Chapter 6-1:
Multiprocessor Sottware

Soo-lk Chae

High Performance Embedded Computing

Multiprocessor software

Performance analysis of multiprocessor software
Middleware and software services
Design verification of multiprocessor software

Multiprocessor: true concurrency
o Single processor: virtual concurrency

Hard to analyze and debug

High Performance Embedded Computing

Topics

Performance analysis of multiprocessor
software.

o Models.

o Analysis.

o Simulation.

High Performance Embedded Computing

What is different about embedded

multiprocessor software?

How does it differ from general-purpose
multiprocessor software?

How does it differ from a uniprocessor?

High Performance Embedded Computing

Heterogeneity

Hardware platforms are heterogeneous

Heterogeneity presents several types of problems
o Getting SW form several types of processors to work
together can present challenges.
endianness
o Development environments for heterogeneous
multiprocessors are often loosely coupled.

Programmers may have a hard time learning all the tools for
all the component processors

It may be hard to debug problems that span multiple CPU
types.
o Different processors may offer different types of resources
and interfaces to those resources.

Not only does this complicate programming but it also makes
it harder to decide certain things at runtime.

High Performance Embedded Computing

Delay variations

Delay variations are harder to predict in multiprocessors:

o Subtle timing bugs are more likely to be exposed.

o Makes it harder to efficiently use system resources.

o Long memory access times complicate algorithm design and
programming.

Scheduling a multiprocessor is hard---information about

the state of the processors costs time, energy.

Optimal scheduling algorithm do not exist for the most
realistic multiprocessor configurations.
o Heuristics must be used.

o Due to communication delay, state information of other
processors takes too long to get. So scheduling decision must be
made with full information about other processor states.

High Performance Embedded Computing

Resource allocation

Resources must be allocated dynamically to ensure that
they are used efficiently.

Just knowing which resource are available in a
multiprocessor is hard enough.

Determining on-the-fly which resources are available in a
multiprocessor is hard too.

Figuring out how to use those resources to satisfy
requests is even harder.

Middleware takes up the task of managing system
resources across the multiprocessor.

High Performance Embedded Computing 7

Role of the multiprocessor operating

system

Simple multiprocessor OS has one master, one or
more slaves.

o Simple to implement.

o Suitable for symmetric multiprocessor systems

o Heterogeneous processors limit resource allocation options.

Each processor has its own kernel

o Responsible for managing purely local resources such as
the devices that are visible to other processors.

o The PE kernel selects the processes to run next and
switches contexts as necessary.

But the PE kernel may not decide entirely on its own which
process runs next.

o It may receive instruction from a kernel running on another
processor

High Performance Embedded Computing 8

Kernels in the multiprocessor

CPU CPU
Master o Slave
kemnel kernel

Interconnect network

Memaory

High Performance Embedded Computing 9

Limited scheduling information

The master kernel gathers information from the slave PEs

Based on the current state of the slaves and the

processes that want to run on slaves, the master kernel

then issues commands to the slaves about their schedules.

One challenge in designing distributed schedulers is that

o communication is not free and

o any processor that makes scheduling decisions about other PEs
usually will have incomplete information about the state of that PE.

When a kernel schedules its own processor, it can easily
check on the state of that processor.

When a kernel must perform a remote read to check the
state of another processor, the amount of information the
kernel requests needs to be carefully budgeted.

High Performance Embedded Computing 10

‘ Kernel architecture (Vercauteren)

= A kernel architecture for
custom heterogeneous
processors includes
scheduling and
communication layers.

= Basic communication
operations implemented by
interrupt service routines.

= Kernel channel used only
for kernel-to-kernel
communication.
o Optimized for performance

= Data channel is used by
applications
o More general purpose

High Performance Embedded Computing 11

‘ Multiprocessor systems

= No tool support for heterogeneous embedded
system architecture

= Should provide real-time kernel support for
managing the current software tasks that are
distributed over several processors

man-machine
VF controller

: application
programmable | spacific
microcontroller HW biock ""|

1

1 Y

= FIFo J=— | r—_AnC
programmable programmable Cod .'_|_I
DSP TUDSPL ee

Fig. 1. Heterogeneous embedded system architectures.

