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Topicsp

Platforms.

Performance analysis.y

Design representations.
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Embedded computing systemp g y

Requirements: tight three constraints
L tLow cost

Low power

High performanceHigh performance

These three constraints must be met simultaneously

C d i l ti H d S ftCo-design as a solution: Hardware + Software 
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Design platformsg p

Different levels of integration:
PC + board: very low volumey

Custom board with CPU + FPGA or ASIC: lower 
cost and lower-power.p

Platform FPGA: more expensive than custom 
chips.p

System-on-chip.
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CPU/accelerator architecture/

CPU is sometimes called host.
Talk to the accelerator through data 
and control registersand control registers

The registers on the accelerator 
allows the CPU to monitor the

memory

allows the CPU to monitor the 
accelerator’s operation and to give it 
commands

CPU

accelerator

Accelerator communicate via 
shared memory

If a large volume of data is needed.

May use DMA to communicate.
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Example: Xilinx Virtex-4p

System-on-chip:
FPGA fabric.

PowerPC.

On-chip RAM.On chip RAM.

Specialized I/O devices.

FPGA fabric is connected to PowerPC busFPGA fabric is connected to PowerPC bus.

MicroBlaze CPU can be added in FPGA 
fabric.
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Virtex-5
SoC Challenge: 

Create High speed frequency designg p q y g
Use very High speed communication links  
Keep flexibility for modification

Xilinx response:Xilinx response:
FPGA provides hardware structure that enables integrated 
high speed design (up to 550Mhz)
FPGA offers integrated differential solution (LVDS) for DDR 
high speed communication + Hard IP Transceiver (Up to 
3.2Gbps)p )
FPGA is by default the best hardware flexible solution 
offered through hardware reconfiguration (even partial 
reconfiguration)g )
FPGA can implement processor core as 

Soft IP core (Microblaze)
Hard IP core (PowerPC)
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Hard IP core (PowerPC)

Virtex 5: high Speed communication links
Components interconnection:

Data width may be large and may require a huge number

g p

Data width may be large and may require a huge number 
of IOBs

PCB Integrity signal 
Xilinx Sparse Chevron + LVDS
Power consumption 

LVDSLVDS

System communication
Ethernet

Xilinx includes Tri-mode MAC Hard IP (10/1000/1000Mbps) 
in Virtex4 FX and Virtex5 LXT

PCI ExpressPCI Express
Xilinx includes PCI Express Hard IP in the newest Virtex5 
LXT family.

PCI 1 2 4 d 8
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PCIe x1,x2,x4 and x8



MicroBlaze-Based Embedded Design 
(Soft IP)

Flexible Soft IPMicroBlaze™
32-Bit RISC Core

BRAM
Local Memory 

Bus

I-Cache
BRAM

Configurable
32-Bit RISC Core

Fast Simplex 

Bus
D-Cache
BRAM

Sizes

Instruction Data

PowerPC
405 Core

Dedicated Hard IP

Instruction Data

PowerPC
405 Core

Dedicated Hard IP

PowerPC
405 Core

Dedicated Hard IP

PowerPC
405 Core

Dedicated Hard IPPossible in
Virtex-II Pro

r OPBp
Link

0,1….7 A
rb

ite
r

Processor Local Bus

PLB
Bus

Bridge A
rb

ite
r

Processor Local Bus

PLB
Bus

Bridge
Bus

Bridge

Hi-Speed GB
e.g.

MHi-SpeedHi-Speed GBGB
e.g.

M
e.g.

M

A
rb

ite
r OPB

On-Chip Peripheral Bus

UART 10/100
E-Net

Memory 
Controller

Custom
Functions

Custom
Functions

Hi-Speed
Peripheral

GB 
E-Net

Memory
Controller

Hi-Speed
Peripheral
Hi-Speed

Peripheral
GB 

E-Net
GB 

E-Net
Memory

Controller
Memory

Controller

CacheLink

Off-Chip FLASH/SRAMSRAM
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Memory

PowerPC-Based Embedded Design 
(Hard IP)

RocketIO™

PowerPC
405 Core

Dedicated Hard IP
Flexible Soft IP

DSOCM
BRAM

ISOCM
BRAM

IBM CoreConnect405 Core
DCR Bus

A
rOPBer

Instruction Data

PLB
B

on-chip bus standard
PLB, OPB, and DCR

rbiter

On-Chip Peripheral Bus

OPB

A
rb

ite

Processor Local Bus

PLB
Bus

Bridge

UART GPIO
On-Chip

Peripheral
Hi-Speed

Peripheral
GB 

E-Net

e.g.
Memory

Controller

Full system customization to meet 
performance, functionality, and 
cost goals

Off-Chip
Memory

ZBT SSRAM
DDR SDRAM

SDRAM
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cost goals



Embedded Development Kitp

What is the Embedded Development Kit 
(EDK)?

