance into systems

Time-Triggered Architecture


- TTA is a distributed architecture for real-time control.
- TTA has a notion of real time.
 - Correct partial order is not sufficient.
- TTH timestamp is based on GPS clock.
 - 64-bit value.
 - Fractions of second in three lower bytes, seconds in five upper bytes.
 - GPS epoch starts at 0:00:00 UCT Jan 6, 1980.

- Idle periods denoted by δ.
- Events occur during ε , never during δ .
- Duration of ε , δ is larger than precision of the clock.
- The sparse time model ensures that events will not be reordered due to small variations in the clock between nodes.
 - In a dense timing model, an arriving event may be stamped with two different times due to variations in the clock value at different nodes.


Communications network interface

- CNI Helps maintain consistent view of time.
 - Between host controller and communications controller.
- Enforces unidirectional flow of data.
 - One inbound, one outbound channel.
- Buffering ensures that tasks on the host are not delayed by unpredictable communication delays

High Performance Embedded Computing

TTA topologies

High Performance Embedded Computing

Cliques

- In a fault-tolerant system, failures cause internal inconsistencies.
 - Different nodes have different views of the system state.
- Clique avoidance algorithm identifies faulty nodes.
 - Protocols can identify state inconsistency.
 - Action on faulty nodes is determined by the application.

High Performance Embedded Computing

Typical Protocols

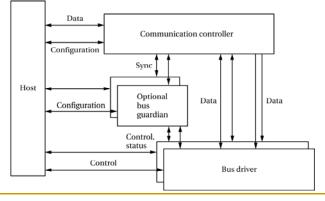
속도	프로토콜	특성
저속	LIN	보통 20 kbps 스마트 센서와 액츄에이터 같은 단순한 온- 오프 기기의 통신
중•저속	CAN	최대 1 Mbps (High-speed CAN) ECU 간의 통신. 제어 신호 제어기용 네트워크 표준으로 정립
현재 25 Mbps. MOST2는 150Mbps. 고속 현재 25 Mbps. MOST2는 150Mbps.		멀티미디어 버스
	IEEE 1394	100 Mbps 이상. 멀티미디어 버스 미국을 중심으로 표준화 진행 중

High Performance Embedded Computing

FlexRay

- Shortcomings of existing solutions
 - Data rate
 - Deterministic behavior
 - Fault tolerance
 - Topology
- Sept 2000
 - Foundation of the FlexRay Consortium
 - BMW, DaimlerChrysler, Philips, Motorola

High Performance Embedded Computing


FlexRay

	LIN	CAN	FlexRay
Channels	Single	Single	Single / Dual
Speed	20 Kbit/sec	<= 1 Mbit/sec	10 Mbits/sec
Time Triggered	No	No	Yes
Arbitration	Master	CSMA	TDMA
Devices available today	Yes	Yes	Yes

- Primary focus of the FlexRay Consortium is to enable new automotive systems
- FlexRay complements existing automotive networks, such as CAN and LIN

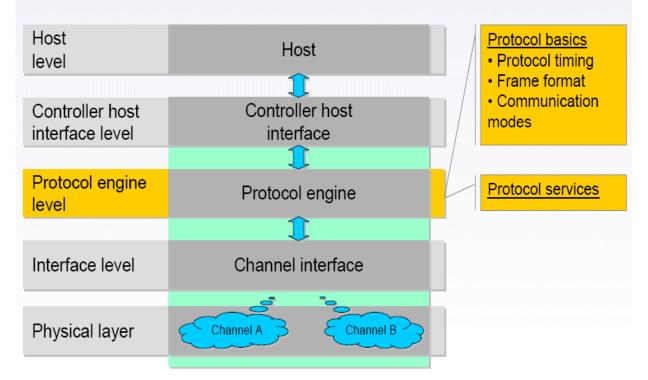
FlexRay

- Host runs applications.
- Communication controller provides high-level functions.
 - Interface to host
 - Message processing: transmission, reception
 - Clock synchronization
- Bus guardians watch system for errors.

