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TABLE 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM
Section  Property Aperiodic Signal Fourier Transform
x[n] X(ej‘”)} periodic with
yln] Y(ef“f) period 277
.32 Linearity ax[n] + by[n] aX(e’’) + bY(e'*)
533 Time Shifting x[n — ng) e em X (/@)
533 Frequency Shifting e/ x[n] X(e/ @ w0)
5.3.4 Conjugation x'[n] X*(e /)
5.3.6 Time Reversal x[—n] X(e 7?)
537 Time E . [n] x[n/k], if n = multiple of k X(e/ )
3 ime Expansion n] =
s 0 0, if n # multiple of k ¢
5.4 Convolution x[n] * y[n] X(e™*)Y (')
5.5 Multiplication x[n]y[n] 2—1~f XYY (e )dp
T Jom
535 Differencing in Time x[n] — x[n— 1] (1 - e /)X(e!)
n 1 )
. i
5.35 Accumulation kZ; x[k] T X(e’?)
+7X(e”) D 8w — 2mk)
k=0
Jjw
5.3.8 Differentiation in Frequency  nx[n] J d)iz’(z) )
X(e’®) = X*(e /)
Re{X(e/®)} = Re{X(e 7))
534 Conjugate Symmetry for x[n] real Im{X(e*)} = —Im{X (e /*)}
Real Signals [X(e#)| = |X(e )|
IX(e™) = =4 X(e ')
534 Symmetry for Real, Even x[n] real an even X(e’?) real and even
Signals
534 Symmetry for Real, Odd x[n] real and odd X(e’*) purely imaginary and
Signals odd
534 Even-odd Decomposition xe[n] = &{x[n]} [x[n] real] Re{X(e’®)}
pl i celivinals %,[n] = Od{x[n]} [x[n] real] JImiX(e')}
539 Parseval’s Relation for Aperiodic Signals

+oc

n=-w

S el = 5o [ e pde

a duality relationship between the discrete-time Fourier transform and the continuous-time

Fourier series. This relation is discussed in Section 5.7.2.

5.7.1 Duality in the Discrete-Time Fourier Series

Since the Fourier series coefficients a; of a periodic signal x[n] are themselves a periodic
sequence, we can expand the sequence ay in a Fourier series. The duality property for
discrete-time Fourier series implies that the Fourier series coefficients for the periodic se-
quence ay are the values of (1/N)x[—n] (i.e., are proportional to the values of the original



TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal Fourier Transform Fourier Series Coefficients (if periodic)
N ) el 2k
Z ake”(Z"/N’” 2 Z ad (w _ %) a
k=(N) K=-o
@ w, ="
: = I, k=mm=*=Nm=*2N, ...
olwon 2 Z 8w — wy — 27l) ag =
Ja 0, otherwise
(b) ‘2“—72 irrational > The signal is aperiodic
@ wy =
+oo L = + E +m -
cos won T Z{S(w—w0-2rrl)+8(w+w0 - 27l)} g = k=*m*tm=N tm=*2N,. ..
[=—o 0, otherwise
(b) 5% irrational 3> The signal is aperiodic
_ 2mr
(@ wy =%
e 5!7 k=nrr*xNr*2N,. ..
sinwgn zZ{S(w—w()—27rl)—3(w+w0—2771)} ay =4 -1 k= —p p+N_-r+2N ...
J |=- 2;’ ’ , ’
0, otherwise
(b) ;’—72 irrational > The signal is aperiodic
(e I, k=0%N, £2N,. ..
x[n] = 1 2 > 8w - 2ml) a =
e 0, otherwise
Periodic square wave
i L ln = N, . sin[Qmk/NY(N| + §)] i
x[n] = bl a, = - 1 BN N
0, Ny<ll=n2 | 20> abfw- Zaid . N sin[2mk/2N]
and k=—cw N 2N1 + 1
ay = ——, k=0,=N, 22N, ...
x[n 4+ NJ] = x[n] N
e 2 RS 2k |
k%_:mB[nka] —Nik;w5<w* %) ay = Nforallk
a'uln), lal <1 1
' 1 —ae /o
L nl =N sinfw(N; + )]
x[n]= e, L 2 L
0, |n]>N, sin(w/2)
. I, 0<|w =W
e _ W sine (%) X() = ol
™ T 0, W<l =m -
O<W<m X(w) periodic with period 27
8(n] 1 _
1 S
uln] e kZ m8(w — 2k) -
&[n — ng) e /@M —
(n+ Da"uln], |a] <1 ———’KW e
o (1 —ae Jw)?
(n+r—1) 1

auln], |al <1

nl(r = 1!