High Performance Embedded Computing 12

Target architecture model

Communication channels

a

a

Semantics: Hoare's CSP
rendezvous

Explicit send and receive ,
or

Shared memory

Hardware components

a

Q

Q

Parameterized
communication
components

Hardware processors
Memory components

Software components

a

Processor + Icache+
Dcache + I/O units
(wrappers)

Tesk

P-RAM:

B T

Memory Component

o Hardware
i Co-Processor

Fig. 2. Target Architecture Model.

High Performance Embedded Computing

13

Basic kernel architecture

Kernel is responsible for
Scheduling application tasks
Handling communication between application tasks
Synchronizing the application tasks with each other and

a

Q

a

with external events

Preemptive, priority-driven scheduling

App | 1 APP
Tazk Task

= F

Software Processor Component

Kemel Kemel
Service ,,, | Service
Task Task

Software Processor Component

Real-time kemel -

R—

Real-fime kemet

Fig. 3. Basic Kernel Architecture

High Performance Embedded Computing

14

‘ Basic kernel architecture

= Kernel also provides a subroutine interface to
each predefined kernel service task
o Resource protection
o Memory (de)allocation
o Communication and synchronization between application

tasks.
Software Processor Component Software Processor Component
Kemel Kemel

Arp App h h App
Task|** cto Task

I i - [

g E E E Commandj

Packet
Real-time kemel CT—— e Real-time kemet

Fig. 3. Basic Kernel Architecture

High Performance Embedded Computing 15

‘ Basic kernel architecture

= Kernel channel
= Data channel

Soltware Processor Component
Kemel ™ [TT1T]
Service
«_ Task
: Packel
|
Service
Task
‘ App Task '
L= 1
App Ta:-l

Fig. 4. Kernel architecture with Communication Layer ex-
panded

High Performance Embedded Computing 16

OMAP lower layers including HW and OS

The main unifying structure in OMAP is the DSPBridge,
which allows the DSP and RISC processors to communicate.

The bridge includes a set of hardware primitives that are
abstracted by a layer of software.

The bridge is organized as a master/slave system in which
the ARM is the master and the C55x is the slave.

Applications

DSP Appliction-specific Real-time
teway |- protocol tasks
Sy] DSP/BIOS bridge g
Palm DSP manager 05
WinCE DSP manages SETVer
[
Hardware arbitration layer Hardware arbitration layer
ARMS C55%
High Performance Embedded Computing 17

OMAP lower layers including HW and OS

This master/slave system fits the nature of most
multimedia applications, where

o DSP is used to efficiently implement certain key functions

o while RISC processor runs the higher levels of the application.

The DSPBridge APl implements several functions:
o initiates and controls DSP tasks,

o exchanges messages with the DSP,

o Streams data to and from the DSP, and

o checks the status of the DSP.

OMAP hardware provides mailbox primitives - separate
addressable memories that can be accessed by both.

o Inthe OMAP 5912, two mailboxes can be written only by the C55x
but read by both,

o other two can be written only by the ARM and read by both.

High Performance Embedded Computing 18

Mailbox primitives

send (A, message)
o send a message to mailbox A
receive (A, message)
0 receive a message from mailbox A.

High Performance Embedded Computing

19

OMAP C5510 performance/power for

AAC decoding (from TT)

Rate Mcycles/ MA@ 1.5V mA@ 1.2V
sec

64K 22.1 8.0 6.4

48K 16.2 5.8 4.7

32K 11.4 4.1 3.3

High Performance Embedded Computing

20

Multiprocessor scheduling (Stone)

It is rather allocation problem

Schedule tasks on two CPUSs.

o Actually allocates tasks to the CPUs to satisfy scheduling
constraint.

General scheduling problem is NP-complete

By using information of the multiprocessor structure,
or by simplification, this problem can be solved in
polynomial time.

o Exact solution for two processors.

o Heuristics for more processors.

Solve using network flow algorithms.

High Performance Embedded Computing 21

Multiprocessor modeling (Stone)

Execution time table provides execution time of
processes on the two CPUSs.

Intermodule connection graph describes the time cost of
communication between two processes when they run
on different CPUs.

o Communication time within a CPU is zero.

Modify intermodule communication graph:

o Add two additional nodes:
source node for CPU 1 and sink node for CPU 2.

o Add edges from each non-sink node to source and sink.

Edge weight to source is cost of executing on CPU 2 (sink).