High Performance Embedded Computing

19

Network topology overview


	Bus	Multiple star	
Single channel		, d	reduced wire-harness, experience, cost
Dual channel			tolerates one faulty channel
	passive medium, most experience, cost efficient	allows for high data rates, increases error containment	Electrical & optical physical layer

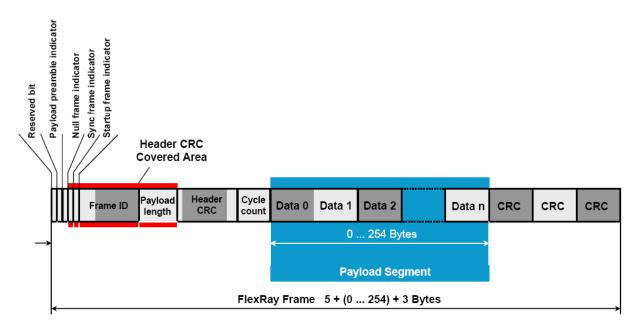
Interface level overview

- FlexRay supports bus guardian at physical interface
 - enforces error containment in the time domain
 - performs error detection in the time domain
- Bus guardian interacts with
 - communication controller
 - signal monitoring
 - synchronization
 - host processor
 - configuration
 - activation / deactivation
 - error signalling

High Performance Embedded Computing

FlexRay architecture levels – Level 3

FlexRay schedule


- time-triggered
 - time-devision multiple access (TDMA)
 - fixed time intervals for bus writing
 - fixed assignment: node \rightarrow intervals
 - ➡ static, deterministic schedule
 - nodes: only list with own transmission times
 - different approach: event-triggered
- fundamental element: communication cycle
 - periodically, recurring time unit
 - whole schedule executed once

High Performance Embedded Computing

FlexRay timing

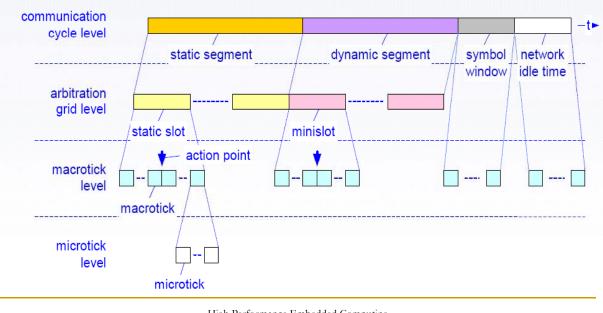
- Action points are boundaries between macroticks.
- Arbitration grid determines boundaries between messages.
- Communication cycle:
 - □ Static segment.
 - Dynamic segment.
 - Symbol window.
 - Network idle time.

FlexRay frame format

 254 bytes, 8 Bytes overhead (5 header incl. header CRC, 3 frame CRC) plus start/stop bits

High Performance Embedded Computing

F	Frame format							
		Header section (5 bytes)						
		Network management indication bit Null frame indicator bit	- 1 bit - 1 bit					
	ame	Synchronization frame bit Frame ID Frame length in words Header CRC	- 1 bit - 12 bit (1 – 4095) - 7 bit (0 – 127) - 11 bit					
	ay fr	Cycle counter	- 6 bit (0 – 63)					
	FlexRay frame	Payload section (0 – 254 bytes) Message ID (optional) Network management vector (optional) Payload data	- 16 bit (1 – 65535) - variable - variable					
		Trailer section (3 bytes) Frame CRC	- 24 bit					

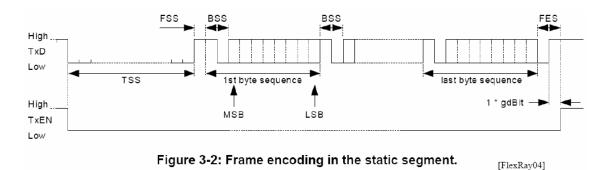

FlexRay real-time performance

- Static phase is scheduled statically for real-time behavior.
- Dynamic phase provides non-time-critical time slots.
- Microtick comes from application internal clock.
- Macrotick comes from clusterwide synchronized clock.
- Creates a temporal firewall between time-sensitive and no-time-sensitive transmissions

	High Performance Embedded Computing 27
	ommunication cycle
	communication cycle
	static symbol network segment window idle time
	static slot static slot
•	static slot:
	1 message per static slot
	all same length, i.e. same amount of macroticks
	TDMA part of scheduleunique, fixed assignment to a node
•	symbol window:
	special messages, called symbolswake-up symbol
	network idle time:

