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23. Derive equation (1) at the end of this section. Hint: Write e " = H(t)e™® + H(—1t)e*. To evaluate
F{H(—=1)e”}, notice that, if f(t) = H(t)e ™™, H(—=t)e* = f(—1), and use the time reversal property of the
Fourier transform.

24. Derive equation (2). Hint: Let F(w)= Z{e¢™*} and compute F'(w) = —i[*_te"*¢™* dr. Integrate by
parts using u = e~ and dv = te™* dr. Use the fact that a is positive to obtain the differential equation

F'(w) = =(w/2a)F(w). Solve this separable differential equation and use the fact that [ e™* dx = 1/x to
determine the constant of integration.

17.10 additional Properties ~ 4€ wha /m}' oj' (tgl) in p.30é

of the Fourier Transform

n“*

In this section, we will derive some of the operational formulas needed to use the ﬂ,l'.*‘ .}
[ )

Fourier transform to solve differential equations. As usual, /™ denotes the nth de-
rivative of f, with the convention that f® = f.

(THEOREM 17.18 Differentiation in the Time Variable
Let n be a positive integer. Suppose that ‘“" is Fiecewise continuous on every interyal
[—a, a] and that [?_|/"~!)(¢)| dt converges. Assume that

v it bt B . -

lim f®() = lim f®(;) =0

1= ® ==

e e TS R ),
fork=0,1,2...,n — 1. Finally, let ?{{(I)} = F(w). m
F{f M)} = (i0)'F (o)

w—-

- In particular,

F{f'(t)) =iwF(w) and F{f"()} = —w?’F(w).
~ Proof We will prove the theorem for the case n = 1: the general result can be proved

by mathematical induction. The hypotheses of the theorem ensure existence of the
W’. Integrate by parts to ge ,
?‘w‘
© a 4‘.\,4 gt

ﬁ{f’([)} ,(t)e.’iw dt [dv = f’([) dt, U= e—ia)t]

F(O)(=iw)e™ dt.

Since /© = £, we have by assumption that

im0 = im f0=0 (=3[ Het| J:l*)

-00

“Further, |e™'| = |cos(wt) — i sin(wt)| = 1 for all real @ and ¢. Thus,

@

g (t)e“'“"} =0,

—x
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and the integration by parts yields
F{f@) = iwf S(t)e it dr = ioF(w),

as was to be proved. u

THEOREM 17.19 Differentiation in the Time Variak

{ € L' (‘ “) ”) Jupposglthat f satisfies the h Dotheses of Theorem 17.10 and that J()—>0ast—
: gndalsodaS7= —oo. Suppose that T e o ———ms,oXCePt at finitely many points 7. Tor
Fhoo btk bft T and that f has julTe T A AL PO T, To!
and wpdt deiirod. ves G = [(1+) — f(t,—) |
. B RS =
(‘ - f,‘.. /‘. s, t{l'xs is the size of the jump at 1,). Finally, let F{f)} = F(w).
. . 3 7 . 4
: m,“um) ' 3 F{f )} ="UF(@)'—kZ age 'm“‘j

Proof We will suppose that f has just one jump discontinuity, at lo,Witha = f(t,+)
= f(to=). In the case in which f has more discontinuities, the argument simply
involves more of the kind of calculation we will now do. Integrate by parts to get

g{f’(t)} = fw f’(t)e‘iw' dt = f‘“ f’([)e—iwt dt + f C,Oj"r(l)e—it.m dtv

f(t)e""‘":llo iw f,o f(t)e™ " gt
7 iw fwf(r)e“'”’ dt

+ iw f f(t)e™it dr

to

= f(to=)e w0 _ f(to+)e~ i@ o jo, foo f(t)e i gy

= =[S(to+) = f(to=)]e 0 4 iwF(w)

= iwF(w) — ge™i@0, 4

EXAMPLE 17.26
Solve the first order differential equation

y' - 4y = H([)e_‘“, -0 <t <o,
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X4 (4 X1 (jo)
BT
: e ul
4____,57 T1 T1

oo
' X_Z“)* Xo(jo)
= =X = x|V da
w=-f Lo /W/w 1
T ™ S
W W
° t ' W o W =

Figure 4.17  Relationship between the Fourier transform pairs of eqs. (4.36)
and (4.37).

The two Fourier transform pairs and the relationship between them are depicted in
Figure 4.17.