Edge weight to sink is cost of executing on CPU 1 (source).
Minimize total time by finding a minimum-cost cutset of
the modified intermodule connection graph.

High Performance Embedded Computing 22

Stone multiprocessor example 1

, py
V4 B
8 5
7 10 Process |Coston P, |CostonP,
Dl < Pp P 5 5
.P_Ef/l — .9.- S _-\1_:) IE:I ;.;:___. ¥ p B 5 o
N6 Pe | 2 ’
\8 AN 1/ Po 8 5
._ S Pe o 3
o~ 7 _\:,.- Pr 4 4
Pr) Po s | 3 5]
Figure 17: Process communication model Figure 18: Process execution cost
= Execution time table
= Intermodule connection graph
High Performance Embedded Computing 23

‘ Stone multiprocessor example 1

a0

Y B5+5+5+12+2+2+1+3+3+4=42
Y

\ CUT,

N cut, '

WCUT,

In Stone’s flow network, any cut defines a valid assignment of processes to processors. Moreover, the
value of the cut is equal to the cost of the assignment it_defines. For example in Fig. 19, three possible cuts
are presented. The values of the cuts are: CUTy = 74,|CUT; = 494, and CUT; = 52. The minimum cut is
CUT,. It assigns processes pa, pg, pc, Pr, and pg to processor P, and processes pp and pg to processor
P». Therefore the two-processor module allocation problem reduces to determining the minimum cut in a

flow network. ? (B,C,F,G)(A,D,E): 5+5+5+8+5+2+1+3+3+4=41

High Performance Embedded Computing 24

Stone multiprocessor example 2

Process CPU 1 runtime | CPU 2 runtime

a 8 7

b 5 -

c 12 15

d 3 6

e 4 4

Intermodule connection graph Execution time table
High Performance Embedded Computing 25
Why static tasks?

Many embedded systems statically allocate processes to
processing elements.

We can efficiently find bounds on the execution time of
the processes in those multiprocessor systems.

Static task allocation determines allocation to CPU at
design time.

Static task allocation reduces OS overhead, allows more
analysis.

Dynamic task allocation can choose the CPU for a task
at run time.

Dynamic task allocation helps manage dynamic loads.

High Performance Embedded Computing 26

Synchronous Data Flow (SDF)

In SDF a program is represented as a directed graph in
which vertices, which are called actors, represent
computations, and the edges specify FIFO channels for
communication between actors.

The term “synchronous” refers to the requirement that
the number of data values produced (consumed) by
each actor onto (from) each of its output (input) edges is
a fixed value for each firing of that actor and is known at
compile time.

It should not be confused with the use of “synchronous”
in the synchronous languages.

High Performance Embedded Computing 27

Synchronous languages

A change in the state of one module is simultaneous
with receipt of inputs.

Outputs from a module are simultaneous with
changes in state.

Communication between modules is synchronous
and instantaneous.

Output behavior of the modules is entirely
determined by the interleaving of input signals.

High Performance Embedded Computing 28

Synchronous languages

Imperative: Esterel, SyncCharts

o Provide constructs to shape control-dominated programs
as hierarchical synchronous automata.

Declarative: Lustre, Signal

o Shape applications based on intensive data computation
and data-flow organization, with the control flow operating
under the form of (internally generated) activation clocks.

High Performance Embedded Computing 29

Synchronous hypothesis

Is really a collection of assumptions of a common
nature, sometimes adapted to the framework
considered.

Instants and reactions: In each instant, input signals
possible occur (for instance by being sampled),
Internal computation take place, and control and
data are propagated until output values are
computed and a new global system state is reached.
o This execution cycle is called reaction of the system to the
input signals. Reactions converge and computations are

entirely performed before the current execution instant
ends and a new one begins.

o This empowers the obvious conceptual abstraction that
computations are infinitely fast (instantaneous, zero-time),
and take place only at discrete points in (physical) time.
With no duration.

High Performance Embedded Computing 30

Synchronous hypothesis

Signals: broadcast signals are used to propagate
information.

o At each execution instant, a signal can either be present or
absent. A signal must be consistent for all read operations
during any given instant.

Causality: an important part of the theoretical body

behind the Synchronous Hypothesis.

o The presence status and value of a signal should be
defined before they are read (and tested).

o “before” refers to here to causal dependency in the
computation of the instant, and not to physical or even
logical time between successive instant.

