
Chapter 6-1:
M l i S fMultiprocessor Software

Soo Ik ChaeSoo-Ik Chae

High Performance Embedded Computing
1

Multiprocessor softwarep

Performance analysis of multiprocessor software

Middleware and software services

Design verification of multiprocessor software

Multiprocessor: true concurrency
Single processor: virtual concurrency

H d l d d bHard to analyze and debug

High Performance Embedded Computing 2

Topicsp

Performance analysis of multiprocessor
software.

Models.

Analysis.Analysis.

Simulation.

High Performance Embedded Computing 3

What is different about embedded
multiprocessor software?

How does it differ from general-purpose g p p
multiprocessor software?

How does it differ from a uniprocessor?How does it differ from a uniprocessor?

High Performance Embedded Computing 4

Heterogeneityg y

Hardware platforms are heterogeneous
Heterogeneity presents several types of problems

Getting SW form several types of processors to work
together can present challenges.together can present challenges.

endianness
Development environments for heterogeneous
multiprocessors are often loosely coupledmultiprocessors are often loosely coupled.

Programmers may have a hard time learning all the tools for
all the component processors
It may be hard to debug problems that span multiple CPUIt may be hard to debug problems that span multiple CPU
types.

Different processors may offer different types of resources
and interfaces to those resourcesand interfaces to those resources.

Not only does this complicate programming but it also makes
it harder to decide certain things at runtime.

High Performance Embedded Computing 5

Delay variationsy

D l i ti h d t di t i ltiDelay variations are harder to predict in multiprocessors:
Subtle timing bugs are more likely to be exposed.
Makes it harder to efficiently use system resources.Makes it harder to efficiently use system resources.
Long memory access times complicate algorithm design and
programming.

Sched ling a m ltiprocessor is hard information abo tScheduling a multiprocessor is hard---information about
the state of the processors costs time, energy.
Optimal scheduling algorithm do not exist for the mostOptimal scheduling algorithm do not exist for the most
realistic multiprocessor configurations.

Heuristics must be used.
Due to communication delay, state information of other
processors takes too long to get. So scheduling decision must be
made with full information about other processor states.

High Performance Embedded Computing 6

Resource allocation

Resources must be allocated dynamically to ensure that
they are used efficiently.

J t k i hi h il bl iJust knowing which resource are available in a
multiprocessor is hard enough.

Determining on the fly which resources are available in aDetermining on-the-fly which resources are available in a
multiprocessor is hard too.

Figuring out how to use those resources to satisfyFiguring out how to use those resources to satisfy
requests is even harder.

Middleware takes up the task of managing systemMiddleware takes up the task of managing system
resources across the multiprocessor.

High Performance Embedded Computing 7

Role of the multiprocessor operating p p g
system

Simple m ltiprocessor OS has one master one orSimple multiprocessor OS has one master, one or
more slaves.

Simple to implement.p p
Suitable for symmetric multiprocessor systems
Heterogeneous processors limit resource allocation options.

E h h it k lEach processor has its own kernel
Responsible for managing purely local resources such as
the devices that are visible to other processors.
The PE kernel selects the processes to run next and
switches contexts as necessary.

But the PE kernel may not decide entirely on its own which y y
process runs next.

It may receive instruction from a kernel running on another
processor

High Performance Embedded Computing 8

p

Kernels in the multiprocessorp

High Performance Embedded Computing 9

Limited scheduling informationg

The master kernel gathers information from the slave PEsg
Based on the current state of the slaves and the
processes that want to run on slaves, the master kernel
th i d t th l b t th i h d lthen issues commands to the slaves about their schedules.
One challenge in designing distributed schedulers is that

communication is not free andcommunication is not free and
any processor that makes scheduling decisions about other PEs
usually will have incomplete information about the state of that PE.

When a kernel schedules its own processor, it can easily
check on the state of that processor.
When a kernel must perform a remote read to check theWhen a kernel must perform a remote read to check the
state of another processor, the amount of information the
kernel requests needs to be carefully budgeted.

High Performance Embedded Computing 10

Kernel architecture (Vercauteren)()

A kernel architecture forA kernel architecture for
custom heterogeneous
processors includes
scheduling and Service ISR

Communication

scheduling and
communication layers.
Basic communication
operations implemented by

Service
task

g
la

ye
r

Communication
layer

operations implemented by
interrupt service routines.
Kernel channel used only
for kernel to kernel

Application
task S

ch
ed

ul
in

for kernel-to-kernel
communication.