(1 —ae @y
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Example 5.17

The duality between the discrete-time Fourier transform synthesis equation and the
continuous-time Fourier series analysis equation may be exploited to determine the
discrete-time Fourier transform of the sequence

sin(7rn/2)
mn

x[n] =

To use duality, we first must identify a continuous-time signal g(r) with period T = 27
and Fourier coefficients a; = x[k]. From Example 3.5, we know that if g(7) is a periodic
square wave with period 277 (or, equivalently, with fundamental frequency w, = 1) and
with

L =T
0, T] < l” =< 17T

’

gt) = {

/

then the Fourier series a{)efﬁcients of g(t) are
l .
\ :
‘\ sm/(cle)
T

ay =

Consequently, if we take 7', =
equation for g(1) is

sin (wk/2) 1 (7 . 1 (™
$ L — Jkt I
Tk 2 jv_ﬂ gy 7dt 27Tj

—/2

m/2, we will have a; = x[k]. In this case the analysis

ejk%{ﬁ

Renaming k as n and t as w, we have

(De %4t

/ i
(‘( :“"‘fl(’e’)
=T )

&24)

K> ) sin (mn/2) I ™=
SiEe O o TS O —jnw
i eres -_-—-_} — = L/z(l)e dw. (5.77)
Replacing n by —n on both sides of eq. (5.77) and noting that the sinc function is even,
*7?\ &’\3 we obtain
- : /2 /2 )

%@& nicyEn = sin(mn/2) LJ (Dedo.
\Q'\/ mn 2 -2

The right-hand side of this equation has the form of the Fourier transform synthesis
equation for x[n], where

s 3C0N
X)) = Zlﬁfxcej )eﬂ)d“) =
a7

1 |o| = 7w/2
feeai? <o 7

X@W)z{

e 5.3, we present a compact summary of the Fourier series and Fourier trans-
form expressions for both continuous-time and discrete-time signals, and we also indicate
the duality relationships that apply in each case.

TABLE 5.3 SUMMARY OF FOURIER SERIES AND TRANSFORM EXPRESSIONS

Continuous time Discrete time

Time domain Frequency domain Time domain Frequency domain

|
x(1) = 7’(,)' a; = «&.76) x[n] = ' a =
~ 4% D | b2y — i | 1 < L
Z;: o ake/kmol (hs- \ TLO ‘Tn x(1)e Jkagt Zk:<N>ak€/l<(21r/N)n ' ¥ Zkz(l\’) x[ne JkQ2m/N)n
Fourier ' '
Series continuous time | discrete frequency discrete time discrete frequency
periodic in time : aperiodic in frequency periodic in time ) periodic in frequency
1 s I
.rl(t) 3 | X(jw) = x[n] = | X(e/? =
ulagfpliarn o jwt | 4o g [ Shve —Jjen
- = |, X(jw)e dw : [ 2% x(n)e~ Tt dy o i ' bl lnle <{~7¢)
ourier | l)bj:‘m |
Transform | continuous time continuous frequency discrete time C 73)| continuous frequency &

aperiodic in time

aperiodic in frequency

aperiodic in time !

periodic in frequency

&8
C!LH ,.17(/}50 PA|

*.3
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5.52. (a) Let h[n] be the impulse response of a real, causal, discrete-time LTI system.
Show that the system is completely specified by the real part of its frequency
response. (Hint: Show how h[n] can be recovered from &{h[n]}. What is the
Fourier transform of &¥{h[n]}?) This is the discrete-time counterpart of the real-
part sufficiency property of causal LTI systems considered in Problem 4.47 for
continuous-time systems.

(b) Let h[n] be real and causal. If

Re{H(e’)} = 1 + a cos 2w(a real),

determine h[n] and H(e/®).

(c) Show that h[n] can be completely recovered from knowledge of 9m{H(e/“)}
and A[0].

(d) Find two real, causal LTI systems whose frequency responses have imaginary
parts equal to sinw.

EXTENSION PROBLEMS

5.53. One of the reasons for the tremendous growth in the use of discrete-time methods for
the analysis and synthesis of signals and systems was the development of exceed-
ingly efficient tools for performing Fourier analysis of discrete-time sequences. At
the heart of these methods is a technique that is very closely allied with discrete-time
Fourier analysis and that is ideally suited for use on a digital computer or for im-
plementation in digital hardware. This technique is the discrete Fourier transform
(DFT) for finite-duration signals.

Let x[n] be a signal of finite duration; that is, there is an integer N, so that

x[n] =0, outside the interval 0 = n = N; — |

Furthermore, let X(e/®) denote the Fourier transform of x[n]. We can construct a
periodic signal ¥[n] that is equal to x[n] over one period. Specifically, let N = N,
be a given integer, and let X[n] be periodic with period N and such that

X[n] = x[n], O0=n=N-1
The Fourier series coefficients for ¥[n] are given by
a; = l Z f[”}e*jkflﬂ'/f\«’)n
N <
(N)
Choosing the interval of summation to be that over which ¥[n] = x[n], we obtain

I N—1 . .
a; = NZ x[n]e= 14T (P5.53-1)
n=10 .