Protocol timing

Protocol timing related to the schedule of the communication cycle



High Performance Embedded Computing

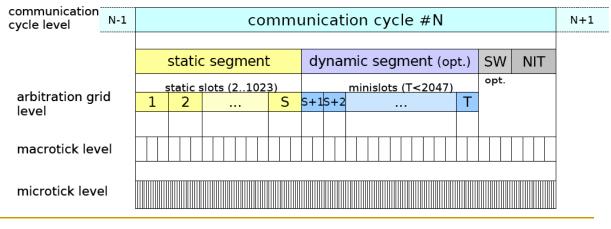
FlexRay Encoding Approach

Data sent as NRZ bytes

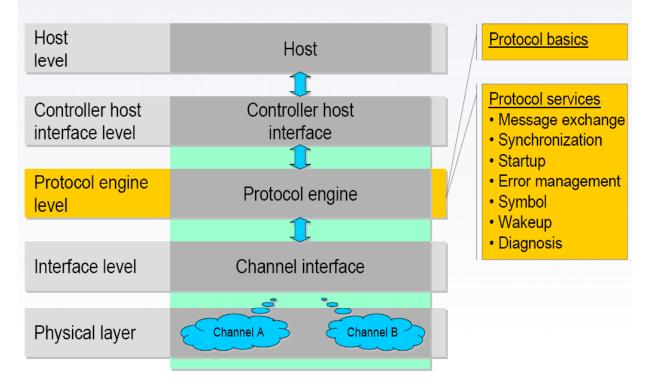
- TSS = Transmit Start Sequence (LOW for 5-15 bits)
- FSS = Frame Start Sequence (one HI bit)
- BSS = Byte Start Sequence (similar to start/stop bits in other NRZ)
- FES = Frame End Sequence (END symbol for frame LO + HI)

