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Example 4.17

Consider an integrator—that is, an LTI system specified by the equation
t
y(t) = j x(T)dr.

The impulse response for this system is the unit step u(t), and therefore, from Exam-
ple 4.11 and eq. (4.33), the frequency response of the system is

B o e
j(U

Then using eq. (4.56), we have
Y(jw)

I

H(jo)X(jw)
1
T .
oo X(0) + TX(j0)b (@)
1
= —X(jw) + mX(0)5(w),
Jw
which is consistent with the integration property of eq. (4.32).

Example 4.18

As we discussed in Section 3.9.2, frequency-selective filtering is accomplished with an
LTI system whose frequency response H(jw) passes the desired range of frequencies and
significantly attenuates frequencies outside that range. For example, consider the ideal
lowpass filter introduced in Section 3.9.2, which has the frequency reponse illustrated in
Figure 4.20 and given by

1 |o| <o,
0 |w|>w’

H(jw) = { (4.63)
Now that we have developed the Fourier transform representation, we know that the
impulse response A(t) of this ideal filter is the inverse transform of eq. (4.63). Using the
result in Example 4.5, we then have

sinw, .t

h(t) = = (4.64)

which is plotted in Figure 4.21.
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Figure 4.20 Frequency response of an ideal lowpass filter.
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Figure 4.21 Impulse response of an ideal lowpass filter.

From Example 4.18, we can begin to see some of the issues that arise in filter design
that involve looking in both the time and frequency domains. In particular, while the ideal
lowpass filter does have perfect frequency selectivity, its impulse response has some char-
acteristics that may not be desirable. First, note that A(r) is not zero for t < 0. Consequently,
the ideal lowpass filter is not causal, and thus, in applications requiring causal systems,
the ideal filter is not an option. Moreover, as we discuss in Chapter 6, even if causality
is not an essential constraint, the ideal filter is not easy to approximate closely, and non-
ideal filters that are more easily implemented are typically preferred. Furthermore, in some
applications (such as the automobile suspension system discussed in Section 6.7.1), oscil-
latory behavior in the impulse response of a lowpass filter may be undesirable. In such
applications the time domain characteristics of the ideal lowpass filter, as shown in Fig-
ure 4.21, may be unacceptable, implying that we may need to trade off frequency-domain
characteristics such as ideal frequency selectivity with time-domain properties.

For example, consider the LTI system with impulse response

h) = o). + cansat (4.65)
The frequency response of this system is Jl/ H ¢s)
.S‘sj‘a)
jw) = . .66
H(jw) ol (4.66)

Comparing egs. (3.145) and (4.66), we see that this system can be implemented with
the simple RC circuit discussed in Section 3.10. The impulse response and the magnitude
of the frequency response are shown in Figure 4.22. While the system does not have the
strong frequency selectivity of the ideal lowpass filter, it is causal and has an impulse
response that decays monotonically, i.e., without oscillations. This filter or somewhat more
complex ones corresponding to higher order differential equations are quite frequently
preferred to ideal filters because of their causality, ease of implementation, and flexibility
in allowing trade-offs, among other design considerations such as frequency selectivity
and oscillatory behavior in the time domain. Many of these issues will be discussed in
more detail in Chapter 6.

The convolution property is often useful in evaluating the convolution integral—i.e.,
in computing the response of LTI systems. This is illustrated in the next example.
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Figure 4.22 (a) Impulse response of the LTI system in eq. (4.65);
(b) magnitude of the frequency response of the system.
Example 4.19 ( Ura ézwo/aca. 7;:\.:.;,[»&)
Consider the response of an LTI system with impulse response
W) = e ut), a>0 ¢ Callsald
Y(‘)"_‘ HU) XCI) to the input signal ( ? + Ay =X, yCQ)=D>
/ x(t) = e ®u@t), b>0.
/‘/(f T — . B . .
Sta Rather than computing v(¢) = x(¢) * h(t) directly, let us transform the problem into the

frequency domain. From Example 4.1, the Fourier transforms of x(r) and h(t) are

XO)= -—[_—

Sté X(je) = 3o
and
= [0 = Hoy) X&) Hio) =
_ l Therefore,
T (Sta) seb) Y(jw) = - (4.67)

(a+ jo)b+ jw)

? %d) - of -(0’ Cs )J To determine the output y(r), we wish to obtain the inverse transform of Y(jw).