The set of coefficients defined by eq. (P5.53-1) comprise the DFT of x[n]. Specifi-
cally, the DFT of x[n] is usually denoted by X[4], and is defined as
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N it "
X[k] = a; = N 2 Anle=Cn 01, N=1 (P5.53-2)
n=0

The importance of the DFT stems from several facts. First note that the ori ginal
finite duration signal can be recovered from its DFT. Specifically, we have

N-1
L R L (P5.53-3)
k=0

Thus, the finite-duration signal can either be thought of as being specified by the
finite set of nonzero values it assumes or by the finite set of values of X [k] in its DFT,
A second important feature of the DFT is that there is an extremely fast algorithm,
called the fast Fourier transform (FFT), for its calculation (see Problem 5.54 for
an introduction to this extremely important technique). Also, because of its close
relationship to the discrete-time Fourier series and transform, the DFT inherits some
of their important properties.

(a) Assume that N = N;. Show that

R[k] = j_ir_X(ej(Zwk/N))

where X[k] is the DFT of x[n]. That is, the DFT corresponds to samples of
X(e/?) taken every 27/N. Equation (P5.53-3) leads us to conclude that x[n]
can be uniquely represented by these samples of X (e/?).

(b) Let us consider samples of X(e/?) taken every 2m/M, where M < N,. These
samples correspond to more than one sequence of duration Ny. To illustrate this,
consider the two signals X1[n] and x;[n] depicted in Figure P5.53. Show that if
we choose M = 4, we have

X (ej(27rk/4J) =X, (ej(Ewk/4))

for all values of k.

Xy [n] X5 [n]
2 2
. 1
P -TI 5§]---
023 n '-":111;2341'7'-'n
-1
Fig P5.53

5.54. As indicated in Problem 5.53, there are many problems of practical importance in

which one wishes to calculate the discrete Fourier transform (DFT) of discrete-time
signals. Often, these signals are of quite long duration, and in such cases it is very
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important to use computationally efficient procedures. One of the reasons for the
significant increase in the use of computerized techniques for the analysis of signals
was the development of a very efficient technique known as the fast Fourier trans-
form (FFT) algorithm for the calculation of the DFT of finite-duration sequences.
In this problem, we develop the principle on which the FFT is based.

Let x[n] be a signal that is O outside the interval 0 = n < Ny —1.ForN =
N, the N-point DFT of x[n] is given by

N-1
X = L D xlnle MCTR =01, ,N-1  (P5.54-1)

N k=0

It is convenient to write eq. (P5.54-1) as

X[k] = x[n]Wik (P5.54-2)

where
Wy = e~ 27N

(a) One method for calculating X[k] is by direct evaluation of eq. (P5.54-2). A
useful measure of the complexity of such a computation is the total number of
complex multiplications required. Show that the number of complex multipli-
cations required to evaluate eq. (P5.54-2) directly, for k = 0,1, ..., Nl a8
N?. Assume that x[n] is complex and that the required values of W)} have been
precomputed and stored in a table. For simplicity, do not exploit the fact that,
for certain values of n and k, W}t is equal to =1 or *j and hence does not,
strictly speaking, require a full complex multiplication.

(b) Suppose that N is even. Let f[n] = x[2n] represent the even-indexed samples
of x[n], and let g[n] = x[2n + 1] represent the odd-indexed samples.

(i) Show that f[n] and g[n] are zero outside the interval 0 =< n = (NI2)—1.
(ii) Show that the N-point DFT X[k] of x[n] can be expressed as

_ 1 (NI2)-1 1 (N12)—-1
Xkl = & > fldWih + SWh > glnlWi,
n=0 n=0
1 -

=alemy %Wﬁ.é{k], k=01,...,N—1, (P554-3)

where
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(iii) Show that, for all k,

_ N -
F[k+ —2»-] = F[k],
N N ~
G[k = 5} = G[k].

Note that F[k], k = 0,1,...,(Nf2) — 1,and G[k], k = 0, 1,...,(N/2) —
1, are the (N/2)-point DFTs of f[n] and g[n], respectively. Thus, eq.
(P5.54-3) indicates that the length-N DFT of x[n] can be calculated in
terms of two DFTs of length N/2.

(iv) Determine the number of complex multiplications required to compute
X[k], k= 0,1,2,...,N — 1, from eq. (P5.54-3) by first computing F[k]
and G[k]. [Make the same assumptions about multiplications as in part (a),
and ignore the multiplications by the quantity 1/2 in eq. (P5.54-3).]