The symmetry exhibited by these two examples extends to Fourier transforms in
$‘ general. Specifically, because of the symmetry between eqs. (4.24) and (4.25), for any
transform pair, there is a dual pair with the time and frequency variables interchanged.
This is best illustrated through an example.

k=0 Example 4.13 CM‘J‘}“‘{ I)

Let us consider using duality to find the Fourier transform G(jw) of the signal

x 4
3

8(t) = 1+

. In Example 4.2 we encountered a Fourier transform pair in which the Fourier transform,
as a function of w, had a form similar to that of the signal x(¢). Specifically, suppose we
consider a signal x(r) whose Fourier transform is

X(jw) =

1 +w?
Then, from Example 4.2,

2
l + w2’

4y &) — )]
HH 2 b [ = 7 )
Methed I : ¢ L Trat =4 grrer ~ 5> @

x(f) = e‘lfh_i; X(jw) =
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The synthesis equation for this Fourier transform pair is

e LJ“’ 2\ et
e i e e!'dw.

Multiplying this equation by 27r and replacing f by —¢, we obtain

© 2 )
eIl = [ (1 + wz)e"‘”d(u.

Now, interchanging the names of the variables r and w, we find that

2773—]“’] = J (1—_3—;5>€vjwldt. (4.38)

The right-hand side of eq. (4.38) is the Fourier transform analysis equation for 2/(1 + £?),
and thus, we conclude that

The duality property can also be used to determine or to suggest other properties of
Fourier transforms. Specifically, if there are characteristics of a function of time that have
implications with regard to the Fourier transform, then the same characteristics associated
with a function of frequency will have dual implications in the time domain. For example,
in Section 4.3.4, we saw that differentiation in the time domain corresponds to multiplica-
tion by jw in the frequency domain. From the preceding discussion, we might then suspect
that multiplication by jt in the time domain corresponds roughly to differentiation in the
frequency domain. To determine the precise form of this dual property, we can proceed
in a fashion exactly analogous to that used in Section 4.3.4. Thus, if we differentiate the
analysis equation (4.25) with respect to w, we obtain

That is,

dx
ar

_E., j-co ng)

— jtx(t)e /*'dt. (4.39)

dX(jo) _ f”’
do

—00

b Y
— (L)) (4.40)

dw

Similarly, we can derive the dual properties of eqs. (4.27) and (4.32):

A/Q‘),/.o’

X4 _Z':-; e:y ﬁﬁxyw) =@Tefwofx<t) & X0 spm L P D,f(f/.sl)

and

- 4

—¢®

72‘ / 1 F
xq;,]r __;J-K“x‘g‘d) + % *ﬁx(t) + 7x(0)6(1) «— J

@

x(m)dn. (4.42)

K X(s) £¢2) J/(”, yx7 C/uvf) P 6sr)

1

6§
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4.3.7 Parseval’s Relation

If x(#) and X(jw) are a Fourier transform pair, then

+%0 1 +%
(_{% xe[, oo ) LO |x()|*dt = = [m X(jo)ldw. (4.43)

Xe€L o 50

his expression, referred to as Parseval’s relation, follows from direct application of the

Fourier transform. Specifically,

+oo

j m|x(t)|2dt = f x(1)x*(t)dt

0y

L xx(t) {%f OOX*(jw)ej“”dw}dt.

—0o0

Cu-cﬁ:/

Reversing the order of integration gives

J mlx(t)lzdt = %f acX*(jw)“ ocx(t)e"f‘"’a't}dcu.

—0

The bracketed term is simply the Fourier transform of x(¢); thus,
+x 1 +%
f x(fdr = — [ X(jw)ldw.
5 27 )

The term on the left-hand side of eq. (4.43) is the total energy in the signal x(z).
Parseval’s relation says that this total energy may be determined either by computing the
energy per unit time (|x(r)|*) and integrating over all time or by computing the energy per
unit frequency (|X(jw)|*/27r) and integrating over all frequencies. For this reason,
is often referred to as the energy-density spectrum of the signal x(t). (See also Problem
4.45.) Note that Parseval’s relation for finite-energy signals is the direct counterpart of

é@ w ion for periodic signals (eq. 3.67), which states that the average power ol
periodi® signal ¢q Aun,of the av powers of its individual harmonic compo-
nent; m gmtudes of the Fourier series coefficients.