The Embedded Development Kit is the XilinxThe Embedded Development Kit is the Xilinx 
software suite for designing complete embedded 
programmable systemsp g y

The kit includes all the tools, documentation, and 
IP that you require for designing systems with y q g g y
embedded IBM PowerPC™ hard processor cores, 
and/or Xilinx MicroBlaze™ soft processor cores

It enables the integration of both hardware and 
software components of an embedded system
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Embedded System Toolsy
GNU software development tools

C/C++ compiler for the MicroBlaze™ and PowerPC™ processors (gcc)C/C  compiler for the MicroBlaze and PowerPC processors (gcc)
Debugger for the MicroBlaze and PowerPC processors (gdb) 

Hardware and software development tools
B S t B ild Wi dBase System Builder Wizard
Hardware netlist generation tool: PlatGen
Software library generation tool: LibGeny g
Simulation model generation tool: SimGen
Create and Import Peripheral wizard
Xili Mi D b (XMD)Xilinx Microprocessor Debugger (XMD)
Hardware debugging using ChipScope™ Pro Analyzer cores
Eclipse IDE-based Software Development Kit (SDK)p p ( )
Application code profiling tools
Virtual platform generator: VPGen
Flash Writer utility
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Flash Writer utility



Detailed EDK Design Flowg

Standard Embedded Software Flow Standard Embedded Hardware Flow

MHS File
system.mhs

Source Code 
(C code)

MSS File

Source Code
(VHDL/Verilog)

Standard Embedded Hardware Flow

Processor IP
MPD Files

PlatGen
Compile

Object Files LibGen

MSS File
system.mss

EDIF 

Synthesis

system.ucf
FPGA Implementation

(ISE/Xflow)
Link

j

Libraries

IP Netlists

Create FPGA Programming 
(system.bit)

Data2MEMExecutable

Hardware

download.bit
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Virtex-5 LXT FPGAs

Built on Virtex 5 LX platform 65nm ExpressFabricBuilt on Virtex-5 LX platform 65nm ExpressFabric 
technology

FPGA industry’s first built-in PCIe & Ethernet blocksFPGA industry s first built in PCIe & Ethernet blocks

Compliance tested at PCISIG Plugfest and UNH IOL 

Industry’s lowest power 65nm transceivers: <100mW @Industry s lowest power 65nm transceivers: <100mW @ 
3.2Gbps

Support for all major protocols: PCIe, GbE, XAUI, OC-48, pp j p , , , ,
etc.

Six devices ranging from 30K to 330K logic cells
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Virtex summaryy
Depending of your Digital system, you may 

Xili FPGA th l ti f S tuse Xilinx FPGA as the solution for System 
On Chip.

Today Xilinx can provide in 1 component 
(Virtex4 or Virtex5):

Embedded PowerPC 405

Embedded Ethernet MAC 10/100/1000

Embedded MAC DSP

Embedded High Speed Transceivers 

E b dd d PCI E (Vi t 5 l )Embedded PCI Express (Virtex5 only)

Programmable Logic Cells
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….

Example: WILDSTAR II Prop
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Performance analysisy

Must analyze accelerator performance to determine 
s stem speed psystem speedup.

High-level synthesis helps:
Use as estimator for accelerator performance.

Use to raise the level of abstraction for hardware designers
In implementing acceleratorIn implementing accelerator.
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High-level synthesisg y

High level synthesis createsHigh-level synthesis creates 
register-transfer description 
from behavioral description.
S h d l d ll tSchedules and allocates:

Operators
Functional unit
On a particular clock cycle

Variables: registers
Connections: muxes

Control step or time step is 
one cycle in system 
controller.controller.
Components may be 
selected from technology 
library.
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library.



Data path/controller architecturep /

Data path performs 
regular operations, 
t d t i i t

controller
stores data in registers.

Controller provides 
i d irequired sequencing.

Data pathData path
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Multiplexersp

S fSharing functional units and registers

Controlled by a control FSM, which supplies the select signals 
to the muxesto the muxes.

In most cases, we don’t need demuxes at the outputs of 
shared units because the hardware is generally designed to g y g
ignore values that aren’t used on any given clock cycle.