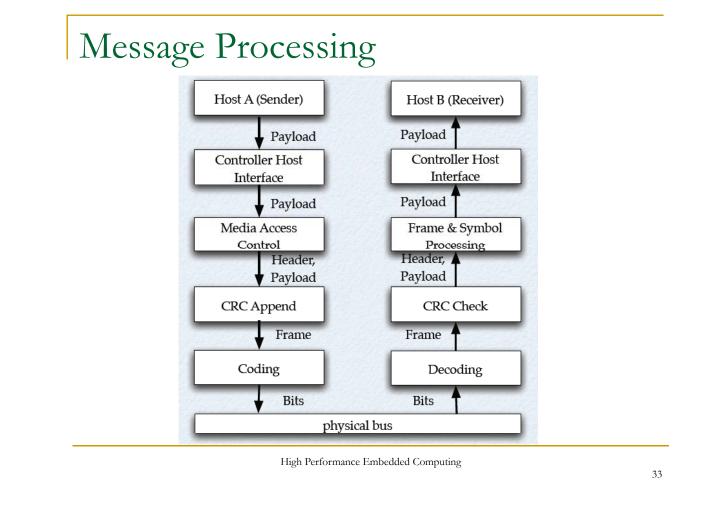
Dynamic segment frames are similar

• Adds a DTS = dynamic trailing sequence field; helps line up minislots

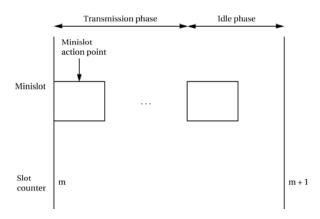

8

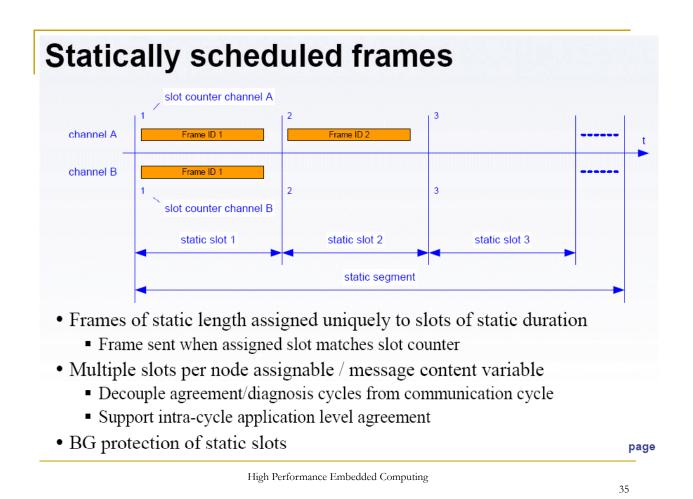
Communication cycle

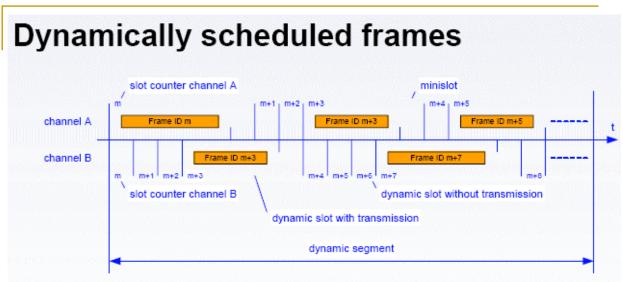

31


- Maximum duration: 16000µs
- Static segment: TDMA
- Dynamic Segment: minislotting scheme
- SW (symbol window), NIT (network idle time)

High Performance Embedded Computing


FlexRay architecture levels – Level 3





FlexRay segment timing

- Slots are arbitrated using a deterministic algorithm.
- Messages sent at minislot boundaries.
- Message lasts longer than a minislot if sent.

- Dynamic bandwidth allocation
 - per node as well as per channel
- · Collision-free arbitration via unique IDs and minislot counting
 - Frame sent when scheduled frame ID matches slot counter
- · No BG protection within dynamic segment

Clock Synchronization

- Clock synchronization component
 - Perform two ways of time synchronization
 - Generate macroticks, a local time unit.
- Macrotick
 - Their length depends on the local oscillator clock
- The aim is that a macrotick has approximately the same length on any bus controller within the cluster relative to real time.
- That is a non-trivial problem in distributed systems because the local oscillator clocks may drift due to fabrication tolerances or environment differences.
- For any kind of correction a time difference between the local view of time and the view of other bus controllers is needed.
- This can be achieved by so called sync messages.

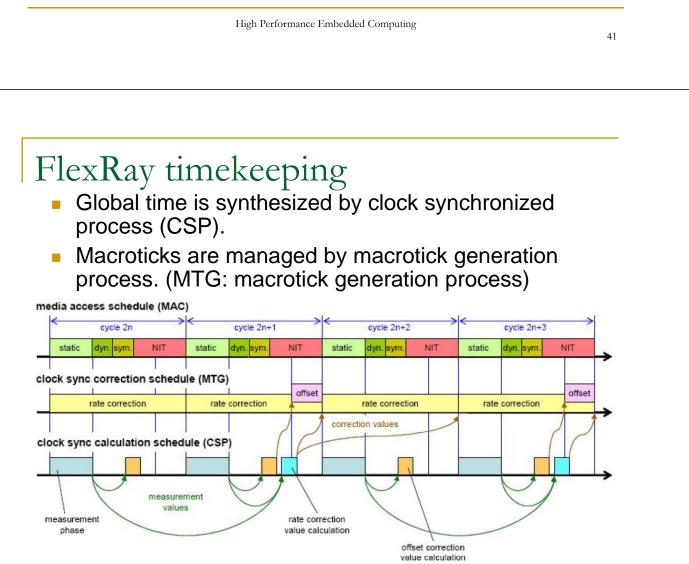
High Performance Embedded Computing

Clock Synchronization

- If a bus controller receives a sync message, the difference between expected and observed arrival time calculated and stored.
- During a communication cycle (round), up to 15 sync messages are received.
- The clock synchronization FlexRay performs
 - Offset correction
 - Rate correction