Optimized for performance
D t h l i d b

task
ISR

S

CPU
Data channel is used by
applications

More general purpose

CPU

High Performance Embedded Computing 11

Multiprocessor systemsp y
No tool support for heterogeneous embedded

t hit tsystem architecture

Should provide real-time kernel support for
i th t ft t k th tmanaging the current software tasks that are

distributed over several processors

High Performance Embedded Computing 12

Target architecture modelg
Communication channels

Semantics: Hoare’s CSP Se a t cs oa e s CS
rendezvous
Explicit send and receive ,
or
Shared memory

Hardware components
ParameterizedParameterized
communication
components
Hardware processorsp
Memory components

Software components
Processor + Icache+Processor + Icache+
Dcache + I/O units
(wrappers)

High Performance Embedded Computing 13

Basic kernel architecture
Kernel is responsible for

Scheduling application tasks

Handling communication between application tasks

Synchronizing the application tasks with each other and
with external eventswith external events

Preemptive, priority-driven scheduling

High Performance Embedded Computing 14

Basic kernel architecture
Kernel also provides a subroutine interface to
each predefined kernel service task

Resource protection

Memory (de)allocation

C i ti d h i ti b t li tiCommunication and synchronization between application
tasks.

High Performance Embedded Computing 15

Basic kernel architecture

Kernel channele e c a e

Data channel

High Performance Embedded Computing 16

OMAP lower layers including HW and OS y g
The main unifying structure in OMAP is the DSPBridge,
which allows the DSP and RISC processors to communicatewhich allows the DSP and RISC processors to communicate.
The bridge includes a set of hardware primitives that are
abstracted by a layer of software.
The bridge is organized as a master/slave system in which
the ARM is the master and the C55x is the slave.

High Performance Embedded Computing 17

OMAP lower layers including HW and OS y g
This master/slave system fits the nature of most
multimedia applications, where pp ,

DSP is used to efficiently implement certain key functions

while RISC processor runs the higher levels of the application.

The DSPBridge API implements several functions:
initiates and controls DSP tasks,

Sexchanges messages with the DSP,

streams data to and from the DSP, and

checks the status of the DSPchecks the status of the DSP.

OMAP hardware provides mailbox primitives - separate
addressable memories that can be accessed by both. y

In the OMAP 5912, two mailboxes can be written only by the C55x
but read by both,

High Performance Embedded Computing 18

other two can be written only by the ARM and read by both.

Mailbox primitivesp

send (A, message)
send a message to mailbox Asend a message to mailbox A

receive (A, message)
receive a message from mailbox Areceive a message from mailbox A.

High Performance Embedded Computing 19

OMAP C5510 performance/power for p p
AAC decoding (from TI)

Rate Mcycles/ mA @ 1 5V mA @ 1 2VRate Mcycles/
sec

mA @ 1.5V mA @ 1.2V

64K 22 1 8 0 6 464K 22.1 8.0 6.4

48K 16.2 5.8 4.748K 16.2 5.8 4.7

32K 11.4 4.1 3.3

High Performance Embedded Computing 20

Multiprocessor scheduling (Stone)p g ()

It i th ll ti blIt is rather allocation problem
Schedule tasks on two CPUs.

A t ll ll t t k t th CPU t ti f h d liActually allocates tasks to the CPUs to satisfy scheduling
constraint.

General scheduling problem is NP-completeGeneral scheduling problem is NP complete
By using information of the multiprocessor structure,
or by simplification, this problem can be solved in y p , p
polynomial time.

Exact solution for two processors.
Heuristics for more processors.

Solve using network flow algorithms.

High Performance Embedded Computing 21

Multiprocessor modeling (Stone)p g ()
Execution time table provides execution time of
processes on the two CPUsprocesses on the two CPUs.
Intermodule connection graph describes the time cost of
communication between two processes when they run y
on different CPUs.

Communication time within a CPU is zero.

Modify intermodule communication graph:Modify intermodule communication graph:
Add two additional nodes:

source node for CPU 1 and sink node for CPU 2.

Add edges from each non-sink node to source and sink.
Edge weight to source is cost of executing on CPU 2 (sink).
Edge weight to sink is cost of executing on CPU 1 (source)Edge weight to sink is cost of executing on CPU 1 (source).

Minimize total time by finding a minimum-cost cutset of
the modified intermodule connection graph.