Muxes add three types of costs to the implementation
Delay

Logic

WiringWiring

Sharing isn’t always a win
Adders get smaller and faster by not sharing
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Adders get smaller and faster by not sharing



Models

Model computation as a 
data flow graph.

Critical path is set of 
nodes on path that 
d t i h d ldetermines schedule 
length.
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Simple p
example
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Schedules

As-soon-as-possible 
(ASAP) pushes all 

d t t t f l knodes to start of slack 
region.

A l t ibl
ASAPALAP

As-late-as-possible 
(ASAP) pushes all 
nodes to end of slacknodes to end of slack 
region.

Useful for boundingUseful for bounding 
schedule length.
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First-come first-served, critical path, p

FCFS scheduling walks through data flow graph 
from sources to sinksfrom sources to sinks.

Schedules each operator in first available slot based 
on available resourceson available resources.

Because it chooses nodes at equal depth arbitrarily, it may 
delay a critical operation.delay a critical operation.

Critical-path scheduling walks through critical nodes 
first.first.
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List schedulingg

An effective heuristic that tries to improve on critical-
path scheduling by providing a more balanced 

id ti f ff iti l th dconsideration of off-critical-path nodes.
Improvement on critical path scheduling.

E ti t i t f d ff th iti l thEstimates importance of nodes off the critical path.
Estimates how close a node is to being critical by 
measuring D number of descendantsmeasuring D, number of descendants.

Node with fewer descendants is less likely to become 
critical.

Traverse graph from sources to sinks.
For nodes at a given depth, order nodes by criticality.
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For nodes at a given depth, order nodes by criticality.

Force-directed schedulingg
Tries to minimize the hardware 
cost by balancing the use of 
functional units across cycles
Forces model the connections to 
other operatorsother operators.

Forces on operator change as 
schedule of related operators 
hchange.

Forces are a linear function of 
displacement.p
Predecessor/successor forces 
relate operator to nearby 
operatorsoperators.
Place operator at minimum-force 
location in schedule.
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Distribution graphg p

Bound schedule using 
ASAP, ALAP.

Count number of 
operators of a given 
t t h i t itype at each point in 
the schedule.

W i ht b h lik lWeight by how likely 
each operator is to be at 
that time in the schedule.
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Distribution graphg p
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Distribution graphg p
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Distribution 
For each DG, the distribution in c-step i is given by

Σ DG(i) = Σ Probability (operation, i)                           (1)

We assume that each operation has a uniform
for all operation

We assume that each operation has a uniform 
probability of being assigned to any feasible control 
step.
A distribution graph shows the expected value of the 
number of operators of a given type being assigned 
to each c-stepto each c step.
As shown in Figure 7, some operation in different 
branches are mutually exclusive
Th f ti it b h d b thThe same function unit can be shared by those 
operation as they will never execute concurrently
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Distribution graphg p
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Calculation of self-forces
Each operation of the CDFG will have a self force 
associated with each c step i of its time frameassociated with each c-step i of its time frame.
This is a quantity which reflects the effect of an 
attempted control step assignment on the overallattempted control step assignment on the overall 
operation concurrency.
It is positive if the assignment causes an increase of p g
operation concurrency, and negative for a decrease.
The force is much like that exerted by a spring that 
obeys Hooke’s law.

Force = K * x,  x: displacement

E h DG b t d i f iEach DG can be represented as a series of springs 
( one for each c-step)
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Calculation of self-forces
The constant of each spring K is given by the value 
of DG(i), where i is the c-step number for which the 
f i l l t dforce is calculated.
The displacement of the spring x is given by the 
increase (or decrease) of the probability of theincrease (or decrease) of the probability of the 
operation in each c-step due to a rescheduling of 
the operation.
F i ti h i iti l ti fFor a given operation whose initial time frame spans 
c-steps t to b ( t <=b), the force in c-step i is given by

Force(i) = DG(i) * x(i)Force(i)  DG(i)  x(i)
The total self force associated with the assignment 
of an operation to c-step j (t <= j <= b)

Self Force(j) = Σ   Force(i)                                          (2)
i = t

b
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i = t

Calculation of self-forces
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Calculation of self-forces

We will attempt to schedule the circled multiply 
operation in c-step 1 as depicted in Fig. 8(b)
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Calculation of self-forces

S lf F (1) 2 833*0 5 2 333*( 0 5) 0 25Self Force(1) = 2.833*0.5 +2.333*(-0.5)=0.25
The force is positive

Thi ill h d ff t th ll di t ib tiThis  will have an adverse effect on the overall distribution

Self Force(2)= 2.833*(-0.5)+2.333*0.5= -0.25
A modification ill be propagated to the time framesA modification will be propagated to the time frames 
of the predecessor and/or successor operations
Predecessor forces and successor forcesPredecessor forces and successor forces
Succ Force(3) = 2.333*(-0.5) + 0.833*0.5 = -0.75
Total Force(2)= Self Force(2) + Succ Force(3) = 1 0Total Force(2)= Self Force(2) + Succ Force(3) = -1.0

Even better
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Summary of force-directed schedulingy g
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Path-based schedulingg
Minimizes the number of control states in 
controller.