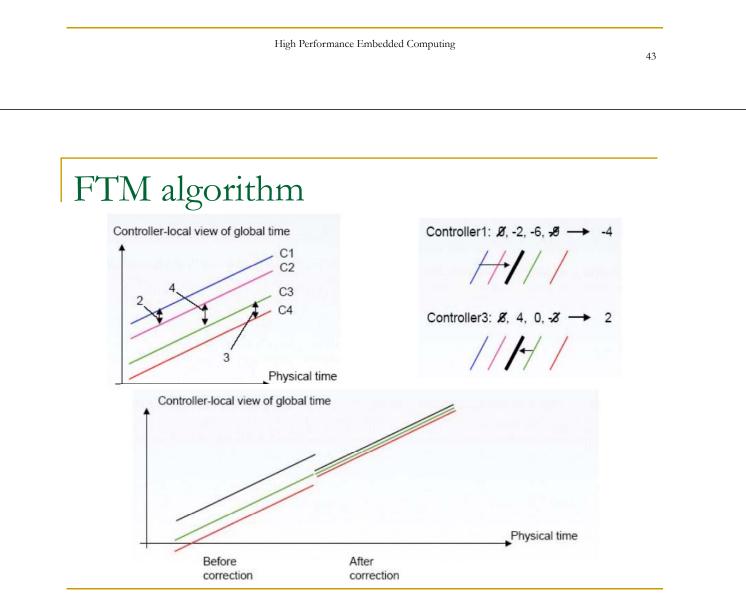
Clock Synchronization

- Offset correction: a fault-tolerant midpoint algorithm computes an average over the time differences from one communication cycle and the next schedule execution is delayed or starts earlier
- Rate correction: minimize the difference between time views by adjusting the length of a macrotick.
 - Computes the difference between the expected and observed arrival time of a sync message in two consecutive communication rounds
 - Then the macrotick length is adjusted accordingly.


High Performance Embedded Computing

Clock Synchronization

- problem:
 - physical clocks deviate
 - TDMA-schedule: consistent view of time required to ensure communication
- synchronization of local clock against a fictive global clock
- fictive global clock derived from some node's view of time
- FlexRay clock synchronization provides:
 - ability to use the most accurate clocks for synchronization
 - fault-tolerance


Synchronization

- Local view of the global time represented by
 - Cycle counter
 - Macrotick
 - Microtick
- 2..15 *Sync Nodes* per cluster: Sync Frame Indicator Bit in static segment
- Nodes measure time between expected and observed arrival of sync frames
- Calculate deviation from global time
 - Offset correction: Shorten/lengthen NIT
 - Rate correction: Change number of μT per cycle

Fault tolerant midpoint (FTM) algorithm

- Is used for clock state correction (Offset correction)
- First, the valid time difference is sorted and the k largest and the k smallest values are discarded.
- Then, the largest and the smallest of the remaining values are averaged for the calculation of the midpoint value which serves as the state correction term vOffsetCorection that indicates by how many microticks the node's communication cycle length should be changed.
- k= 0 for up to 2 values
 - 1 for up to 7 values
 - 2 for more than 7 values.
- Clock state correction takes place during the network idle time NIT in every second communication cycle.

High Performance Embedded Computing

FlexRay Summary

- Flexible and scalable bus system
- TDMA: guaranteed latency and jitter
- FTDMA: prioritizing of messages
- 10Mbit/s data rate on 2 channels
- Fault-tolerant clock synchronization
- Fault tolerance: extensive error detection and signaling, bus guardian
- Expected to be the de-facto standard for high speed automotive control applications

High Performance Embedded Computing

Evolution of Vehicle Networks

Feature	CAN	TTP	byteflight	FlexRay
Message transmission	asynchronous	synchronous	synchronous and asynchronous	synchronous and asynchronous
Message identification	message identifier	time slot	message identifier	time slot
Data rate	1 Mbps gross	2 Mbps gross	10 Mbps gross	10 Mbps gross
Bit encoding	NRZ with bit stuffing	modified frequency modulation (MFM)	NRZ with start/stop bits	NRZ with start/stop bits
Physical Layer	transceiver up to 1 Mbps	not defined	optical transceiver up to 10 Mbps	10Mbps with differential signalling
Clock synchronization	not provided	distributed, in µs range	by master, in 100 ns range	distributed, in µs range
Temporal composability	not supported	supported	supported for high priority messages	supported
Latency Jitter	bus load dependent	constant for all messages	constant for high priority messages according t_cyc	constant for all messages
Error containment	not provided	provided with special physical layer	provided by optical fiber and transceiver	provided with special physical layer
Babbling idiot avoidance	not provided	only by independent bus guardian	provided via star coupler	provided via star coupler or bus
Extensibility	excellent in non-time critical applications	only if extension planned in original design	extension possible for high priority messages with effect on bandwidth	separation of functional and structural domain
Flexibility	flexible bandwidth for each node	only one message per node and TDMA cycle		multiple slots per node, dynamic

High Performance Embedded Computing

Aircraft networks

- Similar to automobile design, but more stringent requirements
 - More sensitive to weight
 - More complex control (3D)
- Avionics categories:
 - Instrumentation.
 - Navigation/communication.
 - Control.
- Control networks must perform hard real-time, safety-critical tasks.
- Management networks control noncritical devices.
- Passenger networks manage entertainment, internet access, etc.