High Performance Embedded Computing 22

Stone multiprocessor example 1p p

Execution time table
Intermodule connection graph

High Performance Embedded Computing 23

Stone multiprocessor example 1p p

5+5+5+12+2+2+1+3+3+4=42

? (B C F G)(A D E) 5+5+5+8+5+2+1+3+3+4 41

High Performance Embedded Computing 24

? (B,C,F,G)(A,D,E): 5+5+5+8+5+2+1+3+3+4=41

Stone multiprocessor example 2p p

High Performance Embedded Computing 25

Why static tasks?y

Many embedded systems statically allocate processes toMany embedded systems statically allocate processes to
processing elements.
We can efficiently find bounds on the execution time ofWe can efficiently find bounds on the execution time of
the processes in those multiprocessor systems.
Static task allocation determines allocation to CPU at
design time.
Static task allocation reduces OS overhead, allows more
analysisanalysis.
Dynamic task allocation can choose the CPU for a task
at run time.
Dynamic task allocation helps manage dynamic loads.

High Performance Embedded Computing 26

Synchronous Data Flow (SDF)y ()

In SDF a program is represented as a directed graph in
which vertices, which are called actors, represent

t ti d th d if FIFO h l fcomputations, and the edges specify FIFO channels for
communication between actors.

The term “synchronous” refers to the requirement thatThe term synchronous refers to the requirement that
the number of data values produced (consumed) by
each actor onto (from) each of its output (input) edges iseach actor onto (from) each of its output (input) edges is
a fixed value for each firing of that actor and is known at
compile time.

It should not be confused with the use of “synchronous”
in the synchronous languages.

High Performance Embedded Computing 27

Synchronous languagesy g g

A change in the state of one module is simultaneous
with receipt of inputs.p p

Outputs from a module are simultaneous with
changes in state.g

Communication between modules is synchronous
and instantaneous.

Output behavior of the modules is entirely
determined by the interleaving of input signals.y g p g

High Performance Embedded Computing 28

Synchronous languagesy g g

Imperative: Esterel, SyncCharts
P id t t t h t l d i t dProvide constructs to shape control-dominated programs
as hierarchical synchronous automata.

Declarative: Lustre SignalDeclarative: Lustre, Signal
Shape applications based on intensive data computation
and data-flow organization, with the control flow operatingand data flow organization, with the control flow operating
under the form of (internally generated) activation clocks.

High Performance Embedded Computing 29

Synchronous hypothesis

Is really a collection of assumptions of a common
nature, sometimes adapted to the frameworknature, sometimes adapted to the framework
considered.
Instants and reactions: In each instant, input signals

ibl (f i t b b i l d)possible occur (for instance by being sampled),
internal computation take place, and control and
data are propagated until output values are p p g p
computed and a new global system state is reached.

This execution cycle is called reaction of the system to the
input signals Reactions converge and computations areinput signals. Reactions converge and computations are
entirely performed before the current execution instant
ends and a new one begins.
This empowers the obvious conceptual abstraction thatThis empowers the obvious conceptual abstraction that
computations are infinitely fast (instantaneous, zero-time),
and take place only at discrete points in (physical) time.
With no duration.

High Performance Embedded Computing 30

With no duration.

Synchronous hypothesisy yp

Signals: broadcast signals are used to propagate
informationinformation.

At each execution instant, a signal can either be present or
absent. A signal must be consistent for all read operations
during any given instantduring any given instant.

Causality: an important part of the theoretical body
behind the Synchronous Hypothesis. y yp

The presence status and value of a signal should be
defined before they are read (and tested).
“before” refers to here to causal dependency in thebefore refers to here to causal dependency in the
computation of the instant, and not to physical or even
logical time between successive instant.

The Synchronous Hypothesis ensures that allThe Synchronous Hypothesis ensures that all
possible schedules of operations amounts to the
same result (convergence).

High Performance Embedded Computing 31

Homogeneous SDG = DFGg

Homogeneous SDF: the numbers of data values
produced or consumed are identically unity.
Data flow graph (DFG) : homogeneous SDFData flow graph (DFG) : homogeneous SDF
By scheduling, we collectively refer to the tasks of

Assigning actors in DFG to processorsAssigning actors in DFG to processors
Ordering execution of these actors on each processor
And determining when each actor fires

such that data precedence constraints are met.
In the fully static scheduling strategy, all three scheduling
tasks are performed at compile timetasks are performed at compile time.

Assumes that exact execution times of actors are known

High Performance Embedded Computing 32

Self-timed scheduling strategyg gy

Assumes that good estimates for the execution times ofAssumes that good estimates for the execution times of
the actors can be obtained.
Each processor executes the actors assigned to it in the p g
order specified at compiled time.
Before firing an actor, a processor wait for the data

d d b th t t t b il blneeded by that actor to become available.
Thus, in self-timed synchronization processors are
required to perform run-time synchronization when theyrequired to perform run-time synchronization when they
communicate data.
As a result, the self-timed strategy incurs greater run-gy g
time cost than the fully static case because of the
synchronization overhead.