The Synchronous Hypothesis ensures that all

possible schedules of operations amounts to the

same result (convergence).

High Performance Embedded Computing 31

Homogeneous SDG = DFG

Homogeneous SDF: the numbers of data values
produced or consumed are identically unity.
Data flow graph (DFG) : homogeneous SDF

By scheduling, we collectively refer to the tasks of

o Assigning actors in DFG to processors

o Ordering execution of these actors on each processor

o And determining when each actor fires

such that data precedence constraints are met.

In the fully static scheduling strategy, all three scheduling
tasks are performed at compile time.

o Assumes that exact execution times of actors are known

High Performance Embedded Computing 32

Selt-timed scheduling strategy *

Assumes that good estimates for the execution times of
the actors can be obtained.

Each processor executes the actors assigned to it in the
order specified at compiled time.

Before firing an actor, a processor wait for the data
needed by that actor to become available.

Thus, in self-timed synchronization processors are
required to perform run-time synchronization when they
communicate data.

As a result, the self-timed strategy incurs greater run-
time cost than the fully static case because of the
synchronization overhead.

High Performance Embedded Computing 33

SDF scheduling (Bhattacharyya)

Interprocessor
communication modeling
(IPC) graph has the same b

nodes as SDF, all SDF @@ . - G
edges, plus additional edges. °

Added edges model
Seq u e ntlal SC h e d u | e . SDF graph and processor allocation

o Dashed lines in the figure 2

Edges that cross processor
boundaries are called IPC . |
Interprocessor communication modeling graph

edges.

o Must use an interprocessor
communication mechanism

High Performance Embedded Computing 34

Strongly connected component (SCC)

A DFG (V,E) is strongly connected if for each pair of
distinct vertices x,y there is a path directed from x to y
and there is a path directed from y to x.

A strongly connected component (SCC) of (V,E) is a
strongly connected subset V' ¢ V such that V properly
contains V'.

If V is an SCC, its associated subgraph is also called as
SCC.

An SCC V'’ of a DFG (V,E) is a source SCC

if Ve € E, (sink(e) € V') = (src(e) € V)

o Sourcelt V'Ol U= edges H2 2 LJt= 20| UL
An SCC V' of a DFG (V,E) is a sink SCC

if Ve € E, (src(e) € V') = (sink(e) € V)

o SinkJt V0l = edges HOUM SHL2= X0l UL,

High Performance Embedded Computing 35

Self-time schedule

b ‘\J Proc 4
Proc 1 : -
~ ™ Execution Time Estimates
(A)y—F B/ —=—aml{I)
o A A A CHF :2
/E}j.; 5 {{‘ {c) B.E 3
— G — =, '
e v
&a\f DE - G| 4
7o Proc 3
Proc 2 \E) :
(a) DFG “G”

High Performance Embedded Computing 36

Self-time schedule

Proct | A ‘ : m I = Send
Proc2| B F ‘ X - Recei
Proc3 | C | H G V [J = Receive
Proc4 | | VIR N [] =Idle
(b) Schedule on four processors
AT E A E Al E A E ALl E_ |
B | F | B [FI | 8 |71 R [F[] B [F] |
c | G C G C | G c G C | |G]
| H | H | | H | H | = [H]
-} — -
14
(c) Self-timed execution
High Performance Embedded Computing 37
Self-time schedule
D D
— -
> D ¥ O
s ‘-\"__——-"‘ -\.\I'_ _____ 1 y
I\,’E‘/ I\“E-”) -P"‘a_l.fl_h\ljx"l
Proc 17 ' Proc 4
I |
I |
! I
>\ =) s D
(F«—B)¢ - --{G«—(C

(d) The IPC graph

High Performance Embedded Computing

38

‘ IPC graph

The IPC graph has the same vertex set V" as G . corresponding to the set of actors in &G . The self-
timed schedule specifies the actors assigned to each processor, and the order in which they execute. For
example in Fig. 1. processor 1 executes 4 and then E repeatedly. We model this in Gy, by drawing a
cycle around the vertices corresponding to 4 and E . and placing a delay on the edge from E to A . The
delay-free edge from 4 to E represents the fact that the & th execution of 4 precedes the & th execution of
E . and the edge from E to 4 with a delay represents the fact that the / th execution of 4 can occur only
after the (k—1) th execution of E has completed. Thus if actors v, v,, ..., v, are assigned to the same
processor in that order, then Gipe would have a cycle ((vy, v,), (v5, v3), oo (v, _ 1. v,)s (V7))
with delay((v,.v,)) = 1 .Ifthere are P processors in the schedule, then we have P such cycles corre-

sponding to each processor.