1q ,"
-Qe v e " lpdee. . oA (AVE >
in -bex §

"r,

74

N b { g
JM“’\‘ L ixgwltaer | xgwlde

= § | “"%

‘ & ’ iy (- ‘.A " : ‘((‘ '
:;;;I(X")“‘)l‘-*#' ,- w|'a 4 |

| >
_.T‘L ‘)((}dy)( 4
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Since y(t) and its Fourier transform Y (jw) are related by

i) = 2]77 f Y(jw)e® dw, (4.50)

—o0

we can identify Y(jw) from eq. (4.49), yielding

Y(jo) = X(jo)H(jo). (4.51)

As a more formal derivation, we consider the convolution integral

We desire Y (jw)

y(t) = Jw x(T)h(t — T)dT. (4.52)
ael/ 9/014»14/

el i f- x) Aé L/ C-a) “)
Y(jw) = F{y@®)} = J U x(T)h(t — T)d’r}ej“”dt. (4.53)

, which is

— % —

Interchanging the order of integration and noting that x(7) does not depend on ¢, we have

vadid
hel ondas dunded

on (-o0,)

—oC — 00

Y(jw) = f ’ x(7) U mh(t - T)e*fw'dr}d»r. (4.54)

By the time-shift property, eq. (4.27), the bracketed term is e /“7H(jw). Substituting this
into eq. (4.54) yields

Y(jw) = [

+oc +oo

x(T)e *TH(jw)dT = H(jw) J x(T)e “Tdr. (4.55)

—oc —

Rl (AIL . | |
= The integral is X]
pﬂ[ﬁt)] = j J[(i).é”’f#
p o

That is,

Lol e -
UT UIC T OULICT

Jjw), and hence,

= Y(jw) = H(jw)X( jw).<7f)ow\ Y= H XU))

Fés) . .
. . wsal Y1) = h(t) * x(1) «— Y(jo) = H(jo)X(jw). (4.56)
frmce, /},/ 1 )2 =i,
~ay Equation (4.56) is of major importance in signal and system analysis. As expressed
F</ i F ) ] in this equation, the Fourier transform maps the convolution of two signals into the product
of their Fourier tfansforms. H(jw), the Fourier transform of the impulse response, is the

g2 .-_-/‘U frequency respﬁoj:e as defined in eq. (3.121) and captures the change in complex amplitude

nsform of the input at each frequency w. For example, in frequency-

selective filtering we may want to have H(jw) = 1 over one range of frequencies, so that
the frequency components in this band experience little or no attenuation or change due to
the system, while over another range of frequencies we may want to have H(jw) = 0, so

that components

in this range are eliminated or significantly attenuated.
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The frequency response H(jw) plays as important a role in the analysis of LTI sys-
tems as does its inverse transform, the unit impulse response. For one thing, since A(?)
completely characterizes an LTI system, then so must H(jw). In addition, many of the
properties of LTI systems can be conveniently interpreted in terms of H(jw). For exam-
ple, in Section 2.3, we saw that the impulse response of the cascade of two LTI systems
is the convolution of the impulse responses of the individual systems and that the over-
all impulse response does not depend on the order in which the systems are cascaded.
Using eq. (4.56), we can rephrase this in terms of frequency responses. As illustrated in
Figure 4.19, since the impulse response of the cascade of two LTI systems is the con-
volution of the individual impulse responses, the convolution property then implies that
the overall frequency response of the cascade of two systems is simply the product of
the individual frequency responses. From this observation, it is then clear that the overall
frequency response does not depend on the order of the cascade.

= @,_u) */L,dr))* xct)

-
==

u

YROPRET

(t) =——{ Hi(jo) > Ho(jw) > y(t)
(@)
(t) | H 1 (j 00)Hoj 0) frmmeeee— /(1)
(b)
X(t) ] Hy(jo0) > H,(jw) > y(t) Figure 4.19 Three equivalent LTI
' systems. Here, each block represents
an LTI system with the indicated
(c) . frequency response.

As discussed in Section 4.1.2, convergence of the Fourier transform is guaranteed
only under certain conditions, and consequently, the frequency response cannot be defined
for every LTI system. If, however, an LTI system is stable, then, as we saw in Section 2.3.7
and Problem 2.49, its impulse response is absolutely integrable; that is,

J x |h(n)|dt < . (4.57)

Equation (4.57) is one of the three Dirichlet conditions that together guarantee the exis-
tence of the Fourier transform H ( Jjw) of h(r). Thus, assuming that h() satisfies the other
two conditions, as essentially all signals of physical or practical significance do, we see
that a stable LTI system has a frequency response H(jw).

In using Fourier analysis to study LTI systems, we will be restricting ourselves
to systems whose impulse responses possess Fourier transforms. In order to use trans-
form techniques to examine unstable LTI systems we will develop a generalization of
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