High Performance Embedded Computing 33

SDF scheduling (Bhattacharyya)g (yy)

InterprocessorInterprocessor
communication modeling
(IPC) graph has the same

d SDF ll SDFnodes as SDF, all SDF
edges, plus additional edges.

Added edges modelAdded edges model
sequential schedule.

Dashed lines in the figure

Edges that cross processor
boundaries are called IPC
edgesedges.

Must use an interprocessor
communication mechanism

High Performance Embedded Computing 34

Strongly connected component (SCC)g y p ()
A DFG (V,E) is strongly connected if for each pair of
distinct vertices x,y there is a path directed from x to y
and there is a path directed from y to x.
A strongly connected component (SCC) of (V,E) is a
strongly connected subset V’ ⊆ V such that V properlystrongly connected subset V ⊆ V such that V properly
contains V’.
If V is an SCC, its associated subgraph is also called as , g p
SCC.
An SCC V’ of a DFG (V,E) is a source SCC
if ∀e ∈ Ε, (sink(e) ∈ V’) ⇒ (src(e) ∈ V’)

Source가 V’에 있는 edge중 밖으로 나가는 것이 있다

An SCC V’ of a DFG (V E) is a sink SCCAn SCC V of a DFG (V,E) is a sink SCC
if ∀e ∈ Ε, (src(e) ∈ V’) ⇒ (sink(e) ∈ V’)

Sink가 V’에 있는 edge중 밖에서 들어오는 것이 있다

High Performance Embedded Computing 35

Sink가 V 에 있는 edge중 밖에서 들어오는 것이 있다.

Self-time schedule

High Performance Embedded Computing 36

Self-time schedule

High Performance Embedded Computing 37

Self-time schedule

High Performance Embedded Computing 38

IPC graphg p

High Performance Embedded Computing 39

IPC graphg p

High Performance Embedded Computing 40

IPC graphg p

Th IPC h h th ti DFG dThe IPC graph has the same semantics as a DFG, and
its execution models the execution of the corresponding
self-time schedule.

High Performance Embedded Computing 41

Cycle Meany

High Performance Embedded Computing 42

Maximum cycle mean & Critical Cycley y

High Performance Embedded Computing 43

Scheduling and graph analysisg g p y
Edges represent buffers

Edges not in a strongly connected component are notEdges not in a strongly connected component are not
bounded.

Simpler protocols can be used on bounded edgesSimpler protocols can be used on bounded edges.

An edge is redundant if another path between the
source/sink pair has a longer delay.source/sink pair has a longer delay.

High Performance Embedded Computing 44

Bounding Buffer Synchronization (BBS)g y ()

High Performance Embedded Computing 45

Deriving a strongly connected g g y
synchronization graph

High Performance Embedded Computing 46

Determine delaysy

High Performance Embedded Computing 47

Determine delaysy

We need to add delays to the edges, corresponding to e eed to add de ays to t e edges, co espo d g to
buffer memory,

that ensure the system will not deadlock y

That we can minimize the sum of the buffer bounds
over all the IPC edges.

We can use the added edges to help us determine these
delays.

The added edges can be divided into disjoint sets that
help organize the graph.

We can determine the minimum delay on each edge that
ensures that the graph’s cycle mean is not exceeded.

High Performance Embedded Computing 48

Complete Algorithm

High Performance Embedded Computing 49

Conclusions

High Performance Embedded Computing 50

Data dependency + Rate-monotonicp y

Assume that there is a set of processes with data
dependencies between them; in general, they can form
one or more subtasksone or more subtasks.

Also assume that each CPU schedules processes rate-
monotonic schedulingmonotonic scheduling.

The combination of data dependencies and rate-
monotonic scheduling makes the problem more o o o c sc edu g a es e p ob e o e
challenging, although tractable.

High Performance Embedded Computing 51

Bounds of the response times for a set of p
independent processes (Lehoczky)

Suppose P1, P2, … are a set of priority-ordered
processes allocated on the same CPU.

F Pi it i i i d i i d itFor a process Pi, its minimum period is pi, and its
longest computation time is ci.

Let the worst case response time form a request of Pi toLet the worst-case response time form a request of Pi to
its finish be wi

Lehoczky showed that wi is the smallest nonnegativeLehoczky showed that wi is the smallest nonnegative
root of the equation

x=g(x)=ci + Σ cj • ⎡x/pj ⎤
i-1

x=g(x)=ci + Σ cj • ⎡x/pj ⎤
It can be solved with a fixed-point iteration technique.

j=1

High Performance Embedded Computing 52

Fixed-point iteration technique andp q
an example

The fixed-point iteration technique

(1) w = ⎡ ci /(1- Σ cj/pj)⎤
(2) while (w <g(w)) w = g(w)

(example) Suppose p1=5, c1=1, p2=37, c2=3, p3=51,
3 16 4 134 4 42c3=16, p4=134, c4=42.