Schedules each path independently, then p p y,
combines paths into a system schedule.

Schedule path combinations using minimumSchedule path combinations using minimum 
clique covering.

Al k f t ibl (AFAP)Also known as  as-fast-as-possible (AFAP) 
scheduling
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Path-based schedulingg
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Path-based schedulingg
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Path-based schedulingg
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AFAP Schedulingg
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AFAP scheduling of a pathg p

The ideaThe idea
Find all longest paths
Then compute the constraints for each pathe co pute t e co st a ts o eac pat
Schedule each path AFAP independently.

A path corresponds to one possible execution 
sequence
So, the number of different paths is a measure of 
how many different functions a design can performhow many different functions a design can perform.
Although the number of paths in a graph can grow 
worse than exponentially, in practice we have found 

th d f 1000 th f th ti it fon the order of 1000 paths for the execution unit of a 
microprocessor.
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Path

Path1 = {1 2 3 4 5 6 7 8 9 10}Path1 = {1,2,3,4,5,6,7,8,9,10}
Path2 = {1,2,3,4,6,7,8,9,10}
Path3 = {7 8 9 10}Path3  {7,8,9,10}
Note that path that starts at loop beginning vF must 
also be considered.
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Constraints 

Variables can be assigned only once in one control 
t tstate.

IO ports can be read or written only once in one 
control statecontrol state
Functional units can be used only once in a control 
state
The maximal delay within one control state limits the 
number of operations that can be chained.
The amount of storage and communication (busesThe amount of storage and communication (buses, 
muxes) is not constrained presently.
Obviously storage and communication can beObviously storage and communication can be 
optimized during allocation.
Constraints are kept as sets of operation {vi}
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Constraints and Interval graphg p
Variables can be assigned only once in one control state.
IO ports can be read or written only once in one controlIO ports can be read or written only once in one control 
state
Functional units can be used only once in a control stateFunctional units can be used only once in a control state
The maximal delay within one control state limits the 
number of operations that can be chained.p
The amount of storage and communication (buses, 
muxes) is not constrained presently.
Obviously storage and communication can be optimized 
during allocation.
Constraints are kept as sets of operation {vi}

If any v in {vi} is the first operation in the next state, the 
constraint is met
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constraint is met.



Interval graph and Clique g p q

Th i t l h f th t f t i t f hThe interval graph for the set of constraints of each 
path is formed

A d i i li i i dAnd a minimum clique covering is computed.

In the interval graph each node corresponds to an 
interval and edges indicate that the corresponding 
tow intervals overlaps. A clique is a complete 

b h ith ll ibl dsubgraph with all possible edges. 

A minimum clique covering (NP-complete in general) 
i i i l b f li th t h d iis a minimal number of cliques, so that each node is 
in one clique.
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Constraints and Interval graphg p
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Cut 

A cut corresponds to the set of nodes overlapped in 
each cliqueeach clique.

It represents  possible point  where a state starts.

St t d d l th thStates are ordered along the path.

In addition, a cut of the first state is added.

The cuts give the minimum number of control states 
to execute this path.

A state starts at a cut corresponding to a clique
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A minimum clique coveringq g
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Overlapping of paths pp g p

To find the minimum number of states for all paths, 
the schedule for each path must be overlappedthe schedule for each path must be overlapped.

Define another graph
Nodes: cutsNodes: cuts

Edges: join nods corresponding to overlapping cuts

Find a minim clique of this new graphFind a minim clique of this new graph
Gives the minimum set of cuts that fulfills the fastest 
schedule for each path and thus the minimum number ofschedule for each path, and thus the minimum number of 
control states.
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Minimum number of control states
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Control finite state machine
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Buidling CFSM with no area constraintg

Since states are mutually exclusive, scheduling one 
operation in more than one state.
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Accelerator estimation

E ti ti th h d t f l tEstimating the hardware cost of an accelerator 
requires balancing accuracy and efficiency.