This is most simply done by expanding Y (jw) in a partial-fraction expansion. Such
expansions are extremely useful in evaluating inverse transforms, and the general
method for performing a partial-fraction expansion is developed in the appendix. For this
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San m«-'f = sin w, ¢
I* > - om 2

The filter output y(¢) will therefore be the convolution of two sinc functions, which, as we
now show, also turns out to be a sinc function. A particularly convenient way of deriving
this result is to first observe that

—ece < A < co

Y(jo) = X(jw)H(jw),
where
. 1 |o| = o;
X(jw) = !
(o) { 0 elsewhere
and
. 1 ]w| = w,
H(jw) = =
(o) { 0 elsewhere
Therefore,
” 1 |(l)[ = wy
Y(jw) = :
(o) { 0 elsewhere
where w is the smaller of the two numbers w; and w.. Finally, the inverse Fourier trans-
form of Y(jw) is given by
sinw.t .
: fw, = w;
) b 7T
)(t) sinw;t .
fw, = w,
Tt

That is, depending upon which of w. and w; is smaller, the output is equal to either x(r)
or h(t).

4.5 THE MULTIPLICATION PROPERTY

froof of 490)

Fl= Xf/*)] - "“’)

Fld] =

FlLob¥ pc:bj ,S‘gm) P&*’) = F [ sob /:abj

The convolution property states that convolution in the time domain corresponds to mul-
tiplication in the frequency domain. Because of duality between the time and frequency
domains, we would expect a dual property also to hold (i.e., that multiplication in the time
domain corresponds to convolution in the frequency domain). Specifically,

(4.70)

I
r(t) = s(p(n) «—= R(jw) = %J S(jOP(j(w—6))db

This can be shown by exploiting duality as discussed in Section 4.3.6, together with the
convolution property, or by directly using the Fourier transform relations in a manner anal-
ogous to the procedure used in deriving the convolution property.

Multiplication of one signal by another can be thought of as using one signal to scale
or modulate the amplitude of the other, and consequently, the multiplication of two sig-
nals is often referred to as amplitude modulation. For this reason, eq. (4.70) is sometimes

= ;’[mSw) — P(,i)] =
;,Lt ASJ(/»):! Pﬁ‘w)

> FSobpomie] - s « po

Fea Ca ¥ pnw)
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referred to as the modulation property. As we shall see in Chapters 7 and 8, this property
has several very important applications. To illustrate eq. (4.70), and to suggest one of the
applications that we will discuss in subsequent chapters, let us consider several examples.

Example 4.21

Let 5(7) be a signal whose spectrum S(jw) is depicted in Figure 4.23(a). Also, consider
the signal

p(t) = coswyt.
Then
P(jw) = mé(w — wo) + mé(w + wo),
as sketched in Figure 4.23(b), and the spectrum R(jw) of r(f) = s(t)p(t) is obtained by
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Figure 4.23 Use of the multiplication property in Example 4.21: (a) the
Fourier transform of a signal s(t); (b) the Fourier transform of p(t) = cos wyt;
(c) the Fourier transform of r(t) = s(t)p(t).
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an application of eq. (4.70), yielding

+ o0

. 1 . .
R(w) = y SGOP((w — 0))do
1 —o0
= 350 = w0) + 35(j(w + wo) @71)

which is sketched in Figure 4.23(c). Here we have assumed that wy > w;, so that the
two nonzero portions of R(jw) do not overlap. Clearly, the spectrum of r(¢) consists of
the sum of two shifted and scaled versions of S(jw).

From eq. (4.71) and from Figure 4.23, we see that all of the information in the
signal s(¢) is preserved when we multiply this signal by a sinusoidal signal, although the
information has been shifted to higher frequencies. This fact forms the basis for sinu-
soidal amplitude modulation systems for communications. In the next example, we learn
how we can recover the original signal s(¢) from the amplitude-modulated signal r(¢).

Example 4.22

Let us now consider r(¢) as obtained in Example 4.21, and let
gy = w1 Opit)y

where, again, p(f) = coswyt. Then, R(jw), P(jw), and G(jw) are as shown in
Figure 4.24.

From Figure 4.24(c) and the linearity of the Fourier transform, we see that g(f)
is the sum of (1/2)s(¢) and a signal with a spectrum that is nonzero only at higher frequen-
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Figure 4.24  Spectra of signals considered in Example 4.22: (a) R(jw);
(b) P(jw); (c) G(jw).
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shift the spectrum of the signal appropriately, using the principles of sinusoidal amplitude

modulation.