High Performance Embedded Computing 39

IPC oraph

The IPC graph has the same vertex set V" as G, corresponding to the set of actors in &G . The self-
timed schedule specifies the actors assigned to each processor, and the order in which they execute. For
example in Fig. 1. processor 1 executes 4 and then E repeatedly. We model this in Gy, by drawing a
cycle around the vertices corresponding to 4 and E . and placing a delay on the edge from E to 4. The
delay-free edge from 4 to E represents the fact that the k th execution of 4 precedes the & th execution of
E . and the edge from E to 4 with a delay represents the fact that the / th execution of 4 can occur only
after the (k—1) th execution of E has completed. Thus if actors v, v,, ..., v, are assigned to the same
processor in that order, then Gipe would have a cycle ((vy,vy), (vo, v3), oo (v, _ 1 v,)s (v, v))
with delay((v,.v,)) = 1 .Ifthere are P processors in the schedule, then we have P such cycles corre-

sponding to each processor.

High Performance Embedded Computing 40

IPC graph

The IPC graph has the same vertex set V" as G . corresponding to the set of actors in & . The self-
timed schedule specifies the actors assigned to each processor, and the order in which they execute. For
example in Fig. 1, processor 1 executes 4 and then E repeatedly. We model this in G, by drawing a
cycle around the vertices corresponding to 4 and E . and placing a delay on the edge from E to 4. The
delay-free edge from 4 to E represents the fact that the & th execution of 4 precedes the & th execution of
E ., and the edge from E to A4 with a delay represents the fact that the k th execution of 4 can occur only
after the (k— 1) th execution of E has completed. Thus if actors v,, v,, ..., v, are assigned to the same
processor in that order, then Gipe would have a cycle (v, v4), (v, v3)y ooes (v, _), (v, 91)
with delay((v,.v,)) = 1 .If there are P processors in the schedule. then we have P such cycles corre-

sponding to each processor.

The IPC graph has the same semantics as a DFG, and
its execution models the execution of the corresponding
self-time schedule.

High Performance Embedded Computing 41

Cycle Mean

Lemma 3: The asymptotic iteration period for a strongly connected IPC graph G when actors

execute as soon as data is available at all inputs is given by [28]:

f Z H{v))
T = max %\-‘ ison € f . @
cyele Cin G L Delay (C)

The quotient in (4) is called the cycle mean of the cycle C. That is, the cycle mean of C
1s the sum of the execution times ol all vertices on C divided by the path delay of C. The entire
quantity on the RHS of (1) 1s called the “maximum cycle mean” of the strongly connected IPC
graph G _Tf the TPC graph contains more than ane SCC, then different SCCs may have different
asymptotic iteration periods, depending on their individual maximum cycle means. In such a case,
the iteralion period of the overall graph (and hence the sell-tined schedule) 1s the maximmm over

the maximum cycle means of all the SCCs of G, . This 1s because the execution of the schedule

pc -

mition for the maximum cycle mean.

High Performance Embedded Computing 42

Maximum cycle mean & Critical Cycle

denoted by A 1s the maxi-

Definition 2: The maximum cycle mean of an IPC graph G S

ipc >

mal cycle mean over all strongly connected components of G;,.: That is,

ipc -
IRRALY
_ max vison C

~ cycle Cin G | Delay (C)

max

A fundamental cycle in G, whose cycle meanisequalto A, 1s called a critical cycle of G, .

Thus the throughput of the system of processors executing a particular self-timed schedule 1s

. 1
equal to the corresponding = value.

max

High Performance Embedded Computing 43

Scheduling and graph analysis

Edges represent buffers

Edges not in a strongly connected component are not
bounded.

Simpler protocols can be used on bounded edges.

An edge is redundant if another path between the
source/sink pair has a longer delay.