E ti ti t b d h t idEstimation must be good enough to avoid 
misguiding the overall synthesis process.

B t th ti t t b t d i klBut the estimates must be generated quickly 
enough that co-synthesis can explore a large 
number of candidate designsnumber of candidate designs.

They just rely on scheduling and allocation to 
measure execution time and hardware sizemeasure execution time and hardware size.
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Accelerator estimation

How do we use high-level synthesis, etc. to estimate 
the performance of an accelerator?the performance of an accelerator?

We have a behavioral description of the accelerator 
functionfunction.

Need an estimate of the number of clock cycles.

Need to evaluate a large number of candidateNeed to evaluate a large number of candidate 
accelerator designs.

Can’t afford to synthesize them allCan t afford to synthesize them all.
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Estimation methods

Hermann et al. used numerical methods.
Estimated incremental costs due to adding blocks g
to the accelerator.

Henkel and Ernst used path-basedHenkel and Ernst used path based 
scheduling.

Cut CFDG into subgraphs: reduce loop iterationCut CFDG into subgraphs: reduce loop iteration 
count; cut at large joins; divide into equal-sized 
pieces.pieces.

Schedule each subgraph independently.
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Single- vs. multi-threadedg

One critical factor is available parallelism:
single-threaded/blocking: CPU waits for g g
accelerator;

multithreaded/non-blocking: CPU continues to g
execute along with accelerator.

To multithread, CPU must have useful workTo multithread, CPU must have useful work 
to do.

But software must also support multithreadingBut software must also support multithreading.
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Total execution time

Single-threaded: Multi-threaded:

P1 P1

P2 A1 P2 A1

P3 P3

P4 P4
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Execution time analysisy

Single-threaded:
Count execution time of 
all component processes

Multi-threaded:
Find longest path 
through executionall component processes. through execution.
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Hardware-software partitioningp g

Partitioning methods usually allow more than one g y
ASIC.

Typically ignore CPU memory traffic in bus yp y g y
utilization estimates.

Typically assume that CPU process blocks while yp y p
waiting for ASIC.

mem

CPU

ASIC

CPU

ASIC
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Co-design activities g
Scheduling operations, including communication on 
the network and computation on the PEs: make surethe network and computation on the PEs: make sure 
that data is available when it is needed.
Allocation computation to PE: make sure thatAllocation computation to PE: make sure that 
processes don’t compete for the PE.
Partitioning functional description into computation g p p
units: break operations into separate processes to 
increase parallelism; put serial operations in one 

t d i tiprocess to reduce communication.
Mapping: take abstract PEs and communication 
links onto specific components; mapping selectslinks onto specific components; mapping selects 
specific components that can be associated with 
more precise cost, performance, and power
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Scheduling and allocation

Must 
schedule/allocate

P1
P2

computation

communication

P1

P3communication

Performance may 
vary greatly withvary greatly with 
allocation choice.

P1 P3P1 P2 P3

CPU1
ASIC1
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/Problems in scheduling/allocation
Can multiple processes execute concurrently?

Is the performance granularity of available 
components fine enough to allow efficient search of 
the solution space?

Do computation and communication requirements 
conflict?

How accurately can we estimate performance?
software

custom ASICs
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Partitioning example

r = p1(a,b);

r=p1(a,b); s=p2(c,d);

r  p1(a,b);
s = p2(c,d);

z = r + s;

z = r + s

before
ft

z  r  s

after
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Problems in partitioning

At what level of granularity must partitioning 
be performed?

How well can you partition the system without 
an allocation?an allocation?

How does communication overhead figure 
into partitioning?into partitioning?
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Problems in mapping

Mapping and allocation are strongly 
connected when the components vary widely 
in performance.

Software performance depends on busSoftware performance depends on bus 
configuration as well as CPU type.

Mappings of PEs and communication linksMappings of PEs and communication links 
are closely related.
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Program representationsg p

CDFG: single-threaded, executable, can 
extract some parallelism.

Task graph: task-level parallelism, no 
operator-level detailoperator level detail.

TGFF (task graph for free) generates random task 
graphsgraphs.

UNITY: based on parallel programming 
llanguage.
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Platform representationsp

T h l t blTechnology table 
describes PE, channel 
characteristics

Type Speed cost

ARM 7 50E6 10characteristics.
CPU time.
Communication time.

MIPS 50E6 8

Cost.
Power.

PE 2
Multiprocessor 
connectivity graph 
describes PEs

PE 1

describes PEs, 
channels. PE 3
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