For example, consider the system shown in Figure 4.26. Here, an input signal
x(f) is multiplied by the complex exponential signal e/“<!. The resulting signal is then
passed through a lowpass filter with cutoff frequency wy, and the output is multiplied by
e~ /@< The spectra of the signals x(z), y(r), w(r), and f(¢) are illustrated in Figure 4.27.
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Figure 4.26 Implementation of a bandpass filter using amplitude modula-
tion with a complex exponential carrier.
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Figure 4.27  Spectra of the signals
in the system of Figure 4.26.
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Specifically, from either the multiplication property or the frequency-shifting property it
follows that the Fourier transform of Wt = e/ x(¢) is

Yjw) = J

+oo

860 — w)X(w — 6)do

so that Y(jw) equals X(jw) shifted to the right by w. and frequencies in X(jw) near
® = w. have been shifted into the passband of the lowpass filter. Similarly, the Fourier
transform of f(£) = e ™ “'w(z) is

F(jw)=W(jlw+w,)),

so that the Fourier transform of F (Jw) is W (jw) shifted to the left by w.. From Figure 4.27,
we observe that the overall system of Figure 4.26 is equivalent to an ideal bandpass fil-
ter with center frequency —w, and bandwidth 2w, as illustrated in Figure 4.28. As the
frequency w, of the complex exponential oscillator is varied, the center frequency of the
bandpass filter varies.

H(jw)

l

P $! ®  Figure 4.28 Bandpass filter equiva-
<%0 lent of Figure 4.26.

In the system of Figure 4.26 with x(1) real, the signals y(¢), w(z), and f () are all
complex. If we retain only the real part of f(#), the resulting spectrum is that shown in
Figure 4.29, and the equivalent bandpass filter passes bands of frequencies centered
around w, and —w,, as indicated in Figure 4.30. Under certain conditions, it is also possi-
ble to use sinusoidal rather than complex exponential modulation to implement the system
of the latter figure. This is explored further in Problem 4.46.
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Figure 4.29  Spectrum of Re{f(t)}
[+-200- [+-200- associated with Figure 4.26.
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- 2wg | 2w filter for Re{f(t)} in Figure 4.29.
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4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER TRANSFORM PAIRS

In the preceding sections and in the problems at the end of the chapter, we have consid-
ered some of the important properties of the Fourier transform. These are summarized in
Table 4.1, in which we have also indicated the section of this chapter in which each prop-
erty has been discussed.

In Table 4.2, we have assembled a list of many of the basic and important Fourier
transform pairs. We will encounter many of these repeatedly as we apply the tools of

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM
Section Property Aperiodic signal Fourier transform
x(1) X(jw)
y() Y(jow)
43.1 Linearity ax(t) + by(t) aX(jw) + bY(jw)
432 Time Shifting x(t — 1) e /X (jw)
436 Frequency Shifting e/ x(¢t) X(j(w — wy))
433 Conjugation x(1) X'(—jw)
435 Time Reversal x(—1) X(—jw)
435 Time and Frequency x(at) |—1—1X (ﬁ)
Scaling - 4
44 Convolution x(t) * y(t) X(jw)Y(jw)
45 Multiplication X(0)¥(2) >~ J X(jO)Y(j(w — 6)d6
(*) 434 Differentiation in Time %x(t) joX(jo)
434 Integration J x(t)dt jLwX(jw) + 7X(0)0(w)
P .
OK) 436  Differentiation in £x(0) jdiX( jo)
Frequency &
X(jo) = X'(~ jw)
Re{X(jo)} = Re{X(— jo)}
433 Conjugate Symmetry x(1) real In{X(jw)} = —Im{X(— jw)}
for Real Signals X(jo)| = [X(— jo)|
IX(jw) = —4X(~ jw)
433 Symmetry for Real and  x(¢) real and even X(jw) real and even
Even Signals
433 Symmetry for Real and  x(¢) real and odd X(jw) purely imaginary and odd
Odd Signals
(1) = &v{x(t (1) real Re{X(j
433 Even-Odd Decompo- xel1) Va0 (X0 reall . ol (](.u)}
sition for Real Sig- xXo(t) = Od{x(’)} [x(f) real] ]g%{X(_/a))}
nals
43.7 Parseval’s Relation for Aperiodic Signals

4o

- o

5 1 . b
f [x(D)]*dr = EI X(jo)dw

(*) V*/dJ 4 X hag ﬂo.)‘bhy; J,.'Ja"*,;wu"?