In dataflow semantics. the edges between actors represent infinite buffers. Accordingly, the edges
of the TPC graph are potentially buffers of infinite size. However, from Lemma 2, the number of tokens on
each feedback edge (an edge that belongs to an SCC. and hence to some cycle) during the execution of the
IPC graph is bounded above by a constant. We will call this constant the self-timed buffer bound of that
edge. and for a feedback edge e we will represent this bound by Bg,(e) . Lemma 2 yields the following

self-timed buffer bound:

Bg(e) = min({ Delay(C)|C is a cycle that contains e }) (5)

High Performance Embedded Computing 44

Bounding Buffer Synchronization (BBS)

Feedforward edges have no such bound on buffer size; therefore for practical implementations we
need to impose a bound on the sizes of these edges. For example, Fig. 2(a) shows an IPC graph where the
IPC edge (4, B) could be unbounded when the execution time of A is less than that of B, for example. In
practice, we need to bound the buffer size of such an edge; we will denote such an “imposed” bound for a
feedforward edge e by Bge) . Since the effect of placing such a restriction includes “artificially™ con-
straining sre(e) from getting more than Bg(e) invocations ahead of sni(e) . its effect on the estimated
throughput can be modelled by adding the reverse edge d,,(snk(e), sic(e)) . where

m = Bg(e) —delay(e) .10 Gy (grey edge in Fig. 2(b)). Smce adding this edge introduces a new cycle
I Gy, . 1t may reduce the estimated throughput: to prevent such a reduction. Bg(e) mustbe chosen large

enough so that the maximum cycle mean remains unchanged upon adding d, (snk(e), sic(e)) .

(A) - - /—\I‘—\I '/t /_3:\'; - - é\'
(a) gng ’—U_B/~—/D (b) D\ 9/ ’g/“)D
m

Fig. 2. An IPC graph with a feedforward edge: (a). original graph (b). imposing bounded buffers.

High Performance Embedded Computing 45

Deriving a strongly connected
synchronization graph

D D
I
s
\ '
\ 4 ~
L] ! N\
\\ Y)D
ES_ D :J T
r A
i
¥
i 3

Figure 14. An illustration of a possible solution obtained by algorithm Convert-to-SC-graph.

High Performance Embedded Computing 46

Determine delays

Fig. 9 illustrates a solution obtained from DetermineDelays. Here we assume that 7(v) = 1, for
each vertex v, and we assume that the set of IPC edges is {e_, e, } . The grey dashed edges are the edges
added by Convert-to-SC-graph. We see that &, is determined by the cycle in the sink SCC of the origi-
nal graph; inspection of this cycle yields A

max = 4. Also, the set W, — the set of fundamental cycles

that contain e, and do not contain e, — consists of a single cycle ¢, that contains three edges. By

D D

/

N = ,/

Fig. 9. An example used to illustrate a solution obtained by algorithm DetermineDelays.

High Performance Embedded Computing 47

Determine delays

We need to add delays to the edges, corresponding to
buffer memory,

o that ensure the system will not deadlock

o That we can minimize the sum of the buffer bounds
over all the IPC edges.

We can use the added edges to help us determine these
delays.

o The added edges can be divided into disjoint sets that
help organize the graph.

We can determine the minimum delay on each edge that
ensures that the graph’s cycle mean is not exceeded.

High Performance Embedded Computing 48

‘Complete Algorithm

Function SynchironizationOptimize
Input: A DFG G and a self-timed schedule for this DFG.
Output: G, G;.and {Bg () [e1sanIPC edge in Gy, } -

1. Extract Gipe fromm G and the given parallel schedule (which specifies actor assignment to
processors and the order in which each actor executes on a processor)

2.5et G; = Gy /* Each IPC edge is also a synchronization
edge to begin with */

w2
[}
Il

. = RemoveRedundantSynchs (G;)

b
D
I

= K@s,wrchmm‘ze(@s]
5. Gy — Cunvert-io-SC-gragh (G;)
6. G; = DetermineDelays(G;)

I Remove any synchronization edges that have become redundant as a result of the appli-
cation of Convertfo-SC-graph. */

-

7. G; = RemoveRedundantSynchs (G;)

8. Calculate buffer sizes By, (e) for each IPC edge e in Gipe - (to be used for implementing
the BBS protocol) ’

a) Compute pg, (src (e).snk (e)), the path delay of a minimum-delay
path in G, direcied from sre (e) to snk(e)
b) Set By (e) = pGEtS}r(e)‘ sukcie)) + delay (e)