Fixed-point iteration tells us that we only need four steps
to know that w4= 128; the x values during iterations are

i-1

to know that w4= 128; the x values during iterations are
104, 120, 126, and 128. j=1

High Performance Embedded Computing 53

Rate analysis (Gupta)y (p)

G l id tif tiGoal: identify execution
rates at which processes
can run while satisfying

Control
dependency

can run while satisfying
the min-max bounds of
delays
Model includes multiple
processes with control
d d idependencies.

A CDFG-style model within
each process

process1 process2
each process.

High Performance Embedded Computing 54

Process model

Edges are labeled with
(min,max) delays from

ti ti i l t t t [min max]activation signal to start
of execution.

P t t

[3,4]

[min,max]

Process starts
executing after all its
enables signals have

P1 P2

enables signals have
been ready. [1,5]

High Performance Embedded Computing 55

Rate analysisy

Delay around a cycle in the graph is Σ δi.

Maximum mean cycle delay is λ.y y

In a strongly connected graph all nodes
execute at the same rate λexecute at the same rate λ.

Given a producer and consumer, bounds on
rates of consumer is:
[min{rl(P),rl(C)}, min{ru(P),ru(C)}]

High Performance Embedded Computing 56

Rate analysis exampley p

High Performance Embedded Computing 57

Rate analysis example

High Performance Embedded Computing 58

Rate analysis example

High Performance Embedded Computing 59

Distributed system performance

Performance analysis using longest path algorithmsPerformance analysis using longest-path algorithms
don’t work under preemptive scheduling.

Several algorithms unroll the schedule to the length ofSeveral algorithms unroll the schedule to the length of
the least common multiple of the periods:

produces a very long schedule;p y g ;

doesn’t work for non-fixed periods.

Schedules based on upper bounds may give inaccurate
results.

Simulation does not provide guarantees.

High Performance Embedded Computing 60

Using worst case delay in unrolled schedulesg y

Changing the computation time for Px changes the response time of P3Changing the computation time for Px changes the response time of P3
Even though they run on different processors.

High Performance Embedded Computing 61

Using worst case delay in unrolled schedulesg y

P3 deadline: 45 !

High Performance Embedded Computing 62

A task graph and
its implementation

High Performance Embedded Computing 63

Preemptive execution hurtsp

Two subtasks are divided into three processors

Worst combination of events for P5’s response time:
P2 of higher priority

P i iti t d b f PP2 initiated before P4

causes P5 to wait for finishing P2 and P3.

Independent tasks can interfere can’t use longestIndependent tasks can interfere—can t use longest
path algorithms.

P1

P

P2

P

P3

M1

P5

M2

P4

M3

High Performance Embedded Computing 64

M1 M2 M3

Data dependencies helpp p
P3 cannot preempt both P1 and P2.
P t t PP1 cannot preempt P2.
If we ignore data dependencies, the
worst response times are

P1 P3

worst response times are
35 for P2
45 for P3

But the worst case total delay along
the path from P2 to P3 is 45 instead
of 80 (35+45)

P2

of 80 (35+45)

Period Computation time
P1 80 15
P2 50 20
P3 50 10

High Performance Embedded Computing 65

Separation analysisp y

P5, P6 : on the same PE
Cases 1&2: P5 will not preempt P6
because they are separatedy p
Cases 3&4: P5 will preempt P6.

High Performance Embedded Computing 66

Period shifting exampleg p

task period
τ1 150

process CPU time
P1 30

τ1 τ2 τ3

τ1 150
τ2 70
τ3 110

1

P2 10
P3 30
P4 20

P1 P2 P4

CPU 1 (P1,P2) P1 P2 P2

P3

()

CPU 2 (P3,P4) P3 P4 P3 P4

P2 delayed 30 on CPU 1 due to P1

data dependency delays P3 20 more

()

p y y 3

priority of P3 delays P4 by preemption.
Worst case delay of task 3 is 30+30+20=80, but 30+20=50

High Performance Embedded Computing 67

Period shiftingg

The delay for the preprocessors may vary fromThe delay for the preprocessors may vary from
period to period, making the request period of a
process different form the period of the taskprocess different form the period of the task.

High Performance Embedded Computing 68