® X

- o

= faa'mb & = é?ff’"“) =-j ﬁxe
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Fourier series coefficients

Signal Fourier transform (if periodic)
i ) o=
Z ag et 27 z ad(w — kawg) ag
k=—c k=—o
el 278 (w — wg) o =1
a, = 0, otherwise
a = a | = B
cos wot 78 (w — wg) + 8w + wy)] 2
a, = 0, otherwise
1
a, = —d-y =
sin wot 2[5(60 —wy) — 8(w + wo)] ! '
J a;, = 0, otherwise
a=1 a =0 k#0
x(1) = 1 27 6(w)

this is the Fourier series representation for
any choice of T > 0

Periodic square wave
M < T,

1’ + o . .
i :\o, gy 2sinkaoly o gy @000 G (konl): sin kwo T,
= k s o
and k=i
x(t+T) = x(t)
S 21 2k 1
”;5(: —nT) E AZXSQU - T) a = o forallk
1, lfl<T, 2sinwT),
x(t) bt | o
0, lf>T, w
sin Wt } L o<W
X(jow) = ! _
it 0, |wl>Ww
8(1) 1 _
1
u(t) — + 7o) _
Jw
ot — 1) e /@ -
“u(r), Refa} > 0 ' B
S R a+ jw
[1'(!1 (t)(R{}>O —1._; B
e "u(r), Rela T
(TI:HI_I;'("'“(I), o B
Refa} >0 (a+ jw)
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Fourier analysis in our examination of signals and systems. All of the transform pairs,
except for the last one in the table, have been considered in examples in the preceding
sections. The last pair is considered in Problem 4.40. In addition, note that several of
the signals in Table 4.2 are periodic, and for these we have also listed the corresponding
Fourier series coefficients.

4.7 SYSTEMS CHARACTERIZED BY LINEAR CONSTANT-COEFFICIENT
DIFFERENTIAL EQUATIONS

Now casal-

J«m&f)‘iow

As we have discussed on several occasions, a particularly important and useful class
of continuous-time LTI systems is those for which the input and output satisfy a linear
constant-coefficient differential equation of the form

N k M k
d*y(r) d*x(t)
N e e b e B
. Zkzoak dik Zk_o K drk el

In this section, we consider the question of determining the frequency response of
such an LTI system. Throughout the discussion we will always assume that the
frequency response of the system exists, i.e., that eq. (3.121) converges.

There are two closely related ways in which to determine the frequency response
H(jw) for an LTI system described by the differential equation (4.72). The first of these,
which relies on the fact that complex exponential signals are eigenfunctions of LTI
systems, was used in Section 3.10 in our analysis of several simple, nonideal filters.
Specifically, if x(1) = /!, then the output must be y() = H(jw)e/". Substituting these
expressions into the differential equation (4.72) and performing some algebra, we can
then solve for H(jw). In this section we use an alternative approach to arrive at the same
answer, making use of the differentiation property, eq. (4.31), of Fourier transforms.

Consider an LTI system characterized by eq. (4.72). From the convolution property,

Y(jw) = H(jw)X(jw),
or equivalently,

Yii
Hg= (4.73)

(Jw)
where X(jw), Y(jw), and H(jw) are the Fourier transforms of the input x(z), output y(z),

and impulse response h(t), respectively. Next, consider applying the Fourier transform to
both sides of eq. (4.72) to obtain

N k M k
d*y(t) d xlt)
S{kz”ak__dfk } = s}[;)m sl (4.74)
From the linearity property, eq. (4.26), this becomes

S dyn| & d* x(1)
Zw[ = => bd e i 4.75)
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and from the differentiation property, eq. (4.31),

N M
> a(jo)Y(jw) = > bi(jw)X(jw),
k=0

k=0

or equivalently,

N
Y(jw)[z ak(jw)"} = X(jo)
k=0

M
. bkuw)"}.
k=0
Thus, from eq. (4.73),

Y)Y obi(jw)k

H(j = = ;
S (77 ma s 4 )

(4.76)

Observe that H(jw) is thus a rational function; that is, it is a ratio of polynomials
in (jw). The coefficients of the numerator polynomial are the same coefficients as those
that appear on the right-hand side of eq. (4.72), and the coefficients of the denominator
polynomial are the same coefficients as appear on the left side of eq. (4.72). Hence, the
frequency response given in eq. (4.76) for the LTI system characterized by eq. (4.72) can
be written down directly by inspection.

Remark
"
Causal . > 4. 2% = xb
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