(¢) If, like N, N/2 is even, then f[n] and g[n] can each be decomposed into se-
quences of even- and odd-indexed samples, and therefore, their DFTs can be
computed using the same process as in eq. (P5.54-3). Furthermore, if N is an
integer power of 2, we can continue to iterate the process, thus achieving sig-
nificant savings in computation time. With this procedure, approximately how
many complex multiplications are required for N = 32,256, 1,024, and 4,096
Compare this to the direct method of calculation in part (a).

In this problem we introduce the concept of windowing, which is of great importance

both in the design of LTI systems and in the spectral analysis of signals. Windowing

is the operation of taking a signal x[n] and multiplying it by a finite-duration window
signal wln]. That is,

pln] = x[n]w[n].

Note that p[n] is also of finite duration.

The importance of windowing in spectral analysis stems from the fact that in
numerous applications one wishes to compute the Fourier transform of a signal that
has been measured. Since in practice we can measure a signal x[n] only over a finite
time interval (the time window), the actual signal available for spectral analysis is

(] = x[n, M =n=M
P 0, otherwise ’

where —M < n = M is the time window. Thus,
plnl = x{nlwlnl,
where w([n] is the rectangular window, that is,

L -M=n=M
w[n] = ;

0, otherwise Joo=)

Windowing also plays arole in LTI system design. Specifically, for a variety of
reasons (such as the potential utility of the FFT algorithm; see Problem P5.54), it is



§3\7 F;,Uwuy (C@f%ﬁ% 4vi) s

&uﬂ : /4 fnw.r As """“7‘ the n/&,(%
of Ahe fﬁmy aon/oah;b n o Symad

(fraquensy—shoping fildars ) o> paskaps
Q/c'hu?)qfc Some fp,uay cafueb‘;f lﬂf&»;}f
(fn.lnn)v -safocdire  Lilhnws)

- ﬂn;;(. #he Ura of LTI Syshuns

53.9.¢ hreuency- '«‘7"}’ FoMey

Exemplle { 5}««,@}3? filden h compensate

for tha frop WP, eharpdenihio of Mo
f/ﬂ«hf;,

;C:‘fr—-ﬂ L.a-fw.’\ ‘ Q“\N\uo\u{‘-‘] , N
geat | il 2%:; /“uH A
i grrrle) ‘\y ¢ Dy 5
x(d) LF@Rw
*) /‘//(5) Ky .3 00 R
M (S) J
Yo = K ‘:x) Ha Cs) K, €8 X(S) (‘w*
S Y= S AHGKIARYRI B GRS
ke-e

2t punde il polT,

chr- @2 __7...”‘



§

1 .
&

+25 [ G e T [ — e ————

+20 -
+15 Switch position 1 _

+10 =
+5 f ]

(= Switch position 2 _

Response (dB)

- -
=10 = =

-15 1| T [ O J 1 ] | | | | |
20Hz 30 40 60 100 200 400 600 1kHz 2 3 4 6 810 20

Frequency

@)

+28 T e B e s e S

+28 = Upper limit s L

+15
+10
+5

Lower limit

Response (dB)

=10 = B
—15 I B ! L ! [ B B N
20Hz 30 40 60 100 200 400 600 1kHz 2 3 4 6 810 20

Frequency

(b)

+25 [P——r— T I 1 [ I B

+20 = -
+15
+10

Response (dB)

-15 o | ! ! l ! | L L1 |
20Hz3040 60 100 200 400 600 1kHz 2 83 4 6 810 20

Frequency

©

Figure 3.22 Magnitudes of the frequency responses of the equalizer
circuits for one particular series of audio speakers, shown on a scale of
2010gyq |H(jw)|, which is referred to as a decibel (or dB) scale. (a) Low-
frequency filter controlled by a two-position switch; (b) upper and lower
frequency limits on a continuously adjustable shaping filter; (c) fixed
frequency response of the equalizer stage.
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The summation in eq. (3.161) can be evaluated by performing calculations similar to those
in Example 3.12, yielding

- 1 s eare sinfw(M + N + 1)/2] /
joy — __ Jo[(N=M)/2) . .
By = grirs I sin(w/2) e |

By adjusting the size, N + M + 1, of the averaging window we can vary the cutoff fre-

quency. For example, the magnitude of H(e/*)is shown in Figure 3.36 for M+ N +1 = 33
andM + N + 1 = 65,

[HEe")|

e .
=% —7/2
[HE™)|
1
e oY , X : :
-—'rlr —m/2 o' /2 T
(b)

Figure 3.36  Magnitude of the frequency response for the lowpass moving-
average filter of eq. (3.162): (@) M= N = 16; b)M=nN=32
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