High Performance Embedded Computing

ARINC 644 standard

- Aircraft network is divided into four domains with firewalls between them:
- 1. Flight deck network is deterministic.
- 2. Separate network for OEM equipment with temporal determinism.
- 3. Airline systems network supports entertainment, etc.
- 4. Passenger subnetwork provides Internet access.

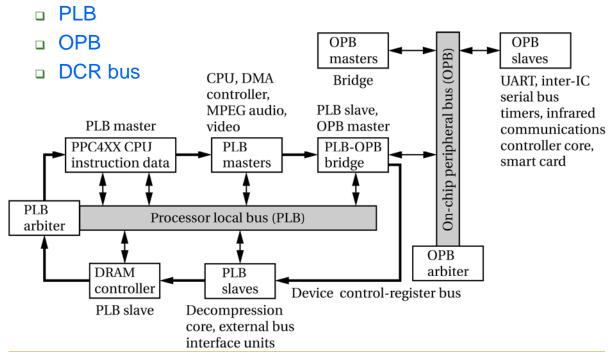
Multiprocessor design methodologies

- MPSoC built from many hardware and software modules.
 - Many modules are existing IP.
 - Some IP may be unmodifiable, other IP may be modified.
 - □ Some modules are created for the project.

High Performance Embedded Computing

Characteristics of modern SoC designs

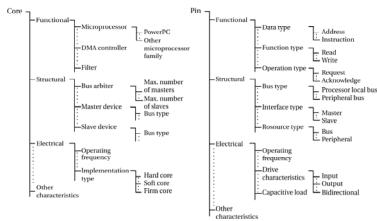
- Too big to be designed at register-transfer level.
 - CPUs running software.
 - Memory.
 - Devices.
- Too big to design all the IP blocks yourself.
- Too big to be verified solely by cycle-level simulation.


Standard buses

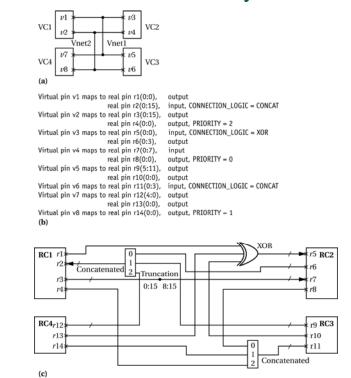
- ARM AMBA
- IBM CoreConnect
- Sonics Silicon Backplaine
- VSIA (virtual socket interface alliance)
 - Defines a virtual component interface and a functional interface.
- Coware N2C and Cadence VCC
 - Provides tools for system-on-chip integration methodologies

High Performance Embedded Computing

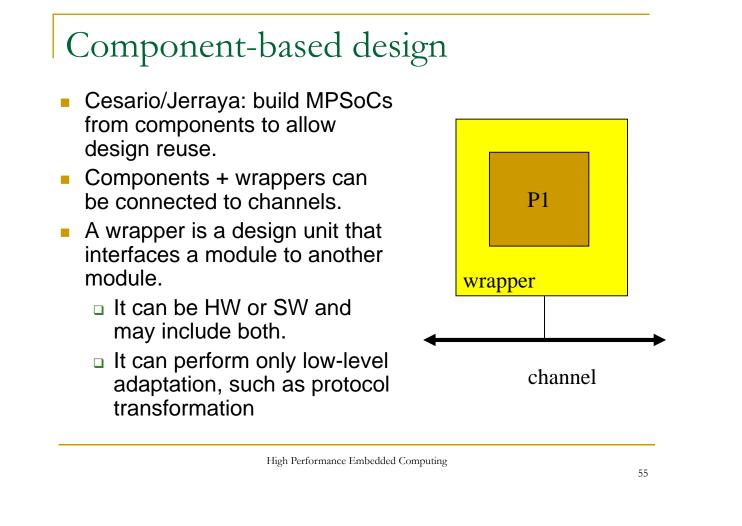
51


IBM CoreConnect

High Performance Embedded Computing


Coral (IBM tool) design methodology

- Virtual components describe a class of real components.
- Coral synthesizes glue logic between components.
- Interconnection engine generates netlist, checks designs.