High Performance Embedded Computing 49

‘ Conclusions

We have addressed the problem of minimizing synchronization overhead when imple-
menting self-timed, iterative dataflow programs. We have introduced a graph-theoretic analysis
framework that allows us to determine the effects on throughput and buffer sizes of modifying the
points in the target program at which synchronization functions are carried out. and we have used
this framework to extend an existing technique — removal of redundant synchronization edges —
for noniterative programs to the iterative case, and to develop two new methods for reducing syn-
chronization overhead — resynchronization and the conversion of the synchronization graph into
a strongly connected graph. Finally, we have shown how our techniques can be combined, and
how the result can be post processed to yield a format from which IPC code can easily be gener-

ated.

High Performance Embedded Computing 50

Data dependency + Rate-monotonic

Assume that there is a set of processes with data
dependencies between them; in general, they can form
one or more subtasks.

Also assume that each CPU schedules processes rate-
monotonic scheduling.

The combination of data dependencies and rate-
monotonic scheduling makes the problem more
challenging, although tractable.

High Performance Embedded Computing

Bounds of the response times for a set of
independent processes (Lehoczky)

Suppose P1, P2, ... are a set of priority-ordered
processes allocated on the same CPU.

For a process Pi, its minimum period is pi, and its
longest computation time is ci.

Let the worst-case response time form a request of Pi to
its finish be wi

Lehoczky showed that wi is the smallest nonnegative
root of the equation

x=g(x)=ci + Z cj* [x/pj |
It can be solved with a flxed -point iteration technique.

High Performance Embedded Computing

Fixed-point iteration technique and
an example

= The fixed-point iteration technique

o w=[ci/(1- 2 cj/pj)]
@ while (w <g(w)) w = g(w)

= (example) Suppose pl1=5, c1=1, p2=37, c2=3, p3=51,
c3=16, p4=134, c4=42.
= Fixed-point iteration tells us that we only need four steps

to know that w4= 128; the x values during iterations are
104, 120, 126, and 128

High Performance Embedded Computing 53

Rate analysis (Gupta)

= Goal: identify execution Control
rates at which processes
can run while satisfying
the min-max bounds of
delays

= Model includes multiple
processes with control
dependencies.

o A CDFG-style model within
each process.

dependency

processi process?2

High Performance Embedded Computing 54

Process model

Edges are labeled with
(min,max) delays from
activation signal to start
of execution.

Process starts

executing after all its @ @
enables signals have
been ready.

[min,max]
[3.4]

[1,5]

High Performance Embedded Computing 55

Rate analysis

Delay around a cycle in the graph is X 9,.
Maximum mean cycle delay is A.

In a strongly connected graph all nodes
execute at the same rate A.

Given a producer and consumer, bounds on
rates of consumer is:

[min{r,(P),n(C)}, min{r,(P),r,(C)}]

High Performance Embedded Computing 56

Rate analysis example

Sy

SCCa

R RS
2.6
Py / [4.20] \Q,z{/*%)pg P Ps

'_[116?“() K . Do D:ﬂl §
R R BT

o

R

High Performance Embedded Computing 57

Rate analysis example

For SCCy:

For computing r;, set all the edge delays to their upper bounds.

A = maximum mean delay cycle in SCCy
2041846 64204 10420
= max ,
3 !
4
..__SCCI | = ma,x{?,lll}
A = 14.67
fAea N |
/ D% The eritical cycle is {pi — p2 = pa — p1) and
[10.20]/ ol 1
[19,18)7 r = (14.67)~" = 0.068
e /,/ P
94\/ J‘f [4, 20] For computing r,, we use the lower bounds on the edge delays.
3,10])
: : p3 Ay = maximum mean delay cycle in SC'Cy
' 104942 24443410
= max
3 ' 4

= max{7,4.75}
= 7

Thus,
ry = (1) =0.142

Hence, the rate interval for SC'C} is [0.068, 0.142].

High Performance Embedded Computing 58

Rate analysis example

8CC,
: PS o For SCCs:
; VA BN . 20+8+4 10+b+6+8+4
J L4l L_ ,’\[f" 10] r = [max{ Rl , +o +, o+ }] = 0.094
o V4 -_-.\F.__O'] \:.;g}_ . 3 5
pt f‘[53]l1sps > Pg and]
P | v — |max T+5+1 44+34+3+5+11]" — 0.931
. [3, 6]']'"\;‘. [3. 5] u = E 3) 3 = 0.2.