High Performance Embedded Computing

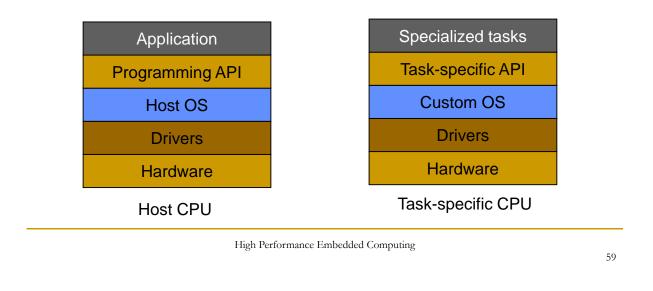
High Performance Embedded Computing

Challenges in heterogeneous multiprocessors

- Multiple bus/network masters makes it harder to synchronize communications.
- Multiple busses/networks rather than single bus.
- Need specialized hardware for interprocess communication to offload the CPU.
- Need high-level communication primitives that can be off-loaded from CPU. (Shared memory I/O is too low-level)

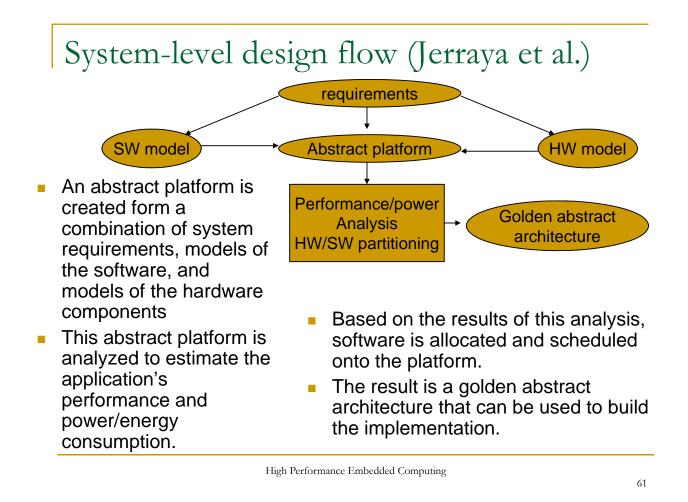
When a dedicated CPU is added,

- Its software must be adapted in several ways.
 - The software must be updated to support the platform's high-level communication primitives.
 - Optimized implementations of the host processor's communication functions must be provided for interprocess communication
 - □ Synchronization functions must be provided.

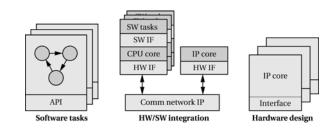

High Performance Embedded Computing

Challenges for EDA industry

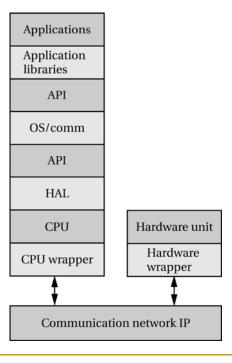
- Must verify protocols, etc. without resorting to cycle-level simulation for everything.
- Chips will include several types of processors, making software development harder.
- Must adapt CPU, hardware IP blocks to the underlying communication fabric.


Application vs. task-specific software stacks

Host CPU and task-specific CPUs tend to run different stacks:



- Adapt to hardware platform's communication primitives.
- Provide optimized versions of host OS communication functions.
- Provide synchronization functions.



Abstract architecture template

- Application libraries provide application-specific functions.
- OS and communication system provide scheduling and resource management.
- Hardware abstraction layer provides clock, interrupts, etc.
- CPU wrapper translates signals between CPU and network.

Hardware and software abstraction layers

High Performance Embedded Computing

Wrapper

- A wrapper-oriented design methodology presents several challenges
- Must be supported by tools that automatically generate the wrappers and deploy them within the architecture.
- Wrapper design is tedious and error prone when left to humans
- The wrapper generators must be able to build wrappers for several different types of protocols since realistic chips will use several types of interconnect.
- Some wrappers may have to interface two different protocols. the
- The wrapper generator must generate both SW and HW.
- Wrappers must be designed to support mixed-level cosimulation.

Register-transfer implementation

- Given a golden architecture model, we still need to generate the complete register-transfer design of the hardware as well as the final software wrappers.
- The register-transfer design enumerates all the required components and connect them together.
- One of the major steps in register-transfer generation is the creation of the memory subsystem.
- This subsystem may include both connections between internal memory blocks and interfaces to the communication network.

High Performance Embedded Computing