- P?
So, the rate interval for SC'C’ is [0.094, 0.231]. Notice that the rate intervals of the two SCCs
overlap. The rate analysis was carried out assuming that the two SCCs are completely disjoint.
The rates in SC'C are not affeeted by the edge from SCC to SCC;, however, the rate interval
for SCC5 needs to take into consideration the rate interval of the “producer” SCC. In fact, the
actual rate interval for SC'C5 is

[min{0.094, 0.068}, min{0.231, 0.142}]
e omoa o Moo 4ay
= [0.068,0.142]
Thus, the rate interval of SCC} 1s the same as that of SC'C. Notice that for the sake of clarity
of exposition, we have computed the maximum mean cycle delay using explicit enumeration of
the cycles in this example. In cur implementation, instead of explicit cycle enumeration, we use

Karp’s characterization of maximum mean cycle delay to compute the rates. O

High Performance Embedded Computing 59

Distributed system performance

Performance analysis using longest-path algorithms
don’t work under preemptive scheduling.

Several algorithms unroll the schedule to the length of
the least common multiple of the periods:

o produces a very long schedule;

o doesn’t work for non-fixed periods.

Schedules based on upper bounds may give inaccurate
results.

Simulation does not provide guarantees.

High Performance Embedded Computing 60

Using worst case delay in unrolled schedules

@ process | period | computation | allocation | deadline
@ # time
P 100 10 PE1
P, 100 10 PE1
CP? Py 150 30 PE1 45
@ P, 100 25, 35) PE2

process characteristics

Changing the computation time for Px changes the response time of P3
Even though they run on different processors.

High Performance Embedded Computing 61

Using worst case delay in unrolled schedules

P1 P3 P2
When Px computation time is 35,
10 40 45 55) o
the response time of P3 15 4.
Px
PE2 !
Pl P3 P2 | P3
I_‘LI‘!‘ .
- - When Px computation time is 25,
10 ¥ 45 50 _ N
the response time of P3 is 50.
Px
FPE2 .
!_ P3 deadline: 45!

tempaoral bhehaviar

High Performance Embedded Computing 62

A task graph and -
its implementation

PE1

distributed system

Fig. 2. A task graph and its implementation.

High Performance Embedded Computing

63

Preemptive execution hurts

= Two subtasks are divided into three processors

= Worst combination of events for P;'s response time:
o P, of higher priority
o P, initiated before P,
o causes Pg to wait for finishing P, and Ps.

= Independent tasks can interfere—can’t use longest

path algorithms.

High Performance Embedded Computing

64

Data dependencies help

= P, cannot preempt both P, and P..

= P, cannot preempt P,.
‘ = |f we ignore data dependencies, the
worst response times are

a 35 for P2
a 45 for P3

‘ = But the worst case total delay along
the path from P2 to P3 is 45 instead
of 80 (35+45)

Period Computation time

P1 80 15
P2 50 20
P3 50 10

High Performance Embedded Computing 65

‘ Separation analysis

= P5, P6:onthe same PE

= Cases 1&2: P5 will not preempt P6
because they are separated

= Cases 3&4: P5 will preempt P6.

case 1 case 2 case 3 case 4
P11 [12,15] -
P2 [5,6] [20,25] >
P3 [20,25] [5,6] [5,12] [5,8]
P4 [8,10] - [30,35]
P5 [10,10] -
P6 [10,10] -

Fig. 7. Several different schedules for a task showing different combi-
nations of execution time overlaps.

High Performance Embedded Computing 66

‘ Period shifting example

task period process CPU time

(21 (2) 73
1 150 Py 30
@ @ @ 5 P, 10
Ty 110 P3 30

CPU 1 (P1,P2)] q X

cPU2 (P3PY .

P, delayed 30 on CPU 1 due to P,

data dependency delays P; 20 more

priority of P, delays P, by preemption.

Worst case delay of task 3 is 30+30+20=80, but 30+20=50

High Performance Embedded Computing 67

Period shifting

= The delay for the preprocessors may vary from
period to period, making the request period of a
process different form the period of the task.

High Performance Embedded Computing 68

